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A B S T R A C T

Policy interventions have substantial effects on land use change, providing key levers for multiple objectives, 
including mitigating climate change and biodiversity loss, and maintaining food security. Policy effects are often 
complicated, conflicting, and subject to regular change. Despite this, land system models typically treat policies 
as simple, exogenous modifications to models. To better represent the dynamic nature of policy-making, we 
develop an endogenous institutional model that can be embedded within land system models, here exemplified 
by an agent-based model. Numerical experiments are conducted to examine an institution with two policies 
targeting the production of ecosystem services. We find a clear scope for simulation-based exploration of policy- 
making, with emergent processes including the marginal diminishing effect of economic policy interventions, 
asymmetric spill-over effects for different ecosystem services, and trade-offs between policy goals. The endog-
enous institutional model demonstrates the potential to reveal various emergent patterns with important con-
sequences for land systems.

1. Introduction

Policy interventions in the land system must address a wide range of 
interacting processes to achieve ambitious but essential goals including 
climate change mitigation and adaptation (Guo et al., 2024), food se-
curity (Bengochea Paz et al., 2020) and biodiversity recovery (Broussard 
et al., 2023). Progress towards these goals has been fitful at best, and 
absent at worst, with many policies being counterproductive, mutually 
confounding, or subject to frequent changes that undermine their effi-
cacy (Brown et al., 2019a; Lee et al., 2019). The EU’s Common Agri-
cultural Policy alone provides a rich array of recent examples, with 
repeated attempts to balance food security and environmental protec-
tion largely failing, and the premature abandonment of controversial 
policies in the face of public opposition, such as farmer protests (Catalan 
News, 2024; European Court of Auditors, 2017).

Land system models often aim to support policy-making by analysing 
the impact of public policy interventions on land use change (Berchoux 
et al., 2023; Li et al., 2017; Lippe et al., 2022). However, these models 
apply policy interventions exogenously and usually singly, and so are 

unable to account for the feedbacks that exist between policies, land 
users and policy institutions themselves (Lambin and Meyfroidt, 2010; 
Long and Qu, 2018). These models are thus inherently unable to capture 
fundamental characteristics of policy development and implementation. 
In particular, models neglect the dynamics of policy interventions and 
the causal relationships with land users that could be represented by 
endogenizing the policy process, and so remove important facets of re-
alism including interactivity (González, 2016; Ostrom, 2005), path de-
pendency (Capoccia, 2015; Hegmon, 2017; Torfing, 2009), and 
complicatedness (Sun et al., 2016).

Endogenous institutions have been increasingly recognised in the 
literature, particularly in areas such as common-pool resource (CPR) 
management, where institutions are often treated as sets of rules, norms, 
or strategies (Crawford and Ostrom, 1995). Research has demonstrated 
that institutions can emerge organically from the interactions of indi-
vidual actors (Ostrom, 1999). This perspective has been especially useful 
for understanding how institutions form around resources such as land, 
water, and energy (Ghorbani et al., 2021, 2020). Modelling efforts have 
further enriched this view. For instance, Ghorbani et al. (2017)
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developed the SONICOM model, an agent-based simulation that dem-
onstrates how CPR users self-organise to develop sustainable rules 
through repeated interactions and adaptation, highlighting the impor-
tance of endogenous institutions.

These emergent institutions play important roles in social-ecological 
systems, and their simulation highlights the scope and value of institu-
tional modelling—particularly in demonstrating the long-term, system- 
wide impacts of interactions between modelled entities. Meanwhile, 
policies are often understood as official rules imposed by governing 
authorities. These official rules may synergise with or conflict with those 
arising organically from individual interactions, leading to varied policy 
intervention outcomes (Grzymala-Busse, 2010; Helmke and Levitsky, 
2004). Building on the understanding of endogenous institutions as 
dynamic and interaction-driven, this research views institutions as 
policymakers interacting with the land system or broader 
socio-ecological systems. This perspective extends the focus from 
localised, emergent rules to institutions functioning as adaptive 
decision-makers at a systems level. Such institutions are endogenous in 
that they dynamically adapt to the land systems they operate within. 
Their policy actions are also influenced by the actions of numerous in-
dividual agents and, potentially, by emergent norms or rules developed 
from individual-level interactions.

Nevertheless, examples of the modelling of institutions as decision- 
makers within land-use systems are still quite limited (e.g., see Holz-
hauer et al.(2019)), which might be attributed to challenges such as the 
complexity of institutional decision-making processes, the potential for 
institutional change over time, the availability and accuracy of data, and 
issues of institutional transparency and accountability. In addition, 
computational complexity increases as the number of institutions and 
their interactions increase. Despite these difficulties, the rewards in 
terms of a more holistic representation of system dynamics make the 
endeavour worthwhile because it can unveil previously unexplored 
emergent phenomena and insights into institutional behaviour and its 
impact on land use change. As Davidson et al. (2024) highlighted, 
considering endogenous institutional changes in modelling is significant 
for understanding the socio-behavioural processes relevant to sustain-
ability transitions.

Several methodologies exist for simulating the decision-making be-
haviours of adaptive agents, among which machine learning and deep 
learning algorithms appear to be promising (Ramchandani et al., 2017). 
However, instead of using data-driven, black-box methods (Hu et al., 
2023), we argue that modelling the complexities inherent in institu-
tional decision-making should satisfy three guiding principles—parsi-
mony, transparency, and extensibility (Loyola-González, 2019; Sun 
et al., 2016) while recognising the central roles of heuristics and 
incrementalism in institutional decision-making processes (Gigerenzer 
et al., 2022; Pal, 2011).

Heuristics is a vital component of both human and organisational 
decision-making processes (Gigerenzer et al., 2022, 2011). A significant 
feature of heuristic decision-making is its focus on limited information 
and the likely trade-off of optimality for speed (Gigerenzer and Gaiss-
maier, 2011; Gigerenzer and Goldstein, 1996; Kahneman, 2011; Russell 
and Norvig, 2010). Incrementalism is referred to as the science of 
“muddling through” (Lindblom, 1959), providing a model of 
policy-making through modest modifications rather than through 
comprehensive overhauls. Heuristics intrinsically resonates with incre-
mentalism in political science on a theoretical basis (Dahl and Lindblom, 
1965; Pal, 2011): both concepts illustrate the nature of bounded ratio-
nality in humans; moreover, incrementalism may represent a macro-
scopic manifestation of heuristic decision-making by policymakers.

