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1 Introduction

Processes with photons, which occur in pp collisions at the Large Hadron Collider (LHC), play
a central role in the ATLAS and CMS physics programs. Such processes are dominated by
all phenomena in which photons come from hadron decays, such as for example neutral pion
(π0 → γγ) or eta meson decays (η → γγ). However, dedicated experimental measurements
at the LHC are mostly interested in primary (also called direct or prompt) photons. Such
photons appear much less frequently. They are produced in the hard scattering process
before the quarks and gluons have time to form hadrons and long before these hadrons
have time to decay. The production of prompt photons ranges from associated production
processes, where photons are produced in combination with heavy quarks, jets, massive bosons
and other photon(s) to processes in which photons arise in the decay of heavy resonances.
Physics analyses and measurements at the LHC involving photons test the perturbative and
non-perturbative regimes of QCD and the electroweak sector of the Standard Model (SM).
Moreover, they are used to search for signals of new physics beyond the SM (BSM). Photons
are also produced in the transition to hadrons which can be described by fragmentation
functions. These fragmentation functions are conceptually similar to parton distribution
functions but describe the probability for the transition of a parton into a collinear photon with
a given momentum fraction. As one might expect, identifying photons in hadron collisions is
a difficult task as many other particles are created near them in the detector. Because direct
photons are rather rare phenomena, very good photon identification capabilities and precise
isolation procedures are essential for the extensive physics program currently underway at
the LHC. Such procedures will become even more important in the near future with the
planned High Luminosity phase of the LHC (HL-LHC), which is expected to significantly
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increase the discovery potential of ATLAS and CMS by increasing the integrated luminosity
up to even (3000 − 4000) fb−1 [1]. At the LHC, the photon candidates are reconstructed
from energy deposits in the central region of the ATLAS/CMS electromagnetic calorimeter
and by requiring them to be isolated from other particles in the event. The isolation
criterion is usually formulated by allowing only a limited amount of hadronic energy in a
fixed cone of size R around the direction of the photon. Such an isolation prescription is
very effective in suppressing photons emerging in decays of strongly interacting particles,
but it allows for contributions from photon fragmentation processes. Therefore, theoretical
predictions for processes with prompt photons must take into account both direct and
fragmentation contributions. Only the combined result can be subjected to the fixed-cone
isolation prescription for infrared-safe observables. The way out of this situation is to
impose the smooth-cone isolation prescription [2]. This approach eliminates fragmentation
contributions by smoothly lowering the amount of hadronic energy towards the center of
the cone of size R. In the strict collinear limit, when R → 0, any emission will lead to the
photon being considered as not isolated. The latter condition is mandatory for higher-order
(perturbative) calculations because the phase space for soft radiation cannot be modified
to ensure the adequate cancellation of infrared divergences between the real emission and
the virtual contribution. This theoretically very well-founded and appealing method of
isolating photons is used in almost all high-precision theoretical predictions with prompt
photons at the LHC. However, such a method cannot be directly applied to experimental
measurements. Although this procedure has several arbitrary parameters that can in principle
be tuned to reflect what happens on the experimental side, such tuning depends greatly
on the process under consideration and the regions of phase space being analysed. As a
result, it is rarely performed. The smooth-cone isolation prescription therefore introduces
an additional systematic uncertainty in comparisons between theoretical results and LHC
data. An alternative isolation prescription, called the hybrid-photon isolation method, has
been employed in refs. [3, 4]. In this approach the smooth-cone isolation prescription with
a small radius R is combined with the fixed-cone isolation method for Rfixed, such that
Rfixed ≫ R. The smooth-cone prescription, that is applied in the first step, removes collinear
divergences and the dependence on the fragmentation processes. On the other hand, the
fixed-cone isolation, that is applied in the next step, makes a comparison to the LHC data
straightforward. Also in this case the cone size R can be tuned to reproduce the behaviour
of the fixed-cone isolation approach that is used in both ATLAS and CMS. Nevertheless,
choosing R too small might generate large logarithms of the form ln(R) that must be properly
resummed. These three approaches appear to be quite different conceptually. Therefore, it
would be beneficial to thoroughly investigate their advantages and disadvantages in the case
of a realistic, multiparticle final state that includes not only photon emission in production
and decays of heavy resonances but also additional jet activity.

The aim of this work is to make such a comparison at the NLO QCD level for the pp →
e+νe µ−ν̄µ bb̄ γ + X process. In our calculation, photons are included in the production phase
of the process as well as in top-quark decays. Furthermore, not only double-resonant top-quark
and W gauge boson contributions but also single-resonant and non-resonant contributions
are taken into account. In addition, the Breit-Wigner propagators are incorporated for
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heavy resonances appearing in the process. To perform NLO QCD studies with the fixed-
cone isolation, two different parton-to-photon fragmentation functions are build in into our
computational framework. The second goal of the paper is to provide the state-of-the art NLO
QCD predictions for pp → e+νe µ−ν̄µ bb̄ γ + X using the LHC Run III center-of-mass energy
of

√
s = 13.6TeV. As is customary in this type of studies we will provide the integrated and

differential cross-section results for different renormalisation and factorisation scale settings.
Thanks to current higher-order calculations for this process, future comparisons with the
LHC data will become more accurate and precise.

Let us mention here that on the theory side, NLO QCD and NLO electroweak (EW)
corrections to the pp → tt̄γ + X process have been calculated long time ago [5–8], albeit only
for stable top quarks. Recently, also the so-called complete NLO predictions for this process
have been provided [9]. These complete theoretical predictions comprise all leading and
subleading LO contributions as well as their corresponding higher-order QCD and EW effects.
The approximate NNLO cross section, with second-order soft-gluon corrections added to the
NLO result including QCD and EW higher-order contributions, has also been calculated [10].
In addition, various predictions that take into account top-quark decays, are available in the
literature. First, NLO QCD theoretical predictions for pp → tt̄γ + X have been matched
with the Pythia parton shower program [11]. Theoretical predictions at NLO in QCD in the
Narrow Width Approximation (NWA) have been provided [12, 13]. A fully realistic description
of this process at NLO in QCD is also available in the literature [14, 15]. This calculation is
based on matrix elements for the e+νe µ−ν̄µ bb̄ γ final state and allows the production of tt̄γ,
tWγ, W +W−bb̄γ events including interference and off-shell effects of top quarks and W±/Z

gauge bosons. Moreover, a dedicated comparison between the full off-shell calculation and the
result in the NWA has also been carried out [13]. Finally, the complete NLO corrections for
the pp → tt̄γ + X process have recently been calculated in the di-lepton decay channel [16].
In this study, the NWA has been employed to analyse the individual size of each subleading
contribution and the origin of the leading and subleading QCD and EW corrections.

The rest of the paper is organised as follows. In section 2 we give definitions of the various
photon-isolation prescriptions. The theoretical framework for our calculations is summarised
in section 3, where we also provide the explicit expressions for the LO and NLO QCD cross
sections. In section 4 we describe our computational framework, together with modifications
made in the Helac-Dipoles Monte Carlo program to include the photon fragmentation
function. Our theoretical setup is described in section 5. In section 6 and section 7 we
compare the results obtained using the fixed-cone, smooth-cone and hybrid-photon isolation
prescription at the integrated and differential cross-section level. The state-of-the-art NLO
QCD predictions comprising full off-shell effects and the fixed-cone isolation are given in
section 8. Our results are summarised in section 9.

2 How to isolate a prompt photon

To separate prompt photons produced by hard scattering processes from photons from other
sources, an isolation requirement must be imposed. There are several examples of such
isolation prescriptions. Below we briefly describe the following three approaches, that will
be employed in our studies:
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• fixed-cone isolation,

• smooth-cone isolation,

• hybrid-photon isolation.

All of which are based on the use of some kind of cone around the photon candidate.

Fixed-cone isolation. The most straightforward way to identify a photon is to first define
a fixed cone of angular size R around a photon candidate. Because we want the photon to be
isolated, it must carry the largest part of the (transverse) energy in its vicinity. Furthermore,
the photon is required to be isolated from other objects within this cone by demanding that
the hadronic transverse energy of the final-state particles within the cone of size R, labelled
here as Ehad

T , is smaller than a certain value given by

Ehad
T (R) ≤ Emax

T (pT, γ) = εγ pT, γ + Ethres
T , (2.1)

where the free parameters: R, εγ , and Ethres
T are chosen for a particular process with photons,

while pT, γ is the transverse momentum of the photon. The fixed-cone isolation prescription is
commonly used in various measurements by ATLAS and CMS. With this isolation criterion
the cross-section computation needs to include the non-perturbative photon fragmentation
functions to be collinear finite. Such fragmentation functions are poorly known and may
introduce additional uncertainties, the magnitude of which is not known in advance. We
note here, that taking the limit of Emax

T (pT, γ) → 0 eliminates any fragmentation contribution
but renders the cross sections infrared unsafe.

