KIT | KIT-Bibliothek | Impressum | Datenschutz

Monitoring Large-Scale Radio-Detection Arrays with Machine Learning

Kastner, Johann Luca; GRAND

Abstract (englisch):

In recent years, radio-detection techniques, such as those employed in the GRAND experiment, have emerged as a promising method for detecting ultra-high-energy cosmic rays (UHECRs). One of the key advantages of radio detection is its cost-effectiveness, allowing for the deployment of large arrays that can cover vast areas necessary for measuring the low fluxes of UHECRs. However, this comes with the challenge of monitoring the functionality of a massive number of antennas (up to tens of thousands) over a vast area (tens of thousands of km2). In this talk, we will present an approach to addressing this challenge using a combination of dimensionality reduction (UMAP) and clustering (DBSCAN) algorithms applied to periodically triggered monitoring data of a GRAND prototype setup. Our method aims to identify malfunctions and periods of poor operation, enabling efficient maintenance and optimization of the radio-detection system.

Zugehörige Institution(en) am KIT Institut für Astroteilchenphysik (IAP)
Publikationstyp Vortrag
Publikationsdatum 31.03.2025
Sprache Englisch
Identifikator KITopen-ID: 1000178766
HGF-Programm 51.13.04 (POF IV, LK 01) Kosmische Strahlung Technologien
Veranstaltung DPG-Frühjahrstagung der Sektion Materie und Kosmos (SMuK 2025), Göttingen, Deutschland, 31.03.2025 – 04.04.2025

Seitenaufrufe: 19
seit 11.02.2025
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page