The objective of this research is to therefore create a modelling 
framework that endogenises the institutional decision-making process 
while respecting the above principles and the central roles of heuristics 
and incrementalism. This framework enables multiple institutions with 
different policy instruments and targets to respond to changes in the 
land system as it evolves in response to policies implemented, providing 

new insights into the interplay of institutional dynamics and land use 
changes. The institutional model is applied to the CRAFTY agent-based 
land use model (Murray-Rust et al., 2014) to examine the potential 
emergent patterns the institutional model can produce alongside 
behavioural land user agents.

2. Methods

2.1. Model overview

Inspired by the work of Easton (1965) and Wlezien (1995), the role 
of endogenous institutions can be depicted as a sophisticated controller 
mechanism from a system perspective. Macroscopically, the outline 
structure of the endogenous institutional model coupled with a land use 
model (represented by the CRAFTY agent-based modelling framework) 
is a closed-loop control system, where an institution is populated with a 
sequence of components forming a decision entity. Within this system, 
institutions can observe and influence land use processes to achieve 
policy goals. Fig. 1 offers an overview of operational procedures within 
the loop. For illustrative clarity, these operational procedures are cat-
egorised into three parts, including the institutional model, the land use 
change model, and the part that solely represents the policy imple-
mentation procedure, the juncture where the two models tightly 
intersect.

Within the institutional model, we adopted two further methodo-
logical approaches from control theory: Proportional-Integral- 
Derivative (PID) and fuzzy control (Carvajal et al., 2000; Kaur and 
Singh, 2019; Misir et al., 1996). A PID controller continually adjusts the 
disparity between a set point (e.g., a policy target) and the system’s 
existing state by factoring in three sources of error. In pursuit of policy 
goals, institutions can be modelled to adapt their decisions based on: 1) 
The current gap between the actual and desired policy outcomes (Pro-
portional); 2) The accumulated impact of past policies and their 
resulting discrepancies (Integral); and 3) The changing speed with 
which these discrepancies are evolving (Derivative). Simulating policy 
adaptations based on these three types of gaps between the outcomes of 
interest and policy targets provides a simple yet systematic approach 
that mirrors the principle of heuristics and incrementalism in 
policymaking.

A Fuzzy Logic Controller (FLC) serves as a function approximator 
that maps the goal-output discrepancies onto policy measures. The 
merits of coupling the PID and fuzzy control are manifold. An FLC is 
driven by an inference engine using a set of IF-THEN logic rules (Kaur 
and Singh, 2019). This rule-based paradigm fosters intuitive compre-
hension amongst human stakeholders and facilitates the encapsulation 
of knowledge from model users and policymakers. Compared with a sole 
PID controller, the joining of an FLC endows the modelled institutions 
with the capability of coping with nonlinear systems (Brown and Harris, 
1995; Carvajal et al., 2000). Here, the PID controller allows for an 
adaptive, feedback-orientated approach to evaluating the disparity be-
tween an imposed policy goal and the model output, whilst the FLC 
maps the goal-output discrepancies onto policy adjustments. These ap-
proaches not only resonate with our core principles of institutional 
modelling but also offer practical algorithms that facilitate the effective 
operationalisation of endogenous institutional behaviours upon a solid 
theoretical basis.

A policy implementation pathway comprises a series of time- 
dependent policy actions, which might differ from “ideal policy ac-
tions” because of monetary and non-monetary constraints. For instance, 
IF an institutional agent intends to rapidly increase meat production, 
THEN it might decide to offer substantial subsidies. The “substantial 
subsidies” can be understood as an ideal policy action. However, due to 
the limitations of budgets and pressure from other stakeholders (arising, 
for example, from environmental concerns), the eventual subsidies for 
meat production may be far lower than intended, essentially resulting in 
a compromise policy action. In this case, the three factors - “ideal policy 
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actions”, budgetary constraints and stakeholder pressure – all contribute 
to the formation of policy actions and resultant policy implementation 
pathways, which tends to favour incremental policy adjustments. These 
mechanisms are detailed in Sections 2.3.2 and 2.3.3, where stakeholder 
pressure is generalised as policy inertia, which also reflects an in-
stitution’s resistance to change.

2.2. Model process

The complete model process includes eleven operational steps as 
follows: 

1. Initialise the land use model.
2. Initialise the institutional agents. This model can simulate 

many institutions simultaneously. Here, only one institution is 
shown for illustrative purposes. Within an institution, one crucial 
process is to initialise the policies, which includes defining the 
policy IDs, objectives, policy types, and any other policy char-
acteristics to be included in the model.

3. Information collection by the institutions on whichever fea-
tures of modelled land use are relevant (here, the demands and 
supplies of ecosystem services). Uncertainties might accompany 
the information collection.

4. Determine if it is time to adapt the policies. Policies remain 
unchanged within a set period of time that can represent, for 
example, election cycles. This step is considered here for three 
reasons. Firstly, institutions need time to allow the effects of the 
policies to become manifest and then to evaluate the outcomes. 
Secondly, institutions might have difficulties in responding to the 
changes with sufficient speed. Thirdly, policies might be designed 
in this way to gain more consistency.

5. If it is time to adapt the policies, the institution evaluates the 
performance of existing policies based on the collected in-
formation. The evaluation procedure uses the PID controller that 
considers the errors between the policy goals and actual out-
comes. Optionally, the institution may also incorporate predicted 
errors into the evaluation.

6. Using the evaluation results, the institution conceives policy 
adaptations. A fuzzy logic module is applied to allow the inte-
gration of real-world policymakers’ knowledge into decision- 
making. The fuzzy logic module serves as a function that maps 
the evaluation results to policy adaptation.

7. A policy inertia constraint limits the magnitude of policy 
changes at each time step, which reflects the non-monetary (e. 
g., public opinion, interested parties, legislation) resistance to 
policy changes.