Smooth-cone isolation. Another way of defining the isolation criterion has been introduced
in ref. [2]. In this case the isolation condition depends directly on R. In this approach a
cone of fixed radius R0 is first drawn around the photon candidate. Then for all R ≤ R0
the total amount of hadronic transverse energy inside the R cone is required to satisfy the
following condition

Ehad
T (R) ≤ Emax

T (pT, γ , R) , (2.2)

where the energy profile Emax
T (pT, γ , R) is largely arbitrary. However, it must be some

continuous function of R that satisfies the following conditions: it increases with R and
decreases to zero when R → 0. The following form has been proposed in ref. [2]

Ehad
T (R) =

∑
i

pT, i Θ(R − Rγi) ≤ Emax
T (pT, γ , R) = εγ pT, γ

( 1− cosR

1− cosR0

)n

, (2.3)

where R0, εγ , and n are the parameters with εγ and n being positive numbers of the order
of 1. In addition, Rγi is defined according to

Rγi =
√
(yγ − yi)2 + (ϕγ − ϕi)2 . (2.4)

The sum ∑
i runs over all partons, pT, i is the transverse momentum of the parton and pT, γ

is the transverse momentum of the photon. This isolation criterion allows arbitrarily soft
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radiation inside the cone of size R, but collinear radiation (cosR → 1) is forbidden. Thus,
the contributions from the fragmentation functions are simply eliminated. Having infrared
finite cross sections without the need to subtract collinear QED final-state singularities is a
significant technical simplification. As a result, this approach has been successfully applied
to obtain higher-order theoretical predictions for processes with photons and jets both at
the NLO and NNLO level in QCD. On the other hand, the smooth nature of this isolation
prescription cannot be easily reproduced in experimental measurements at the LHC where
detectors with finite granularity are employed. In consequence, the smooth-cone isolation
criterion introduces a systematic uncertainty in comparisons with the LHC data. The latter
uncertainty can be significantly reduced by tuning the free parameters εγ , and n of the
smooth-cone isolation prescription to mimic the effects of the fixed-cone isolation approach.
However, such a procedure is time-consuming and not very practical, since it must be repeated
for each process considered and set of phase-space cuts applied. We would like to note here
that from the theory point of view it would be enough, at least at NLO, to impose an angular
separation between quark-initiated jets and photons to remove collinear infrared singularities
and consequently fragmentation contributions. However, at the LHC, jets initiated by quarks
and gluons cannot be well distinguished. Therefore, in order to closely follow the experimental
setup the same event selection has to be applied to all types of jets. Setting simply ∆R > 0.4
between photons and jets would introduce an angular separation between photons and gluons
which would spoil the cancellation of infrared singularities between the real and virtual
contributions in higher-order calculations.

Hybrid-photon isolation. In order to reduce the dependence on the arbitrary input
parameters in the smooth-cone isolation condition and simultaneously improve the agreement
with the fixed-cone isolation condition, the hybrid-photon isolation, as employed in refs. [3, 4],
can be used. In this approach, the smooth-cone and fixed-cone isolation methods are combined
together. In the first step a smaller cone with radius R is defined within the cone size Rfixed,
such that R < Rfixed. After removing the fragmentation contributions inside the inner cone
R in an infrared-safe manner with the help of the smooth-cone isolation method, the outer
cone of size Rfixed is used to apply the experimental fixed-cone isolation with the exact
parameters as in the experimental setups. Thus, it is expected that the differences with
respect to the fixed-cone isolation decrease and that the dependence on the input parameters
of the (inner) smooth-cone isolation is drastically reduced. In fact, the inner smooth-photon
isolation procedure rejects only a small number of events if the size of R is chosen small
enough. However, for very small radius R the cross-section predictions might in principle
become very large, indicating a breakdown of the fixed-order perturbation theory. In such a
case, the leading ln(R) terms have to be resummed, see e.g. refs. [17–19].

In what follows, we will conduct a comparison of the three isolation criteria and examine
the effect of tuning the relevant parameters on the integrated and differential cross-section
predictions for the pp → e+νe µ−ν̄µ bb̄ γ + X process at the LHC with

√
s = 13.6TeV. Taking

into account all the advantages and disadvantages of the described methods, it is important
to analyse them in more detail within a common computational framework.
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3 Description of the calculation

At higher orders in QCD, any cross section for a process involving photons and jets consists
of a direct and a fragmentation contribution. In particular, for the pp → e+νe µ−ν̄µ bb̄ γ + X

process (denoted here as pp → tt̄γ + X) when following the notation of ref. [20] we can
write it as

dσ̂tt̄γ+X = dσ̂tt̄γ +
∑

p

dσ̂tt̄p ⊗ DB
p→γ , p ∈ {qj , q̄j , g} . (3.1)

The first contribution corresponds to the prompt-photon production, where the photon is
produced directly in the hard interaction. The second term comprises the longer distance
fragmentation process with one of the final-state partons fragmenting into a photon and
transferring a fraction of its momentum to the photon. Apart from the leading order level,
the direct dσ̂tt̄γ cross section contains singularities originating from configurations in which
the massless final-state partons are collinear with the photon. Because of the general and
process-independent structure of collinear divergences, it is possible to absorb the uncancelled
divergences into the fragmentation functions. Even though the fragmentation functions are
non-perturbative, we can assign powers of coupling constants to them by counting the couplings
necessary to emit a photon. Consequently, Dq→γ is of the order of O(α). Since the gluon can
only couple to the photon via a quark Dg→γ is of the order of O(ααs). The fragmentation of
gluons into photons is therefore a much smaller effect than the fragmentation of quarks into
photons. In eq. (3.1) the bare fragmentation contribution DB

p→γ can be further decomposed
into a piece where dσ̂tt̄p is convoluted with the renormalised fragmentation functions and the
collinear counterterms of the fragmentation functions. The later contribution is responsible
for the cancellation of the parton-photon collinear singularities in the direct contribution.
This factorisation is performed at a fragmentation scale µFrag, and the resulting fragmentation
functions consequently depend on this scale choice. The relation between renormalised and
bare fragmentation functions can be expressed as

Di→γ(z, µ2
Frag) =

∑
j

Γi→j(z, µ2
Frag)⊗ DB

j→γ(z) , (3.2)

where z is the photon momentum fraction, i, j ∈ {q, q̄, g, γ} and Γi→j are the factorisation
kernels of the fragmentation functions that carry colour factors. Moreover, in order to write
this expression in a compact form using ∑j , a photon-to-photon fragmentation function
of the following form has to be introduced

Dγ→γ(z, µ2
Frag) = DB

γ→γ(z) = δ(1− z) . (3.3)

The perturbative expansion of the bare fragmentation function is obtained by inverting
eq. (3.2) and then using the fact that the factorisation kernels Γi→j (or equivalently their
inverse) can be expanded perturbatively in α and αs. For the quark-to-photon fragmentation
function relevant for NLO calculations we obtain

DB
q→γ(z) = Dq→γ(z, µ2

Frag)−
α

2π
Γ(0)

q→γ , (3.4)
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where the subscript (0) indicates the leading term in the expansion of the factorisation kernel.
A similar expression can be provided for the anti-quark-to-photon fragmentation functions.
With the concrete power counting we have chosen to assign to the fragmentation functions,
i.e. Dq→γ ∼ O(α) and Dg→γ ∼ O(ααs), it is clear that there cannot be any contributions
from the gluon-to-photon fragmentation function at NLO in QCD. However, they become
mandatory at higher orders in αs. We would like to emphasise at this point that if we
used a different convention with a different power counting, the Dg→γ contribution could
already exist at the NLO level in QCD, see e.g. ref. [21]. With our convention for the power
counting of the fragmentation functions, the different contributions to the cross section with
the photon can be finally written as

dσ̂LO
tt̄γ+X = dσ̂LO

tt̄γ+X ,

dσ̂NLO
tt̄γ+X = dσ̂NLO

tt̄γ+X +
∑

q

dσ̂LO
q ⊗ Dq→γ −

∑
q

dσ̂LO
q ⊗ α

2π
Γ(0)

q→γ ,
(3.5)

where the sums cover all active quark and anti-quark flavours. Alternatively, we can rewrite
this cross section as

dσ̂NLO
tt̄γ+X =

(
dσ̂NLO

tt̄γ+X

)
dir

+
(
dσ̂NLO

tt̄γ+X

)
frag

, (3.6)

where the full calculation is given by the sum of the direct and the fragmentation contribution.
They are both IR finite and are given by(

dσ̂NLO
tt̄γ+X

)
dir

= dσ̂NLO
tt̄γ+X − α

2π

∑
p

dσ̂LO
p ⊗ Γ(0)

p→γ , (3.7)

and (
dσ̂NLO

tt̄γ+X

)
frag

=
∑

p

dσ̂LO
p ⊗ Dp→γ . (3.8)

Within the fixed-order approach, only the prompt photon process contributes at lowest order.
At NLO in QCD both prompt photon production and the quark-to-photon fragmentation
process contribute. Prompt photon production may occur via the one loop virtual correc-
tions or by emission of an additional parton to the Born-level process. The fragmentation
contribution arises from the latter part with one quark fragmenting into a photon. The
remaining unfragmented partons are subjected to a jet clustering algorithm to finally identify
them as jets. Collinear singularities that occur when the quark and photon become collinear
are factorisable and can be absorbed by a redefinition of the fragmentation functions as
described above. The factorisation kernel of the quark-to-photon fragmentation functions
can be obtained e.g. from refs. [20, 22]

Γ(0)
q→γ = Q2

q

(4π)ϵ

Γ(1− ϵ)

(
µ2

R

µ2
Frag

)ϵ (
−1

ϵ
Pq→γ(z)

)
, (3.9)

where the quark-to-photon splitting function Pq→γ(z) is given by

Pq→γ(z) =
1 + (1− z)2

z
. (3.10)
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The introduced scale dependence into the renormalised fragmentation functions is described
by the (time-like) Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations.
Similar to the case of PDFs, evolution equations can be derived for the fragmentation functions
by requiring that the bare fragmentation functions are independent of the fragmentation scale

µ2
Frag

dDB
p→γ(z)

dµ2
Frag

= 0. (3.11)

This equation can be expanded up to O(α), which then leads to the following evolution
equation for the quark-to-photon fragmentation functions

µ2
Frag

∂Dq→γ(z, µFrag)
∂µ2

Frag
=
(

αQ2
q

2π

)
Pq→γ(z) . (3.12)

The later equation completely determines the µFrag dependence of the LO fragmentation
functions. The solution of Dq→γ at LO is then given by

D(LO)
q→γ (z, µFrag) = Dnp

q→γ(z, µ0) +
(

αQ2
q

2π

)
Pq→γ(z) log

(
µ2

Frag
µ2

0

)
, (3.13)

where Dnp
q→γ(z, µ2

0) at the scale µ2
0 is a non-perturbative input that must be obtained by

comparisons with experimental measurements.
A first determination of the LO quark-to-photon fragmentation function has been per-

formed by the ALEPH collaboration [23]. The NLO quark-to-photon fragmentation function
has been provided in refs. [22, 24]. The non-perturbative input, Dnp

q→γ(z, µ2
0), has been

obtained by a fit to the e+e− → γ + 1j data from ALEPH [23]. Its explicit form obtained
from the lowest-order fit can be found in e.g. refs. [22, 23]. The fragmentation functions of
quarks and gluons into photons with Beyond Leading Logarithm corrections (BLL) have been
provided in ref. [25]. In this paper, the authors have proposed two fragmentation-function sets
BFGI and BFGII. The two sets differ primarily in the number of free parameters and their
values that are used in the parametrisation of the fragmentation functions when performing
the fit to the data from ALEPH [26] and HRS [27]. These differences mainly affect the
gluon-to-photon fragmentation functions. In our study we will make use of both ALEPH
and BFGII parametrisations of the photon-fragmentation functions.

4 Computational framework and modifications made

In our study we calculate tree-level and one-loop matrix elements for the pp → e+νe µ−νµ bb̄ γ+
X process with the help of the Recola matrix element generator [28, 29] that we have
modified to incorporate the random polarisation method [30–32]. This modification leads to
significant improvements in the performance of the phase-space integration that is carried
out with the help of Parni [33] and Kaleu [34]. Scalar and tensor one-loop integrals are
calculated with Collier [35]. In addition, we have implemented an alternative way of
reducing 1-loop amplitudes to scalar integrals using CutTools [36] and the OPP reduction
method [37]. The resulting scalar integrals are further computed with OneLOop [38]. We
perform the OPP reduction and the evaluation of the scalar integrals with quadruple precision,
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however, we calculate the tensor coefficients with double precision. Not only is this second
reduction scheme used for additional cross-checks of our computational framework, but
also for phase-space points containing tensor integrals that have been flagged as possibly
unstable by Collier. The singularities from soft and collinear parton emissions are isolated
via subtraction methods for NLO QCD calculations. Specifically, we use the Nagy-Soper
subtraction scheme [32]. However, we also cross-check our predictions against the results
obtained with the commonly used Catani-Seymour dipole subtraction scheme [39–41]. Both
subtraction schemes are implemented in Helac-Dipoles [41] that is part of the Helac-Nlo
framework [42]. All additional technical details can be found in our previous papers dedicated
to pp → tt̄γ (γ) + X [14–16, 43].

In what follows, we will focus on the changes and modifications made in the Helac-
Dipoles Monte Carlo program, which are necessary to implement the photon fragmentation
function in the real emission part of the full NLO QCD calculation. However, we would like
to point out that a more comprehensive description can be found in ref. [44]. While the
QCD subtraction is basically identical for the different photon-isolation conditions and with
respect to previous calculations of NLO QCD corrections to the pp → tt̄γ process, the fixed-
cone isolation condition allows additional collinear quark and photon configurations. Such
configurations are handled with the modified q → qγ dipoles, which have to be differential
with respect to the photonic momentum fraction, z̃γ . The z̃γ variable from the dipole terms,
that can be understood as a proxy for z from the fragmentation function, has to fulfil the
following two conditions: in the collinear limit it should approach z̃γ → z, while for soft
photons it should vanish. By using p̃γ = z̃γ p̃qγ and Ehad

T = (1− z̃γ) p̃T, qγ , the condition of
the fixed-cone isolation approach given in eq. (2.1) is translated to a lower limit provided by
z̃γ > zcut, where zcut is a function depending on the transverse energy of p̃ qγ , whereas p̃qγ is
the auxiliary momentum of the parent parton after the momentum mapping of the dipole
subtraction scheme. Moreover, this condition must also be satisfied by z. In the calculation
of the real subtracted part, the inclusion of the fixed-cone isolation condition can now be
performed in a straightforward way. On the other hand, the calculation of the integrated
dipoles have to be modified to retain the dependence on z̃γ .

In the case of the Cataini-Seymour subtraction scheme the corresponding integrated
dipoles have been calculated with an additional restriction on the phase space of the unresolved
parton, parametrised by the so-called αmax parameter. The corresponding results are provided
in ref. [45] for both massless final- and initial-state spectators. We have only implemented
the case of final-state spectators and choose exactly one spectator particle k to avoid the
complications in the numerical evaluation coming from the additional plus distributions with
respect to the momentum fractions of the initial-state partons for initial-state spectators.
In this case the variable z̃γ is defined as

z̃γ = pγ · pk

pq · pk + pγ · pk
, (4.1)

and is directly connected to the integration variable z̃i = 1− z̃γ from the original formulation
of the Cataini-Seymour subtraction scheme, which simplifies the whole calculation. The
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integrated dipole is then given by

Vcoll
qγ (αmax, ϵ, zcut) = Q2

q

∫ 1−zcut

0
dz̃i (z̃i(1− z̃i))−ϵ

∫ αmax

0
dy y−1−ϵ(1− y)1−2ϵ

×
[ 2
1− z̃i + yz̃i

− (1 + z̃i)− ϵ(1− z̃i)
]

= Q2
q

∫ 1−zcut

0
dz̃i

[1 + z̃2
i

1− z̃i

(
−1

ϵ
+ log(z̃i(1− z̃i)) + log(αmax)

)
+ αmax(1 + z̃i) + 1− z̃i −

2
z̃i(1− z̃i)

log
(1− z̃i + αmaxz̃i

1− z̃i

)]
,

(4.2)

where the ϵ pole from the integrated dipoles cancels exactly the one in eq. (3.9).
We write the local counterterms in the Nagy-Soper subtraction scheme for general QED

singularities as follows

AD =
n+1∑

i,j,k=1
AB({p̃}ij

n )⊗D(ijk)({p̃}(ij)
n , {p}n+1)