8. Subsequently, the institution deals with monetary con-
straints, i.e., budgets. In reality, institutional budgets can come 
from multiple sources and vary over time. The incorporation of a 
dynamic budget update process adds another layer of realism to 
the institutional model.

9. After updating the budget, the institution allocates the 
budget among different policies and outputs the formulated 
policy interventions.

10. The institution implements the policies in the land use system 
to push land use changes in the desired direction.

11. After the land use model processes the implemented policies, 
there is a check whether the end conditions are met. If true, 
then the simulation is stopped; otherwise, the information 
collected by the institutions is updated for the next iteration of 
decision-making.

2.3. Sub-models

Further details about the various sub-models are provided here. To 
better present these details, the institutional model is segmented into 
four sub-models. The first sub-model focuses on the preliminary set-up 
and is limited to procedure 2: institution initialisation. The second 
sub-model, termed “information, evaluation, and adaptation”, encom-
passes procedures 3 to 7 due to their intrinsic link. This sub-model deals 
with information collection, uncertainty injection, policy evaluation, 
and adaptation together with the policy inertia constraint. The third sub- 
model, termed “budget-allocation”, deals with updating the budget and 
allocating resources. The final sub-model focuses on policy 
implementation.

Fig. 1. The operational procedures of the institutional model when embedded in a land use modelling framework.
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2.3.1. Sub-model 1: initialisation
Each institution has a unique ID to distinguish itself from other in-

stitutions, a set that contains all policies available to this institution, a 
container to collect information, a list of variables to control the un-
certainties, a set of variables and conditions defining its budget, and a set 
of decision rules (Fig. 2). A crucial task in this step is to initialise the 
policies and add them to the policy set. Each policy is essentially a group 
of attributes that can be adapted by the institution. The attributes/be-
haviours of institutions and policies as well as their relationships are 
shown in Fig. 2. The meanings of these behaviours and attributes are 
summarised in Tables A1 and A2 in Appendix A. The variables in the 
equations below are summarised in Table A3.

Of crucial significance is the setting of unambiguous policy goals, as 
these lead to institutional adaptation throughout the simulation. Real- 
world examples of clearly stated policy goals can be found in the Paris 
Agreement (2015) regarding carbon emission reductions. Some specific 
examples include that, the United States and European Union have set 
goals to reduce greenhouse gas emissions by 2030 by 50–52 % compared 
to 2005 levels and by at least 55 % compared to 1990 levels, respectively 
(European Council, 2020; Zhao et al., 2022).

These policies consistently specify a reference time, a deadline, and a 
targeted quantity. We use vector 

Gij =
[
Tij

s ,T
ij
e ,Q

ij] (1) 

to represent the goal of institution i’s policy j, which contains three 
components: Tij

s the time when the policy starts, Tij
e the time when the 

policy ends, and Qij the quantity a policy is meant to change from Tij
s to 

Tij
e .

With the policy goals clearly defined, an appropriate initial policy 
intervention needs to be set up, which could be a real-world policy. For 
instance, if a simulation starts from the year 2020, the initial policy 
intervention could be the actual taxes and subsidies implemented in that 
year. The initial intervention can also be derived from model users’ 
intuitive estimation or deliberate calculation.

2.3.2. Sub-model 2: information, evaluation, and adaptation
Institutions may have access to diverse sources of information to 

support decision-making processes, though the availability and quality 
of this information can vary depending on the context. While there are 
multiple sources of information available, gathering information can be 

resource-consuming, and the forms and extent of information can be 
limited as a result. Within the model, several categories of information 
are defined and represented as distinct data containers, labelled 
appropriately and filled with specific data points. Uncertainties can arise 
during information collection in reality, and so the collected data can be 
varied using defined value distributions, reflecting relevant forms of bias 
or error.

Based on the information, institutions evaluate the state of the land 
use system relative to their goals. In reality, policies normally do not 
change frequently; it takes time for existing policies to manifest their 
impact and for institutions to respond to recent changes (Hocherman 
et al., 2024). Hence, a time lag is added to periodically trigger the 
evaluation and adaptation procedures for each policy (e.g. see Brown 
et al. (2019a) for a discussion of time lags in the land system). Time lags 
can be fixed or changed over time to reflect different triggering mech-
anisms of policy adaptation. A common example of the time lags in 
policy adaptations is election cycles.

The evaluation of policy performance is a challenging task due to the 
complex nature of land use systems. It is difficult to attribute an outcome 
to a specific institutional action (González, 2016). We adopt a heuristic 
approach to mimic institutional behaviour using a PID controller that 
adjusts the input based on the evaluation of three types of output-goal 
errors: proportional, integral and derivative. In this model, the propor-
tional, integral, derivative errors, and their weighted sum are calculated 
using Eqs. (2), (3), (4), and (5) respectively: 

ε(P)tn =
Qij − oij

tn⃒
⃒Qij
⃒
⃒

(2) 

ε(I)tn =
1
k
∑n

m=n− k

Qij − oij
tm⃒

⃒Qij
⃒
⃒

(3) 

ε(D)tn =

(
Qij − oij

tn

)
−
(

Qij − oij
tn− k

)

⃒
⃒kQij

⃒
⃒

(4) 

E = C(P)ε(P)tn + C(I)ε(I)tn + C(D)ε(D)tn (5) 

where tn represents the specific time at which the institution evaluates 
the errors; oij

tn is the output intended to be adjusted by institution i’s 

policy j at the time tn; k is the time interval of interest; ε(P)tn , ε(I)tn , 

Fig. 2. Institution and policy structures.
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ε(D)tn respectively denote the proportional, integral, and derivative errors 
of policy j regarding its outcome oij

tn at time tn. The weight vector [C(P),

C(I),C(D)], where C(P) + C(I) + C(D) = 1 and C(P), C(I), C(D) ∈ [0,1], can be 
applied to depict the policymakers’ sensitivity to these errors. The 
summation E of these errors, factoring in their respective weights 
compose the evaluation of the institution in terms of the performance of 
policy j. It is noteworthy that these errors can involve predicted out-
comes, and thus, consider predicted errors in the calculation, depending 
on how institutions consider the reliability of the predictions.