=
n+1∑

i,j,k=1

∑
s̃1,s̃2=±

AB
s̃1s̃2({p̃}ij

n )D
(ijk)
s̃1s̃2 ({p̃}(ij)

n , {p}n+1) (Qij ·Qk) ,

(4.3)

where i and j label the splitting particles from ĩj → i+ j, while the particle k is the spectator.
The Born matrix element before the splitting is denoted as AB, D(ijk) are the splitting
functions in the Nagy-Soper formalism and {p}n+1 → {p̃}(ij)

n relates the momenta before
and after the splitting. The symbol ⊗ denotes spin correlations, while s̃1, s̃2 are the spin
indices of the splitting particle p̃i and Qij , Qk are the corresponding charges with a relative
minus sign between initial- and final-state particles. The function D(ijk)

s̃1s̃2 can be further
decomposed into two kind of contributions, W (ii,j) and W (ik,j), called respectively diagonal
and interference terms, according to

D(ijk)
s̃1s̃2 = W

(ii,j)
s̃1s̃2 δik + W

(ik,j)
s̃1s̃2 (1− δik) δs̃1s̃2 . (4.4)

The diagonal terms W
(ii,j)
s̃1s̃2 comprise both soft and collinear singularities, while the interference

terms W
(ik,j)
s̃1s̃2 contain only soft singularities. The latter, however, are absent due to the

lower cut on z̃γ . Therefore, we can simply set W (ik,j) = 0. The calculation of the integrated-
subtraction terms then closely follows the semi-numerical approach employed in ref. [32]. We
write the integration over the phase space of the unresolved parton as

Dii =
∫

de dcΘ(z̃γ(e, c)− zcut)
N d=4−2ϵ

ii (e, c)
(1− c)1+ϵ

, (4.5)

where the integration variables e and c, that are defined in ref. [32], describe the soft (e → 0)
and collinear (c → 1) limits. In addition, the pole structure of the integrand is explicitly
factored out and the Heaviside function implements the lower cut of z̃γ(e, c), which is a
function of the two integration variables. We can rewrite the integrated-subtraction term
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in the following way

Dii =
∫

de dc
1

(1− c)
[
N d=4

ii (e, c)Θ(z̃γ(e, c)− zcut)−N d=4
ii (e, 1)Θ(z̃γ(e, 1)− zcut)

]
+
∫

de dc
1

(1− c)1+ϵ

[
N d=4−2ϵ

ii (e, 1)Θ(z̃γ(e, 1)− zcut)
]

,
(4.6)

where, in the first line, we have subtracted a suitable counterterm that allows a numerical
integration in d = 4 dimensions. This counterterm is then added back in the second line,
where the only dependence on c is found in the factor 1/(1− c)1+ϵ, which after integration
over c leads to −2−ϵ/ϵ. The remaining integration over e is then again performed numerically.
In the next step, we define the variable z̃γ(e, c) according to

z̃γ(e, c) = pγ · Q

pq · Q + pγ · Q
=

ECMS
γ

ECMS
γ + ECMS

q

, (4.7)

where Q denotes the total momentum of the process. This definition coincides with z̃γ in the
Catani-Seymour subtraction scheme when the following substitution is performed pk → Q.
In the collinear limit (c → 1) the photonic momentum fraction z̃γ(e, 1) depends only on e,
which would allow us to invert this relation leading to e(z̃γ) and rewrite the integration over
e in the second line of eq. (4.6) as the integration over z̃γ . Instead, we rewrite the integration
over zγ of the fragmentation functions as an integral over e. This allows us to combine the
factorisation kernels in eq. (3.9) directly at the integrand level with the integrated subtraction
terms so that all poles in ϵ cancel analytically before the integration over e is performed.

5 Process definition and input parameters for LHC run III

We consider the pp → e+νe µ−νµ bb̄ γ + X process at LO and NLO in QCD for the LHC
Run III center-of-mass energy of

√
s = 13.6TeV. Our calculations are based on the matrix

elements for the final state e+νe µ−νµ bb̄ γ and include all resonant and non-resonant Feynamn
diagrams, their interferences and finite-width effects of the top quark and W±/Z boson.
Thus, the propagators of unstable particles have the Breit-Wigner form. In addition, photons
can be emitted from all the initial, final and intermediate (charged) particles. A few examples
of Feynman diagrams contributing to the gg subprocess at O(α2

sα5) are presented in figure 1.
The calculation is performed in the so-called 5-flavour scheme, which treats bottom quarks
as massless particles. In addition, the 5-flavour scheme resums initial state (potentially
large) logarithms in the bottom PDFs, which leads to more stable higher-order theoretical
predictions. For the LO contribution, the e+νe µ−νµ bb̄ γ final state can be produced via

gg → e+νe µ−νµ bb̄ γ ,

qq̄ → e+νe µ−νµ bb̄ γ ,

q̄q → e+νe µ−νµ bb̄ γ ,

(5.1)

where q stands for q = u, d, c, s, b. Since we require to have (at least) two b-jets of arbitrary
charges in the final state, we must also include the following two subprocesses

bb → e+νe µ−νµ bb γ ,

b̄b̄ → e+νe µ−νµ b̄b̄ γ .
(5.2)
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Figure 1. Representative Feynman diagrams, involving two (first diagram), one (second diagram)
and no top-quark resonances (third diagram), contributing to the pp → e+νe µ−νµ bb̄ γ +X process at
leading order defined at O(α2

sα5). Red lines correspond to top quarks, blue lines to photons.

If we were able to precisely measure the charge of the two b-jets, then the last two subprocesses
would not be needed. We note, however, that the bb̄/b̄b and bb/b̄b̄ initial-state contributions
to the full pp → e+νe µ−νµ bb̄ γ + X process are negligibly small and at LO amount to only
0.2% and 0.02%, respectively. We keep the Cabibbo-Kobayashi-Maskawa mixing matrix
diagonal throughout the calculations. We use the NNPDF3.1 NLO PDF set [46] for both
LO and NLO computations. The two-loop running of αs is preformed with the help of
the LHAPDF interface [47]. The presence of the isolated photon in the final state requires
a mixed scheme for the electromagnetic coupling constant α, see e.g. refs. [14, 16]. The
total power of α is split into αn = α

n−nγ

Gµ
α(0)nγ where in our case nγ = 1. In particular,

we use the α(0) scheme for the electromagnetic coupling associated with final-state photon
radiation with α−1(0) = 137.035999084 [48], while for all other powers of α we use the
Gµ-scheme, where αGµ is given by

αGµ =
√
2

π
Gµ m2

W

(
1− m2

W

m2
Z

)
, Gµ = 1.1663787 · 10−5 GeV−2 . (5.3)

For the on-shell masses and widths of the W±/Z weak bosons we use the values from ref. [48]

mOS
W = 80.377 GeV , ΓOS

W = 2.085 GeV ,

mOS
Z = 91.1876 GeV , ΓOS

Z = 2.4955 GeV ,
(5.4)

that are translated into their pole values according to the formulas given in ref. [49]

mV = mOS
V√

1 +
(
ΓOS

V /mOS
V

)2 , ΓV = ΓOS
V√

1 +
(
ΓOS

V /mOS
V

)2 . (5.5)

The full off-shell approach requires the evaluation of the top-quark width for unstable W

bosons. This calculation is based on the results presented in refs. [50, 51]. Specifically, we
use αs(µR = mt) to compute NLO QCD corrections to Γt. The corresponding LO and
NLO top-quark widths are given by

ΓLO
t = 1.4580658 GeV , ΓNLO

t = 1.3329042 GeV . (5.6)

The mass of the top quark is set to mt = 172.5GeV, while all other fermions are considered
massless.

In the calculation with the fixed-cone isolation we use the ALEPH LO quark-to-photon
fragmentation function. However, for comparison we also report results with the BFGII
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parton-to-photon fragmentation functions. The BFGII set includes flavour-dependent quark-
to-photon and gluon-to-photon fragmentation functions. The parametrisation of the ALEPH
LO quark-to-photon fragmentation function is given in eq. (3.13). The BFGII parton-to-
photon fragmentation functions are obtained from Jetphox [17]. To validate the imple-
mentation of the BFGII set in our system, we reproduced the results for the fragmentation
contribution to the pp → γ + 1j process, which are presented in ref. [21]. We note that, in
the case of the ALEPH LO quark-to-photon fragmentation function, the dependence on the
fragmentation scale is the same (up to a relative minus sign) for the direct and fragmenta-
tion contributions as defined in eq. (3.7) and eq. (3.8), respectively. Thus, in this case the
full NLO result is independent of the fragmentation scale setting. The direct contribution
consists of the photon radiation at the matrix element level and the counterterm from the
factorisation of the quark-to-photon fragmentation functions. The full dependence of the
different parametrisations of the fragmentation functions is encoded in the fragmentation
contribution, which is the convolution of the partonic pp → e+νe µ−ν̄µ bb̄ p′ process with the
parton-to-photon fragmentation functions, where p′ is either a gluon or a massless quark.