The FLC uses the weighted sum of errors E as an input, representing 
the performance evaluation of implemented policies. This controller 
works by mapping output errors onto policy adaptations, a crucial 
feature since institutions typically cannot directly influence the output 
but do so through policy instruments. As the FLC receives the input E, it 
is processed through three modules: fuzzification, inference engine, and 
defuzzification (Dadios, 2012). Fuzzification is the process that converts 
the crisp value of E into a set of fuzzy variables based on predefined 
membership functions. These fuzzy variables are defined over a range of 
values, allowing for a degree of membership rather than discrete cate-
gorisation. For instance, if the error E = 0.1 representing the gap be-
tween the policy goal and actual crop production level is considered low 
here, this precise value might be classified under both the categories of 
‘low’ and ‘high’ to extents determined by these membership functions. 
In this case, the fuzzification process might produce results such as “E =
0.1 belongs to ‘low’ with a membership degree of 0.9 and belongs to 

‘high’ with a membership degree of 0.001″, indicating E =

0.1 predominantly belongs to ‘low’. Subsequently, fuzzy inference maps 
the fuzzified E onto fuzzy output based on user-defined decision rules 
that are formatted in the IF-THEN structure. These rules are linguistic 
representations of experts’ knowledge, such as that of policymakers and 
researchers who have domain-specific interests. For example, a rule 
might be “IF E is low THEN the change of intervention of Policy j is 
small”. The third process is defuzzification, which translates the fuzzy 
output back to crisp real numbers again to allow the computer to pro-
cess. The flexibility in adjusting membership functions, decision rules, 
and defuzzification algorithms allows fuzzy controllers to effectively 
capture and manipulate the relationships between various inputs and 
outputs in decision-making processes.

Technically, the institutional agents’ behaviour in approaching pol-
icy goals is analogous to iterative approaches such as Newton’s method 
in solving ordinary differential equations (Cajori, 1911; Galántai, 2000; 
Ypma, 1995), but a critical difference is that the institutions do not know 
the precise mathematical representation of the target system and hence 
need to conduct a series of constrained trial and errors to approach the 
policy goals. Also, it should be noted that the FLC is used to map the 
errors onto the incremental quantity of policy adjustments rather than 
onto a direct value indicating the intensity of the policy adjustments, 
reflecting the approach of incrementalism.

Let F denote the function of FLC and F(E) indicate the incremental, 
quantitative adjustment to the existing policy, such as the changes in 
taxes, subsidies, geographical expansion of new protected areas. The 
policy adjustment is constrained by the policy inertia constraint Nij, a 
variable whose value is prescribed to reflect the non-monetary resis-
tance to policy adjustments. The constrained policy adjustment at t +1 is 
denoted as Aij

t+1and calculated using Equation (6). The sign function 
outputs the sign of its input. Aij

t+1 is accumulated to form a policy 
modifier denoted as Mij

t+1, as shown in Equation (7). It might be 
convenient to use normalised policy adjustment together with a fixed 
step size for iterative policy adaptation. In this way, the policy modifier 
is a coefficient of the step size. As shown in Equation (8), ƞij is the step 
size, and Vij

t+1 is the modified policy adjustment for the (t+1)-th 
iteration. 

Aij
t+1 = sign(F(E)) × min

(
|F(E)|, Nij) (6) 

Mij
t+1 = Mij

t + Aij
t+1 (7) 

Vij
t+1 = ηij × Mij

t+1 (8) 

2.3.3. Sub-model 3: budget allocation
In modelling an institution with multiple policies, it is crucial to 

understand how much budget each has access to because the distribu-
tion of budget among institutions or policies is related to the power they 
can leverage to impact land use change or even other institutions. 
Hence, a process that updates the budget for an institution has been 
included in the model. The budget update process tracks the institution’s 
income and expenditure whenever a policy is applied.

The institution can allocate the budget across multiple policies. It is 
assumed here that the intensity of a policy intervention is quantitively 
measurable, and that its absolute value is positively correlated to the 
budget the institution uses to implement the policy. As seen in Eq. (9), f 
is a monotone function that maps the absolute value of a policy inter-
vention Vij

t+1 to the resource Rij
t+1 consumed. For simplicity, in the 

simulation section below, function f can be approximated as a linear 
function, and only subsidies are considered budget-consuming. 

f
(⃒
⃒
⃒Vij

t+1

⃒
⃒
⃒

)
= Rij

t+1 (9) 

The allocation of the budget can be treated as an optimisation 
problem in quadratic form, which is a convex optimisation problem: 

min
r∈(rmin , rmax)

∑

j
ξij

(
rij
t+1 − Rij

t+1

)2
(10) 

s.t. 0 ≤
∑

j
rij
t+1 ≤ Bi

t (11) 

∑

j
ξij = 1 (12) 

where Rij
t+1 denotes the resource needed by institution i’s to implement 

policy j; rij
t is the decision variable determining the resource allocated to 

implement policy j; ξij is a weight reflecting the comparative importance 
of policy j perceived by institution i; Bi

t is the total budget of the insti-
tution i at t. The optimiser is intended to find a combination of rij

t that 
minimise the objective function. Alternatively, one might consider using 
IF-THEN rules instead of optimisation to determine the resource allo-
cation, or modifying the weights to add more dynamics. While IF-THEN 
rules are a feasible approach to budget allocation here, framing the 
budget allocation as a convex optimisation problem offers several 
distinct advantages. First, it provides a unique optimal solution, 
ensuring manageability and clarity even with numerous policies 
involved. Second, this method standardises the allocation process, 
reducing the need for extensive parameterisation compared to IF-THEN 
rules. Third, it allows model users to focus on customizing the decision 
rules for policy adaptation. Additionally, this approach simplifies the 
interpretation of results, as the adaptability of institutional agents is 
primarily determined by the policy adjustment rules, rather than two 
sets of rules in different processes.