Based on the latest measurements of the pp → tt̄γ process in the ℓ + jet and di-lepton
decay channels performed by the ATLAS collaboration [52] we employ a nested fixed-cone
isolation, that comprises two fixed-cone photon isolation criteria. They are realised in our
calculation by requiring that the transverse hadronic energy Ehad

T inside the cone around
the photon candidate with the radius R = 0.4 is limited by

Ehad
T ≤ 0.022 · pT, γ + 2.45 GeV , (5.7)

and within the smaller cone with radius R = 0.2 by

Ehad
T ≤ 0.05 · pT, γ . (5.8)

The fixed-cone isolation with the smaller cone size has only a minor effects on our NLO QCD
theoretical predictions. Indeed, when the results with just the outer fixed cone and the nested
fixed cone isolation are compared the integrated cross section is reduced by less than 0.5%.
The calculations with the fixed-cone isolation are going to be compared with the predictions
obtained using the smooth-cone and hybrid-photon isolation criteria. In these latter two
cases the input parameters (R, εγ , n) of the (inner) smooth-cone isolation will be varied.
In particular, for the smooth-cone isolation prescription we employ the following values
εγ ∈ {0.05, 0.10, 0.15, 0.20, 1.00}, n ∈ {0.5, 1.0, 2.0} and R = 0.4, whereas for the hybrid-
photon isolation we will use instead εγ ∈ {0.05, 0.10, 0.15, 0.20, 1.00}, n ∈ {0.5, 1.0, 2.0}
and R = 0.1.

We require the presence of at least two b-jets, two oppositely charged leptons and one
photon. We closely follow the experimental environment in which it is difficult to determine
the charge of the b-jet. Therefore, in the recombination of the partons in the jet algorithm
the charges of bottom quarks are neglected. In practice, this means that the following
recombination rules apply

bg → b, b̄g → b̄, bb̄ → g, bb → g, b̄b̄ → g . (5.9)
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This corresponds to the charge-blind b-jet tagging scheme as discussed in ref. [53]. The anti-kT

jet algorithm [54] with R = 0.4 is used to cluster partons into jets after the photon isolation
criterion is applied. The fiducial phase-space of the prompt photon is defined according to

pT, γ > 20 GeV , |yγ | < 2.37 . (5.10)

The b-jets and charged leptons have to pass the following requirements

pT, b > 25 GeV , |yb| < 2.5 , ∆Rbb > 0.4 ,

pT, ℓ > 25 GeV , |yℓ| < 2.5 , ∆Rℓℓ > 0.4 ,

∆Rℓγ > 0.4 , ∆Rℓb > 0.4 , ∆Rbγ > 0.4 .

(5.11)

We set the renormalisation (µR) and factorisation (µF ) scales to a common value µR = µF =
µ0. Our default scale setting is given by

µ0 = ET

4 , (5.12)

where ET is defined according to

ET =
√

m2
t + p2

T, t +
√

m2
t + p2

T, t̄
+ pT, γ . (5.13)

To build this scale setting the (anti)top-quark momentum has to be reconstructed. This
can be achieved by minimising the following quantity

Q = |M(t)− mt|+ |M(t̄)− mt|, (5.14)

where M(t) and M(t̄) are the invariant masses of the reconstructed top and anti-top quarks,
respectively. The latter are reconstructed from their decay products using the so-called
resonance histories. We assume that the momenta of the leptons can be fully reconstructed,
see e.g. refs. [55, 56]. Since we do not tag the charge of the b-jet, we can identify the following
different resonance histories at LO

(i) t = W +(→ e+νe) b1 and t̄ = W−(→ µ−ν̄µ) b2 ,

(ii) t = W +(→ e+νe) b1γ and t̄ = W−(→ µ−ν̄µ) b2 ,

(iii) t = W +(→ e+νe) b1 and t̄ = W−(→ µ−ν̄µ) b2γ ,

(5.15)

plus additional three cases that can be obtained by simply replacing b1 ↔ b2. In general these
6 categories are not sufficient if NLO QCD calculations are considered. In particular, we can
encounter events with up to three b-jets in the final state. In this case the total number of 18
resonance histories have to be considered. Finally, an additional light jet (if resolved by the
anti-kT jet algorithm and passed all the cuts) is not considered in the reconstruction.

In addition to the default scale choice, we also provide selected results for the following
two scale settings

µ0 = mt , (5.16)

and
µ0 = HT

4 , (5.17)
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where HT is given by

HT = pT, b1 + pT, b2 + pT, e+ + pT, µ− + pmiss
T + pT, γ . (5.18)

The missing transverse momentum is defined as pmiss
T = |p⃗T, νe + p⃗T, ν̄µ |. These two scale

settings do not require the reconstruction of the (anti)top-quark momentum, which can become
ambiguous in the full off-shell calculation due to single- and non-resonant contributions,
where only one or even zero resonant top quarks are present. Theoretical uncertainties due
to missing higher-order corrections are estimated based on a 7-point scale variation, where
µR and µF are changed independently in the range

1
2 µ0 ≤ µR , µF ≤ 2µ0 ,

1
2 ≤ µR

µF
≤ 2 . (5.19)

This results in the following pairs that need to be evaluated(
µR

µ0
,
µF

µ0

)
=
{
(2, 1) , (0.5, 1) , (1, 2) , (1, 1), (1, 0.5), (2, 2), (0.5, 0.5)

}
. (5.20)

The scale uncertainties are obtained by selecting the maximum and minimum values from
the obtained results. Any uncertainties due to the different parametrisations of the parton-
to-photon fragmentation functions or the choice of the fragmentation scale in the case of the
BFGII set are not taken into account in the NLO QCD calculation due to the small relative
size of the fragmentation contribution. Finally, we do not study the PDF uncertainties for the
pp → e+νe µ−ν̄µ bb̄ γ+X process as they have already been examined in depth in refs. [13, 14].

6 Integrated cross-section results for various photon isolation criteria

We start presenting the results for the pp → e+νe µ−ν̄µ bb̄ γ + X process at the LHC with√
s = 13.6TeV by assessing the magnitude of the fragmentation contribution. Our NLO

QCD results, together with their theoretical uncertainties related to the scale variation, are
summarised in table 1. They are obtained with the fixed-cone isolation prescription, by
employing the ALEPH LO and BFGII parton-to-photon fragmentation functions. Separately,
we also show only the fragmentation contribution for both parametrisations. The last column
displays the ratio of the results obtained with the ALPEH LO quark-to-photon fragmentation
function to the BFGII parton-to-photon fragmentation functions. Following the findings
of ref. [18], we set the fragmentation scale to

µFrag = R pT, γ , (6.1)

where R = 0.4. We note once again that the sum of the direct and the fragmentation
contribution is independent of µFrag for the ALEPH LO quark-to-photon fragmentation
function. In this case, the fragmentation scale is only relevant if the fragmentation contribution
is shown separately. We can observe that the ALEPH LO fragmentation function yield a
130% larger fragmentation contribution compared to the result obtained with the BFGII set.
This large difference in part is due to the inner cone of R = 0.2 in the fixed-cone isolation.
Once the inner cone is removed the difference is reduced to 80%. Similar large differences
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ALEPH LO BFGII ALEPH LO / BFGII

σNLO [fb] 21.50(2)+1.4%
−5.0% 21.48(2)+1.4%

−5.0% 1.001

σNLO
frag [fb] 0.038724(8) 0.017020(4) 2.275

Table 1. Integrated cross sections at NLO in QCD for the pp → e+νe µ−ν̄µ bb̄ γ + X process at the
LHC with

√
s = 13.6 TeV. Theoretical results are obtained with the fixed-cone isolation prescription.

The ALEPH LO and the BFGII parton-to-photon fragmentation functions are employed. Results
only with the fragmentation contribution are also shown. Predictions are provided for µ0 = ET /4
with the NNPDF3.1 NLO PDF set. Also displayed are the theoretical uncertainties coming from a
7-point scale variation (± percentages) and Monte Carlo integration errors (in brackets).

between these two parametrisation have already been presented in the literature, for example
for the pp → γ + jet process [57]. In this work (N)NLO integrated and differential cross
sections are provided for pp → γ + jet with the fixed-cone isolation including both, direct
and fragmentation contributions. These large differences originate mainly from the different
scale evolution of the quark-to-photon fragmentation functions and can be reduced when the
fixed-order NLO quark-to-photon fragmentation function, first determined in refs. [22, 24],
is used instead of the ALEPH LO set.