After finding the optimal resource allocation, it has to be transformed 
back to the policy intervention using the inverse function of f , as shown 
in Eq. (13): 

V∗ij
t+1 = sign

(
Vij

t+1

)
f − 1
(

r∗ij
t+1

)
(13) 

where r∗ij
t+1 is the optimal resource for Vij

t+1; the sign function returns the 
sign of Vij

t+1; V∗ij
t+1 is the resultant optimal policy intervention. Because 

the policies consume the budget, the budget Bi
t should be updated 

accordingly using Eq. (14): 
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Bi
t←Bi

t −
∑

j
r∗ij
t+1 (14) 

2.3.4. Sub-model 4: policy implementation
The policy implementation sub-model is an intersection of the 

institutional model and the land use change model. This part is highly 
customisable and should be coupled with the specifics of the land use 
change model. Here we use the CRAFTY model (Murray-Rust et al., 
2014) for this purpose. In CRAFTY, land managers of various Agent 
Functional Types (AFTs) manage unique combinations of productivity 
across multiple ecosystem services. These managers utilise the resources 
within their land to produce ecosystem services and compete to meet the 
societal demand for their respective services.

There is a diversity of policy instruments that can influence land use 
changes, among which economic measures play a crucial role. In this 
paper, we focus on the intervention of economic policies within the land 
use system represented by CRAFTY.

Typically, economic policies include taxes and subsidies. In real- 
world cases, when economic policies come into play, the equilibrium 
of demand and supply is determined by both the elasticities of the de-
mand and supply, even if the policies are imposed on one side of the 
market. For instance, subsidies on the supply side may cause a price 
drop, which in turn induces more demand and causes friction on the 
price drop. Because the current land use change model is focused on the 
supply side of different land use types and uses prescribed demands for 
different ecosystem services, it is assumed that taxes and subsidies are 
only imposed on the land users rather than the ecosystem service con-
sumers. That is, the demand is assumed to be completely inelastic. The 
economic policies are implemented as follows: 

cxy =
∑

S

(

pS

(
∑

i
ViS

t+1 +mS

))

(15) 

where cxy denotes the competitiveness of a land use agent at the land cell 
whose coordinates are (x, y); S is the ecosystem service the land user 
produces. pS is the land user agent’s production level of ecosystem 
service S within the land cell. ViS

t+1 is the institution i’s economic policy 
that targets ecosystem service S; mS is marginal utility brought by 
ecosystem service S. Transitions between land uses, and hence changes 
in the supply levels of different services, are constrained by parameters 
representing opportunity costs and other barriers, here set at a single 
low level to prevent unrealistically high rates of change.

2.4. Experimental settings

Although the institutional model allows for the incorporation of 
many institutions, it is not within this paper’s scope to demonstrate the 
model’s descriptive strength in modelling a variety of combinations of 
institutions and their policies. Instead, the experiments here serve as a 
proof of concept to explore what meaningful patterns can emerge at the 
system level and the interpretability of the model’s micro mechanisms, 
given the significance of emergent patterns in socio-ecological system 
modelling (Grimm et al., 2005; Jakoby et al., 2014; Kramer-Schadt et al., 
2007; Piou et al., 2009). Hence, the parameterisation of the institutional 
model is set to be parsimonious to facilitate the understanding, inter-
pretation, and evaluation of the model.

Specifically, the numerical experiments here focus on the dynamics 
of one institution possessing two policies. Additional institutions and 
policies can be added in the same way. The experimental institution can 
be regarded as an agricultural policymaker responsible for direct in-
terventions that address agricultural ecosystem services. The institution 
can affect two policies - Policy 1.1 and Policy 1.2 - that influence the 
production of meat and crops using taxes and subsidies. The simulated 
institution can use three types of decision rules labelled Economic, Tax, 
and Subsidy. In principle, decision rules can be arbitrarily complex. The 

current decision rules are designed to be a set of single-input-single- 
output functions that are straightforward enough for intuitive under-
standing. The detailed parametrisation of these decision rules and nu-
merical settings are given in Tables B1–B3 in Appendix B using FLC 
language defined in the IEC 61131-7 (PLCopen, 2000). Moreover, the 
institution is assumed to evaluate only the integral errors to mitigate the 
influence of noise in the model.

The institutional model is applied to a newly developed CRAFTY 
emulator implemented in Java (Zeng, 2024c). The emulator utilises the 
MASON agent-based modelling framework (Luke et al., 2019) and en-
ables rapid adaptation for exploratory research. The fuzzy logic con-
trollers are implemented using the jFuzzyLogic library (Cingolani and 
Alcala-Fdez, 2012; Cingolani and Alcalá-Fdez, 2013). The emulator is 
built based on the CRAFTY-EU land use model (Brown et al., 2019b) and 
parametrised with data based on the climatic and socio-economic sce-
nario (Brown et al., 2019b). These data define the change in demands 
over time for each of the ecosystem services. Each AFT has a matrix of 
sensitivities to 8 land capitals and represents a type of land manager that 
can provide a range of services: meat, crops, diversity, timber, carbon, 
urban development and recreation. AFTs also have a sequence of pro-
duction levels corresponding to the ecosystem services, which function 
similarly to the total factor productivity in a Cobb-Douglas production 
function. The names of the AFTs are shown in Table C1 in Appendix C. 
The initial distribution of the AFTs and the AFT attributes are given in 
Figs. C1 and C2.

3. Results

3.1. Baseline simulation

To have a baseline understanding of how the land use model be-
haves, the model was run 100 times without institutional influence. 
Fig. 3 shows the model’s output in terms of the supply of different 
ecosystem services over time. It can be seen that the model’s output is 
stable across the simulations; except for timber production, the supply of 
all other ecosystem services shows a significant tendency to follow the 
demands, which means the model’s macroscopic adaptive behaviours 
emerge from the competition between different AFTs. It should be noted 
that there are only 71 years (from the 0th to 70th step) of scenario-based 
data to update the annual demands and capitals, after which these are 
held static until 150 steps have been completed (i.e. in total covering the 
0th to 149th) to manifest the model’s equilibrium states. In the 
following experiments, the 70th and 149th years are respectively 
labelled as t1 and t2 for illustrative convenience. Timber production is an 
exception in this scenario because the timber yield capital decreases 
rapidly. That is, the deviation of timber production from the demand is 
caused by the limitation of relevant capital instead of by the model’s 
inherent mechanism. In sum, the natural behaviour of the model is 
featured by the tendency to close the gap between supply and demand, 
which offers a clear-cut baseline scenario to understand the influence of 
institutions.

3.2. The individual impact of Policy 1.1 and Policy 1.2

We examine the influence of the institution’s policies individually. 
The purpose of this experiment is to investigate the effectiveness of the 
institutional agents in functioning as actors that influence land use 
change as expected. To concentrate on this purpose, other influences are 
isolated: the budget constraints are temporarily deactivated and the 
fuzzy decision rules are set to “Economic”. This means the policies are 
not restricted to subsidies or taxes but are purely negative rectifiers 
aimed at closing the gap between policy goals and actual supply. The 
parametrisation details of the institution, Policy 1.1, and Policy 1.2 are 
given in Table 1.

To probe the land use system’s reaction to different policy goals, a 
sequence of policy goals for the supply of specific services ranging from 
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0 to 6 with equal intervals of 0.1 are examined, resulting in 61 different 
policy goals. The results of applying a meat tax and subsidizing crop 
production are shown in Figs. 4 and 5, respectively. Combining the 

colours indicating different goals and the cluster of supply curves in each 
sub-figure, an evident trend can be observed: higher policy goals lead to 
higher production, and vice versa. This trend demonstrates that demand 
curves are no longer the only forces influencing the ecosystem service 
supply. In addition to this intuitive trend, there are three patterns worth 
noting: 1) different long-term and short-term impacts, 2) marginal 
diminishing effect, and 3) asymmetric spill-over effects.

The difference between long-term and short-term policy effects can 
be observed by comparing the vertical width of the cluster of supply 
curves at t1 and t2. At t1, the lowest supply of meat reaches approxi-
mately 1.5 times the initial supply, and the highest point is around 3.5 
times. Although the supply notably deviates from the original demand 
curve, gaps still exist between the supply and policy goals. At t2, the 
lowest and highest supply reaches approximately 1 and 4.5 times the 
initial supply, respectively, signifying that the policy interventions are 
still in effect and leading the system closer to the policy goals. The same 
trend can also be observed in Fig. 5 for crop production. These patterns 
result from the fact that the institution applies an incremental adapta-
tion strategy and that the land use system takes time to respond to policy 
interventions.

Fig. 6 presents the marginal diminishing effect more clearly. The 
actual supply achieved is concentrated around the demands. As the 
policy goals deviate from the demands along the horizontal axes, the 
discrepancies between the demands and actual supply become large, 
which signifies that the policy goals indeed influence ecosystem service 

Fig. 3. Supply and demand of different ecosystem services without policy interventions. The 70th and 149th year are labelled as t1 and t2, respectively, marking the 
end of the scenario-based changes in input data and the subsequent period of static input data respectively.

Table 1 
Parameterisation of the institution, Policy 1.1, and Policy 1.2. Experimental 
variables are highlighted in bold.

Institution parameter Value

Unique ID 1
Policies 1.1, 1.2
Information Crop supply and demand, 

meat supply and demand.
Uncertainties Null
Budget Unlimited
Decision rules Economic
Policy parameter First policy Second policy
Unique ID 1.1 1.2
Target service Meat Crops
Policy Type Economic Economic
Initial guess 1,000,000 1,000,000
Policy inertia constraint 0.2 0.2
Policy goal 0.0 – 6.0 0.0 – 6.0
Intervention 0.0 0.0
Intervention modifier 0.0 0.0
Evaluation result 0.0 0.0
Time lag 5 5
Timer Equal to Time lag Equal to Time lag
Adapting False False
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production. However, as the policy goals move farther from the de-
mands, the gap between the expected and actual supplies becomes 
larger, forming a flattened S shape that reflects the marginal diminishing 
effect of the institutional interventions. The results imply that the de-
mand is a strong attraction for the supply to follow and can exert sig-
nificant force against the policy interventions if the demand-goal 
discrepancies are significant.

From Figs. 4 and 5, a cross-service impact can be observed and 
labelled as an asymmetric spill-over effect. While the policies imposed 
on meat production have an insignificant spill-over effect on the other 
types of ecosystem services, the policies on crop production have a non- 
negligible impact on the meat supply. The asymmetric effect of policy 
interventions implies distinct AFT transitioning processes occurring 
“under the hood”. As most AFTs can produce multiple ecosystem ser-
vices (at different levels), it is intriguing that the system can find a way 
to respond to the policy interventions on meat production while main-
taining other ecosystem services including crop production almost at 
initial levels. Contrastingly, the system cannot react similarly to the crop 
policies, which causes a considerable spill-over effect on meat produc-
tion. Comparing the gaps in the two sub-figures of Fig. 6, it can be seen 
that it is more challenging to achieve the policy targets of Policy 1.2 than 
Policy 1.1.

The asymmetric spill-over effect captured in the above experiments 
indicates differences in the underlying AFT dynamics. Fig. 7 displays six 
dominant AFTs across different policy goals. The numbers of different 
AFTs were recorded at the end of each simulation. It can be seen that the 
multifunctional (Multifun) AFT plays a major role in both Policy 1.1 and 
Policy 1.2 experiments, while its number does not show a substantial 
overall change. This is plausible because the multifunctional AFT is a 
major contributor to carbon sequestration (see Fig. C2), for which the 
demand is almost constant in the scenario. In Policy 1.1, the numbers of 
intensive arable (IA) and mixed farming (Mix_Fa) agents experience 
notable decreases as the policy goal rises. In contrast, the intensive 
farming (Int_Fa) AFT, as a productive meat supplier (see Fig. C2), starts 
from a low quantity but becomes the most dominant type when the 
policy goal for meat production is highest. In terms of Policy 1.2, as the 
goal of crop production increases, the numbers of intensive pastoral (IP) 
and extensive agro-forestry (Ext_AF) agents decrease, while the multi-
functional, intensive arable, and intensive farming AFTs increase 
(Fig. 7). Nevertheless, intensive pastoral and extensive agro-forestry 
agents are not crop producers; the other three AFTs can produce 
considerable quantities of crops and meat, which makes the meat supply 
deviate from the demand.