The contribution from the fragmentation process to the NLO integrated cross section for
the pp → e+νe µ−ν̄µ bb̄ γ + X process is less than 0.2% (0.1%) for the ALEPH LO quark-to-
photon fragmentation function (for the BFGII set). Thus, it is negligibly small compared
to the theoretical uncertainties due to scale dependence, which for this process are of the
order of 5%. Generally, the fragmentation contribution highly depends on the actual event
selection and the photon isolation criterion, but in this particular case its small size is directly
related to the absence of light jets in the LO contribution. Since both b-jets in the final state
have to be resolved, thus, can not fragment into a photon, the fragmentation contribution in
the gg and qq̄/q̄q channels is strongly suppressed. In these two cases only an additional gluon
can fragment into a photon. However, the corresponding gluon-to-photon fragmentation is
included only in the BFGII set. As a consequence, the main contribution comes from the
qg/q̄g subprocesses, where an additional light quark in the final state can fragment into a
photon. In addition, in the PDF-suppressed bg/b̄g production modes, a third bottom quark,
if present in the final state, can fragment into a photon. It should be noted that this situation
will change in the ℓ + jet decay channel, where the fragmentation contribution will increase
because of the presence of the two light quarks from the decay of the W gauge boson. For
this decay channel, the gg and qq̄/q̄q production modes will no longer vanish for the ALEPH
LO quark-photon fragmentation function.

In the next step, a comparison between the calculation with the fixed-cone isolation and
alternative predictions obtained with the smooth-cone isolation is performed. In figure 2 we
show the NLO QCD results with their corresponding scale uncertainties for the fixed-cone
and smooth-cone isolation, where in the latter case we set R = 0.4 and vary the other
two free parameters, (εγ , n), in the following ranges εγ ∈ {0.05, 0.10, 0.15, 0.20, 1.00} and
n ∈ {0.5, 1.0, 2.0}. The largest differences between the two isolation criteria are found for
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19.5 20.0 20.5 21.0 21.5 22.0 22.5 23.0

σNLO [fb]

εγ = 1.00, n = 0.5

εγ = 1.00, n = 1.0

εγ = 1.00, n = 2.0

εγ = 0.20, n = 0.5

εγ = 0.20, n = 1.0

εγ = 0.20, n = 2.0

εγ = 0.15, n = 0.5

εγ = 0.15, n = 1.0

εγ = 0.15, n = 2.0

εγ = 0.10, n = 0.5

εγ = 0.10, n = 1.0

εγ = 0.10, n = 2.0

εγ = 0.05, n = 0.5

εγ = 0.05, n = 1.0

εγ = 0.05, n = 2.0

Fixed cone Smooth cone (R = 0.4)

Figure 2. Comparison of integrated cross sections at NLO QCD for the pp → e+νe µ−ν̄µ bb̄ γ+X pro-
cess at the LHC with

√
s = 13.6 TeV. Theoretical results are obtained using the fixed-cone and smooth-

cone isolation prescription. For the results obtained with the smooth-cone isolation the following
parameters are employed εγ ∈ {0.05, 0.10, 0.15, 0.20, 1.00}, n ∈ {0.5, 1.0, 2.0} and R = 0.4. Predictions
are provided for µ0 = ET /4 with the NNPDF3.1 NLO PDF set. Also displayed (as bands) are the theo-
retical uncertainties coming from a 7-point scale variation and (as bars) Monte Carlo integration errors.

(εγ , n) = (1.00, 0.5) and (εγ , n) = (0.05, 2.0). They are of the order of 4.7% and 4.3%,
respectively. These differences are similar in size to the NLO QCD scale uncertainties, which
are at the 5% level, and are therefore not negligible. The result obtained with the smooth-cone
isolation for (εγ , n) = (1.00, 1.0), that is often used in higher-order calculations involving
photons, differs from the prediction with the fixed-cone isolation by about 3.4%. This
difference is still significant compared to the size of the scale uncertainties. The normalisation
differences seen in figure 2 can be avoided by tuning the input parameters. Indeed, they
can be reduced to the negligible 0.2%− 0.4% level if one chooses a single configuration from
the following set (εγ , n) = {(0.20, 1.0), (0.15, 1.0), (0.10, 0.5)}, instead of the commonly used
values. However, such tuning is not only very impractical, but also time-consuming. Firstly,
the cross section for the pp → e+νe µ−ν̄µ bb̄ γ+X process is very sensitive to the specific input
values used for (εγ , n). Indeed, the differences of up to even 9% can be observed between the
maximal and minimal cross-section values. Secondly, the tuning procedure depends on the
process and decay channel under consideration as well as the phase-space cuts used. Since
the sensitivity to input parameters also increases with the presence of more photons and jets
in the final state, the tuning procedure would have to be repeated in each case separately.
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19.5 20.0 20.5 21.0 21.5 22.0 22.5 23.0

σNLO [fb]

εγ = 1.00, n = 0.5

εγ = 1.00, n = 1.0

εγ = 1.00, n = 2.0

εγ = 0.20, n = 0.5

εγ = 0.20, n = 1.0

εγ = 0.20, n = 2.0

εγ = 0.15, n = 0.5

εγ = 0.15, n = 1.0

εγ = 0.15, n = 2.0

εγ = 0.10, n = 0.5

εγ = 0.10, n = 1.0

εγ = 0.10, n = 2.0

εγ = 0.05, n = 0.5

εγ = 0.05, n = 1.0

εγ = 0.05, n = 2.0

Fixed cone Hybrid iso (R = 0.1)

Figure 3. Same as figure 2 but for the hybrid-photon isolation prescription with the following
parameters εγ ∈ {0.05, 0.10, 0.15, 0.20, 1.00}, n ∈ {0.5, 1.0, 2.0} and R = 0.1 instead of the smooth-
cone isolation prescription.

Instead of relying entirely on the smooth-cone isolation, it is also possible to use the
hybrid-photon isolation. In this case, in the first step, the smooth-cone isolation is used in
a smaller cone R located within the cone size Rfixed, such that R < Rfixed. After that, the
outer cone of size Rfixed is used to apply the experimental fixed-cone isolation with the exact
parameters as in the experimental analysis. In addition, this approach has the advantage
that the dependence on the input parameters (εγ , n) of the inner smooth-cone isolation is
reduced as presented in figure 3, where a comparison between the NLO QCD results with
the fixed-cone and hybrid-photon isolation is given. Also displayed are the corresponding
theoretical uncertainties coming from a 7-point scale variation. As in the previous case the
parameters (εγ , n) are varied in the same ranges, but this time we set R = 0.1. We can
observe that the dependence of the inner smooth-cone isolation on the input parameters
is negligibly small. Indeed, the differences are only up to 0.4% regardless of the values
used for (εγ , n). Furthermore, all NLO QCD predictions obtained with the hybrid-photon
isolation agree very well with the result calculated with the fixed-cone isolation. The largest
differences we have noticed are only of the order of 0.4%, thus, well within the corresponding
uncertainties. We have varied the size of the inner radius in the smooth-cone isolation method
to examine the dependence of our results on R. In particular, the spread of the predictions
obtained with the hybrid-photon isolation with different input parameters changes from about
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0.4% for R = 0.1 to 0.7% for R = 0.15 and to 1.0% for R = 0.2, while the other parameters
are again varied in the same ranges as before. Accordingly, the hybrid-isolation can be safely
used instead of the fixed-cone isolation for the pp → e+νe µ−ν̄µ bb̄ γ + X process, since the
largest differences between the two photon isolation criteria are less than 0.4% for R = 0.15
and less than 0.7% for R = 0.2. We also observe that the dependence on R increases for
decreasing εγ and increasing n. We find that the dependence on R is at the per mille level
for the three values R ∈ {0.10, 0.15, 0.20} when (εγ , n) = (1.00, 0.5). On the other hand, for
(εγ , n) = (0.05, 2.0) the calculations for the three values of R differ by about 1%. Finally, we
note that for all the results presented in figure 3 the scale uncertainties are identical. To
summarise this part, the dependence on the input parameters of the smooth-cone isolation
is greatly reduced for the hybrid-photon isolation prescription. In each case, and without
any tuning of these input parameters, good agreement with the calculations obtained for
the fixed-cone insolation can be clearly observed.