Fig. 4. The impact of Policy 1.1, in which the institution applies an economic policy to meat production with a policy goal ranging from 0 to 6 times the initial meat 
supply. The red line represents the demand. The 70th and 149th year are labelled as t1 and t2, respectively. Another pattern is the marginal diminishing effect of the 
policy interventions, which can be seen from two features of the cluster of supply curves. The first feature is that the lower and upper bounds of the supply curves 
exhibit a diminishing speed to approach the lowest and highest policy goals. The second feature is the uneven distribution of the supply curves. The supply curves 
tend to approach the lower and upper bounds, which leaves the space in between less dense.
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Fig. 5. The impact of Policy 1.2, in which the institution provides an economic incentive for crop production with a policy goal ranging from 0 to 6 times the initial 
crop supply. The red line represents the demand. The 70th and 149th year are labelled as t1 and t2, respectively.

Fig. 6. Relative supply under different policy goals at t1 and t2. The horizontal axes represent the goals of Policy 1.1 adjusting meat production and Policy 1.2 
adjusting crop production, while the vertical axes are the ratio of the actual supply to the initial supply. The black and green solid lines, respectively, indicate the 
supply of the corresponding ecosystem services at t1 and t2. The dashed straight lines show the expected supply ratio. The vertical solid lines indicate the final 
demands at t1.
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3.3. The joint impact of Policy 1.1 and Policy 1.2

In the real world, cross-subsidisation is a common policy instrument, 
which means institutions use the income from taxes to incentivise tar-
geted production (Heald, 2002; Kratzke, 2009). Here, to maintain the 
meat production at the initial level and increase crop production four-
fold, the agricultural institution taxes the former to attain the budget to 
subsidise the latter. Therefore, in this experiment, the subsidies are 
constrained dynamically by the taxes imposed on meat production. The 
parameterisation details are given in Table A4 in Appendix A.

With these settings, the simulation is run for 150 steps and the results 
are shown in Fig. 8. Within t1, neither of the policies performs well 
enough to reach the goals. Meat production is driven to reach approxi-
mately twice its initial level at t1, while crop production only hit three 
times its initial level within the same period. After t1, the demands 
remain constant and the supplies of both services exhibit a more notable 
deviation from the demand curves and continue to head for the policy 

goals. It is natural to consider that the supplies of the services lack the 
sensitivity to policy interventions. There are two remedies to make the 
policy interventions more sensitive. One remedy is simply to use more 
intense policy interventions, such as higher levels of subsidies and taxes 
in each policy adaptation. The other measure is to make the policy adapt 
more frequently, that is, to gain more institutional swiftness. While both 
remedies should be effective, the latter might be of more interest. In the 
current settings, the institution adapts its policies every five iterations. If 
the policies can be adapted more frequently, the supplies of meat and 
crops might reach the policy goals more rapidly.

To better understand how the frequency of policy adaptation impacts 
the joint effect of meat and crop policies, we simulate various time lags 
ranging from 1 to 10 timesteps for both policies and obtain 100 com-
binations. The results are visualised in Fig. 9. The bars in the figure 
indicate the absolute difference between the policy goals and the sup-
plies at t1. The left sub-figure shows a consistent pattern that shorter 
adaptation lags on meat and longer on crops are favoured to meet the 

Fig. 7. Transitions of six dominant AFTs under different policy goals at the end of the model simulation at t2. The full names of the AFTs are given in Table C1. The 
transitions of all AFTs are given in Fig. C3.

Fig. 8. Time series of meat and crop supply under the joint impact of Policy 1.1, meat taxation, and Policy 1.2, crop subsidisation. The 70th and 149th year are 
labelled as t1 and t2, respectively.
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policy goals of meat production. This is in line with the previous analysis 
of the policy spill-over effect. Intuitively, taxing meat production more 
frequently is more effective in reducing meat supply, while intervening 
with crop production less frequently reduces the spill-over effect on 
meat production. Additionally, meat production is relatively more sen-
sitive to the adaptation lags of Policy 1.2 when Policy 1.1 is adapted at a 
moderate speed.

The right sub-figure displays the discrepancies between the crop 
supplies and the policy goal of Policy 1.2. The supply-goal gap of crop 
production reaches the minimum value when the adaptation lags of both 
Policy 1.1 and Policy 1.2 stay at their minimum. This is sensible because 
meat production does not have a significant spill-over effect on crop 
production, while the subsidies supporting frequent adaptation in Policy 
1.2 are gained from the taxation of meat production. To sustain a 
frequent increase in crop subsidisation, the institution should evaluate 
the tax on meat production frequently.

The joint impacts of Policy 1.1 and Policy 1.2 highlight an intricate 
but intuitively understandable relationship between policy targets, 
policy adaptation frequencies, institutional budgets and cross-service 
spill-over effect. Policy 1.1 refuels the budget by taxing meat produc-
tion based on the policy adaptation frequency; Policy 1.2 consumes the 
budget and provides subsidies to boost crop production; in turn, the 
boosted crop production stimulates meat production via cross-service 
spill-over effect, which then impairs the efficacy of Policy 1.1 in meat 
reduction. The interplay between multiple factors is a key attribute of 
complex systems, which poses a challenge to institutions facing trade- 
offs of different policy goals (Huang et al., 2022; Shrestha and Dhakal, 
2019). If meat reduction is more important, the institution should apply 
Policy 1.1 more frequently and Policy 1.2 less frequently; if increasing 
crop production is more important, the institution should use both the 
two policies more frequently.