7 Differential cross-section results for various photon isolation criteria

In this section, we examine the impact of applying three photon-isolation criteria on various
differential cross-section distributions. Based on our findings from the previous section, we
choose the following parameters for the smooth-cone isolation approach (εγ , n) = (0.10, 0.5)
and R = 0.4. At the integrated cross-section level, this set of the parameters has led to
differences of only 0.3% compared to the prediction obtained with the fixed-cone isolation.
The parameters of the hybrid-photon isolation and in particular of the inner smooth-cone
isolation are set to (ϵγ , n) = (0.10, 2.0) with R = 0.1. Overall, we can say that for all the
observables we have studied, the predictions for the three different photon-isolation criteria
agree very well. As an example, in figure 4 we present the results for the following dimensionful
observables: the transverse momentum of the photon (pT, γ), the hardest b-jet (pT, b1) and
the pair of two charged leptons (pT, e+µ−). On the other hand, in figure 5 we display the
following dimensionless observables: the azimuthal-angle difference between the two charged
leptons (∆ϕe+µ−), the angular separation in the ϕ − y plane between the muon and the
photon (∆Rµ−γ) as well as the hardest b-jet and the photon (∆Rb1γ). In each case the
upper panels present the absolute NLO QCD predictions together with their corresponding
theoretical uncertainties from a 7-point scale variation estimated on a bin-by-bin basis. The
lower panels show the ratio to the result obtained with the fixed-cone isolation prescription.
All the results presented in this section are calculated for µR = µF = µ0 = ET /4 and with
the NNPDF3.1 NLO PDF set.

For all three results obtained using the fixed-cone, smooth-cone (with the tuning) and
hybrid-photon isolation, we can observe that the differences are very small indeed compared
to the respective scale uncertainties. Only for pT, γ we find that the prediction with the
smooth-cone isolation is consistently larger than the predictions obtained with the other two
photon isolation criteria. This can be observed over the entire plotted range. However, these
differences amount to only 1%− 2%, so they are negligible compared to the corresponding
scale uncertainties, which are at the level of 5% − 10%.

In general, however, the use of different photon isolation criteria can modify the normali-
sation and lead to additional shape distortions at the differential cross-section level when
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Figure 4. Differential cross-section distributions at NLO in QCD for the pp → e+νe µ−ν̄µ bb̄ γ + X

process at the LHC with
√

s = 13.6TeV as a function of pT, γ , pT, b1 and pT, e+µ− . Results are presented
for the fixed-cone isolation, smooth-cone isolation with (ϵγ , n) = (0.10, 0.5) and hybrid-photon isolation
with (ϵγ , n) = (0.10, 2.0). The lower panels show the ratio to the result obtained with the fixed-cone
isolation. Also displayed (as bands) are the theoretical uncertainties coming from a 7-point scale
variation and (as bars) Monte Carlo integration errors. The scale choice is set to µ0 = ET /4. The
cross sections are evaluated with the NNPDF3.1 NLO PDF set.

the tuning of the relevant parameters is not performed. To illustrate this, in figure 6 we
present our findings for cos θb1b2 , pT, γ , ∆Rµ−γ and ∆Rb1γ . The upper panels provide the
NLO QCD results with the fixed-cone and smooth-cone isolation prescriptions. In the later
case the following input parameters are employed (εγ , n) = (1.00, 0.5) with R = 0.4. This
set of parameters led to the largest differences of about 5% at the integrated cross-section
level compared to the calculation with the fixed-cone isolation. Finally, the lower panels
display the ratio to the result obtained with the fixed-cone isolation prescription. Also for
this comparison the theoretical uncertainties coming from a 7-point scale variation and Monte
Carlo integration errors are given.
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Figure 5. Same as figure 4 but for ∆ϕe+µ− , ∆Rµ−γ and ∆Rb1γ .

In the case of cos θb1b2 , the two results differ by about 4%− 5%, which is caused mainly
by the difference in the normalisation. However, larger effects can be found in particular
phase-space regions for other differential cross-section distributions. Specifically, for the
transverse momentum of the photon (pT, γ), the differences between the two isolation criteria
increase towards the tail of the distribution from about 5% up to 10%. On the other hand,
for the angular separation between the charged lepton and the photon (∆Rµ−γ) they are
again rather constant and at the level of 5%. Only for ∆Rµ−γ > 4 these differences increase
to more than 10%. However, these particular phase-space regions are affected by a small
number of events. For the angular separation between the hardest b-jet and the photon
(∆Rb1γ), we find similar differences of about 10% for larger angular separations. In this case,
however, the additional phase-space regions with small angular separations are also affected.
For ∆Rb1γ < 1 we can observe differences between the two NLO QCD predictions up to even
20%. Finally, in all four cases presented here, the theoretical predictions calculated using the
smooth-cone isolation lie outside of the uncertainty bands of the results obtained with the
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Figure 6. Differential cross-section distributions at NLO in QCD for the pp → e+νe µ−ν̄µ bb̄ γ + X

process at the LHC with
√

s = 13.6TeV as a function of cos θb1b2 , pT, γ , ∆Rµ−γ and ∆Rb1γ . Results
are presented for the fixed-cone isolation and smooth-cone isolation with (εγ , n) = (1.00, 0.5). The
lower panels show the ratio to the result obtained with the fixed-cone isolation. Also displayed (as
bands) are the theoretical uncertainties coming from a 7-point scale variation and (as bars) Monte
Carlo integration errors. The scale choice is set to µ0 = ET /4. The cross sections are evaluated with
the NNPDF3.1 NLO PDF set.

help of the fixed-cone isolation. We conclude this section by stating that the random choice of
the input parameters (εγ , n) in the smooth-cone isolation criterion can introduce additional
unnecessary uncertainties and may affect current and future comparisons with the LHC data.

8 NLO QCD predictions with the fixed-cone isolation prescription

In the last part of the paper we present the state-of-the-art theoretical predictions for the
pp → e+νe µ−ν̄µ bb̄ γ+X process with the fixed-cone isolation taking into account full off-shell
effects in the calculations. In our analysis we focus on the NLO QCD results obtained with
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Figure 7. Differential cross-section distributions at NLO in QCD for the pp → e+νe µ−ν̄µ bb̄ γ + X

process at the LHC with
√

s = 13.6TeV as a function of pT,γ , Me+µ− , ∆ϕe+µ− and ∆Rµ−γ . Results
are obtained with the fixed-cone isolation using the ALEPH LO quark-to-photon fragmentation
function. They are presented for the three scale settings µ0 = ET /4, µ0 = HT /4 and µ0 = mt with
the NNPDF3.1 NLO PDF set. The middle panels present the differential K-factor together with its
uncertainty band from a 7-point scale variation and the relative scale uncertainties of the LO cross
section. Monte Carlo integration errors are displayed (as bars) in both panels. The lower panels provide
the ratio to the result calculated for µ0 = ET /4 together with the corresponding scale uncertainties.
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µ0 σLO [fb] σNLO [fb] K = σNLO/σLO

ET /4 17.512(8)+30.9%
−22.1% 21.50(2)+1.4%

−5.0% 1.23

HT /4 19.409(9)+31.9%
−22.6% 21.38(2)+1.4%

−7.5% 1.10

mt 15.877(7)+30.1%
−21.6% 21.13(2)+1.4%

−6.4% 1.33

Table 2. Integrated cross sections at LO and NLO in QCD for the pp → e+νe µ−ν̄µ bb̄ γ + X process
at the LHC with

√
s = 13.6 TeV. Results are calculated with the fixed-cone isolation using the

ALEPH LO quark-to-photon fragmentation function. They are presented for the three scale choices
µ0 = ET /4, µ0 = HT /4 and µ0 = mt with the NNPDF3.1 NLO PDF set. Also displayed are the
theoretical uncertainties coming from a 7-point scale variation (± percentages) and Monte Carlo
integration errors (in brackets). In the last column the K-factor is shown.

various scale choices, presented for the LHC III energy of
√

s = 13.6TeV. In particular,
we study three different settings covering our default scale choice, µR = µF = µ0 = ET /4,
and the two additional scale settings µ0 = HT /4 defined in eq. (5.16) and µ0 = mt. Both
scale choices have already been used in previous higher-order calculations for the pp → tt̄γ

process in the di-lepton decay channel [13, 14] and therefore serve as alternative scale settings
also in the current study. In table 2 we present the LO and NLO QCD integrated cross
sections together with their corresponding theoretical uncertainties estimated by a 7-point
scale variation. In the last column we display the K-factor. The NLO QCD predictions are
obtained with the default setup consisting of the two fixed-cone isolation criteria as given in
eq. (5.7) and eq. (5.8) with the ALEPH LO quark-to-photon fragmentation function. First,
we can observe that the NLO QCD corrections are in the range of K = (1.10− 1.33). The
different relative sizes of the NLO QCD corrections are due to the large differences in the
LO predictions. Still, all the LO results are within the corresponding LO scale uncertainties
that are of the order of 30%. On the other hand, at NLO in QCD the differences among
the results calculated with the three scale settings are reduced to less than 2%. Again they
are covered by the corresponding NLO scale uncertainties, that are of the order of 5% for
µ0 = ET /4, 8% for µ0 = HT /4 and 6% for µ0 = mt.

In figure 7 we present the following differential cross-section distributions: the transverse
momentum of the photon (pT, γ), the invariant mass of the two charged leptons (Me+µ−),
the azimuthal-angle difference between these two charged leptons (∆ϕe+µ−) and the angular
separation in the ϕ − y plane between the muon and the photon (∆Rµ−γ). The upper panels
show the absolute NLO QCD predictions and the corresponding scale uncertainties. The
middle panels display the differential K factors together with their uncertainty bands and
the relative scale uncertainties of the LO cross sections. The lower panels provide the ratio
to the NLO result calculated with µ0 = ET /4.

In the case of pT, γ , we find that the behaviour of the NLO QCD corrections is fairly
different for the three scale choices. In particular, higher-order QCD corrections decrease
from 34% in the bulk of the distribution to 15% in the tail for µ0 = mt. On the other
hand, the NLO QCD corrections grow steadily to about 55% towards the tails for the two
dynamical scale settings exceeding the LO uncertainty bands in these phase-space regions.
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At the same time, the magnitude of the higher-order effects is different at the beginning of
the spectrum for these two scale settings. We obtain NLO QCD corrections of the order of
10% for µ0 = HT /4 and 20% for µ0 = ET /4. Overall, the three NLO results differ by less
than 2%, which is negligible compared to their corresponding scale uncertainties, which are
10% for µ0 = ET /4, 8% for µ0 = HT /4 and 6% for µ0 = mt.

For Me+µ− the size of higher-order corrections for the two dynamical scale settings is
quite similar and substantially different from the µ0 = mt case. Overall, we observe large
NLO QCD corrections at the beginning of the spectrum (23%− 52%), that decrease towards
the tails. As could be expected, the largest shape distortions, up to even 70%, are obtained
for µ0 = mt. In this particular case, we indeed can find K = 1.52 in the first bin and K = 0.82
in the last one we plotted. On the other hand, for the dynamical scale settings these shape
distortions are only of the order of 30%. We note here that the differences in the differential
K-factors for the three scale choices are mainly due to the very different underlying LO
distributions. We can clearly see that the absolute NLO QCD predictions agree well with
each other. Furthermore, the largest scale uncertainties, of about 40%, are obtained in the tail
for µ0 = mt. They are even larger than the corresponding LO scale uncertainties estimated
for these phase-space regions. The NLO scale uncertainties are reduced to 10%− 15% for
µ0 = ET /4 and 20%− 25% for µ0 = HT /4. Finally, the differences between the two results
obtained with the dynamical scale choices are less than 3%. They increase to 10% when
the fixed scale setting is employed instead.

For the dimensionless observables, ∆ϕe+µ− and ∆Rµ−γ , we can observe substantial
differences in the differential K-factors for µ0 = mt, µ0 = ET /4 and µ0 = HT /4, that are
again driven by the underlying LO results. The largest higher-order QCD corrections, up to
80%− 90%, occur for µ0 = mt. They are significantly reduced for the other two dynamical
scale settings. At the same time, the differences between the NLO results for the three
selected scales are at the level of only a few percent. The NLO scale uncertainties are very
similar for µ0 = ET /4 and µ0 = mt and are in the range of 5% − 15%. For ∆Rµ−γ they
increase to about 20% for large angular separations. On the other hand, for µ0 = HT /4,
the scale uncertainties become larger in certain phase-space regions, such as ∆ϕe+µ− > π/2
and when ∆Rµ−γ ≈ 3. Looking at the middle panels, we can see that in some bins the NLO
QCD results are outside the LO uncertainty bands.

We conclude that our default scale choice, µ0 = ET /4, is preferred over the other two
scale settings. On the one hand, a dynamic scale setting is generally necessary for more
accurate predictions of differential cross-section distributions, especially in high-energy tails.
On the other hand, our alternative dynamical scale choice, µ0 = HT /4, leads to larger
scale uncertainties, which can be even twice as large as those obtained for µ0 = ET /4 or
µ0 = mt. We note, however, that in the high-energy tails the predictions obtained with the
two dynamical scales become very similar. Finally, the fixed scale setting can be used as
an alternative scale choice for various angular distributions.

9 Summary

In this paper we have presented the first NLO QCD predictions for the pp → e+νe µ−ν̄µ bb̄ γ+X

process with full off-shell effects, which do not require the use of the smooth-cone isolation
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prescription. Instead, we have employed the fixed-cone isolation that is used by both the
ATLAS and CMS collaborations at the LHC for processes with prompt photons. This
isolation prescription allows contributions from collinear photon radiation off QCD partons
and requires the inclusion of parton-to-photon fragmention processes. Incorporating the
ALEPH LO and BFGII photon fragmention functions into the Helac-Dipoles program has
allowed us to compare the fixed-cone, smooth-cone and hybrid-photon isolation criteria within
the same Monte Carlo framework. We have quantified the impact of different photon-isolation
prescriptions on the integrated and differential cross sections for the LHC Run III energy
of

√
s = 13.6TeV. In the first step we have showed that it is possible to achieve a very

good agreement between the integrated (fiducial) cross-section results obtained with the
fixed-cone and smooth-cone isolation prescriptions if in the latter case the appropriate tuning
of the (εγ , n) input parameters is performed. However, such tuning, which depends on the
process and decay channel under consideration as well as the phase-space cuts used, is rather
impractical and also time-consuming. On the other hand, using arbitrary values for the (εγ , n)
parameters can lead to differences between the two isolation criteria that are similar in size to
the NLO QCD scale uncertainties and thus are part of the systematic error for this process.
We have shown that instead of relying solely on the smooth-cone isolation, it is also possible
to use the hybrid-photon isolation. Indeed, we have confirmed that the dependence on the
input parameters of the smooth-cone isolation could be greatly reduced, well below 0.5%, for
the hybrid-photon isolation prescription. In each case we have studied, good agreement with
the calculations obtained for the fixed-cone insolation has been observed without any tuning.

We have reached qualitatively similar conclusions for the differential cross-section distri-
butions that we have examined. However, in this case, the use of different photon isolation
criteria not only changed the overall normalisation but also introduced different shape dis-
tortions in specific regions of the phase space, if the tuning has not been performed. In
addition, also here the random choice of input parameters in the smooth-cone isolation
criterion could introduce unnecessary theoretical uncertainties that might affect current and
future comparisons with the LHC data.

Finally, we have provided the state-of-the-art theoretical predictions for the pp →
e+νe µ−ν̄µ bb̄ γ + X process with the fixed-cone isolation and taking into account all resonant
and non-resonant Feynman diagrams, interferences, and finite-width effects of the top quarks
and W±/Z gauge bosons. We have calculated the NLO QCD corrections to the integrated
and differential cross sections for the following three scale settings: µ0 = ET /4, µ0 = HT /4
and µ0 = mt. Depending on the scale setting the full pp cross section has received positive and
small to moderate NLO QCD corrections. Specifically, the following range of the K-factors
have been obtained K = (1.10− 1.33). The differences in the K-factor are mostly due to the
large spread in the LO predictions. In addition, including higher-order effects has reduced the
theoretical error from approximately 30%− 32% to 5%− 8% depending on the scale setting.
We have also examined a few differential cross-section distributions and concluded that our
default scale choice, µ0 = ET /4, is preferred over the other two scale settings. Generally, a
dynamic scale setting is necessary for more accurate predictions of dimensionful differential
cross-section distributions, especially in high-energy tails. However, our alternative dynamical
scale setting, µ0 = HT /4, resulted in larger scale uncertainties in some specific corners of the
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phase space. Therefore, it is always recommended to carry out a dedicated study involving
the selection of several scale settings for the actually used fiducial phase-space regions. On
the other hand, the fixed scale setting, µ0 = mt, can be safely used as an alternative scale
choice for various angular cross-section distributions. We also note that with the current
higher-order calculations for the pp → e+νe µ−ν̄µ bb̄ γ + X process, future comparisons with
the LHC data will become more accurate and precise.
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