4. Discussion

4.1. Emergent dynamics

4.1.1. Marginal diminishing effect
The approach presented here has demonstrated the capacity to 

generate multiple meaningful emergent patterns when endogenizing 
institutional policy-making within a land system model. The emergence 
of these patterns is driven and explainable by the micro mechanisms of 
the coupled model, exhibiting systemic self-consistency. These patterns 
provide insights into a broader understanding of land system dynamics. 
A crucial finding is the marginal diminishing effect of policy in-
terventions. Three factors might contribute to this effect. Firstly, the 

gains in policy interventions decrease as the supply-goal gaps become 
smaller, reflecting the adaptivity of the endogenous institutional agent. 
Secondly, the system itself has natural maximum and minimum pro-
duction capacities. The maximum production capacity is constrained by 
the capitals and AFT productivities, which can be interpreted as resource 
capacity limitations. This is a common constraint that is similar to the 
carrying capacity in many social, economic and ecological systems 
(Arrow et al., 1995; Del Monte-Luna et al., 2004; Seidl and Tisdell, 
1999). The third factor could be the trade-off between the derived 
benefits across different ecosystem services. For instance, if an AFT can 
produce crops and meat simultaneously (as some can, in small quanti-
ties), a policy intervention on one single ecosystem service can poten-
tially impact the others, such as through enlarging the deviation of the 
untargeted service from its prescribed market or societal demand, which 
results in higher negative correction that counterbalances the policies’ 
effectiveness. This mechanism can be understood as a cross-service ef-
fect and also applies in principle to disbenefits created in the production 
of desired services, as when intensive food production increases agri-
cultural pollution (Czyżewski et al., 2021).

4.1.2. Asymmetric spill-over effect
The asymmetry of the spill-over effect can apply in the real world (e. 

g., when potentially valuable by-products saturate the market, driven by 
demand for the primary product), and is a reasonable result caused by 
the utility-seeking behaviour of AFTs in this model. The utility of crop 
production contributes more to the total utility of AFTs than meat pro-
duction does. Thus, it is reasonable to prioritise crop production over 
meat production. An interesting point here is the adaptability exhibited 
by the heterogenous AFTs, which can drive some ecosystem service 
production at the system level to approach the policy targets while 
keeping the others almost unchanged. This illustrates the ability of many 
complex systems to absorb external disturbances (Miller and Page, 
2009) and the adaptability of land users at a microscopic level within the 
land system (Bravo-Peña and Yoder, 2024; Funk et al., 2020; Makate 
et al., 2019).

The asymmetric spill-over effect implies that policies with stronger 
spill-over effects may face greater challenges in achieving their goals 
due to the added complexities they create. Spill-over effects can disrupt 
the balance between supply and demand in untargeted ecosystem ser-
vices, leading to gaps between what is supplied and what is needed. 
These gaps act as significant market forces, prompting AFTs to address 
the imbalance. In contrast to Policy 1.1, Policy 1.2, which focuses on 
adjusting crop production, must tackle demand-supply imbalances not 
only in the crop market but also in the meat market due to these inter-
connected effects. Such effects may be stronger where specialised 

Fig. 9. Performance of joint impact of Policy 1.1 (meat taxation) and 1.2 (crop subsidisation) with different time lags in policy goal evaluation and intervention 
adaptation. The absolute error means the non-negative value of the gap between the policy target and the actual outcome.
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production systems are concerned, because changes in production levels 
have inevitable implications for other services, and weaker where a 
range of services can be produced in multifunctional settings.

In CRAFTY, a single land user agent can produce multiple ecosystem 
services and products. It is challenging for mixed service producers to 
achieve optimal flexibility to (often partially) switch swiftly between 
products in response to demand and policy changes. In reality, mixed 
service production is constrained by many factors, such as capacity and 
resource availability, production set-up time and cost, and supply chain 
agility (Clark, 2006; Stokes et al., 2023). When AFTs fail to fully adjust 
service mixes, demand-supply gaps start to form, and asymmetric 
spill-over effects emerge.

4.1.3. Policy adaptation frequency
The experiment combining the frequency of policy adaptation and 

cross-subsidisation reveals some significant challenges in institutional 
decision-making that involve multiple policy targets. These policy tar-
gets may not be explicitly conflicting but can impair policy efficacy 
through the cross-service effect. It is plausible that a portfolio of policy 
instruments requires different frequencies of policy adaptation. High 
policy adaptation frequencies do not necessarily lead to high effective-
ness of policy intervention but might overshoot policy goals and bring 
unnecessary instability to the system (Batini and Nelson, 2001). In 
contrast, less frequent policy adaptation might be conducive to policy 
effectiveness because it gives a comparatively longer period of time to 
examine the policy performance (Watts et al., 2020). However, signifi-
cant time lags can cause difficulties in decision-making by making it 
harder to discern the causal links between the system’s response and the 
implemented policies (Bekaert et al., 2013).

4.2. Reflections on model design

4.2.1. Conceptual and technical choices
Modelling endogenous institutions within land systems is still an 

open challenge, whether representing emergent or pre-defined in-
stitutions (or even both) (Ghorbani et al., 2017, 2020, 2021). For 
example, an earlier study that incorporated institutional agents directly 
within the CRAFTY framework (Holzhauer et al., 2019) illustrates an 
analogous but distinct approach, which was less generalisable beyond 
CRAFTY itself, but commensurately more detailed in exploring the dy-
namics of that model. The work described here represents an extension 
to the Holzhauer et al. (2019) approach in that it is in principle appli-
cable in different models, and incorporates more flexible representations 
of policy goals and interventions. The endogenous institutional model-
ling presented in this paper is also guided by the principles of parsimony, 
transparency, and extensibility. These principles are significant to the 
model’s conceptual framework design and technical choices.

The model is parsimonious in the sense that its overall structure is a 
simple, intuitive closed-loop control system with the institutional agents 
working as controllers in response to land use changes under constraints. 
This idea is inspired by the thermostatic model in political science 
(Wlezien, 1995), although implemented slightly differently here. To 
achieve transparency in terms of institutional decision-making, we 
choose to avoid using machine learning or other data-driven approaches 
that may be challenging to interpret. Instead, PID-fuzzy logic control is 
used. Fuzzy logic controllers are particularly suitable for simulating 
decision-making with imprecise data, qualitative assessments, and 
complex input-output linkages, which are commonly seen in real-world 
policymaking processes (Guidara, 2020). The PID-fuzzy control 
approach provides an intuitive and systematic way to estimate the land 
use model’s outcome against policy targets while allowing for the flex-
ibility of integrating real-world policymakers’ knowledge in an IF-THEN 
form (Dadios, 2012). In addition, fuzzy logic controllers can naturally 
preserve real-world policymakers’ bounded rationality, which is more 
advantageous than data-driven approaches in realism and interpret-
ability. Furthermore, the constrained behaviours of PID-fuzzy logic 

controllers resonate well with incrementalism in political science 
because of its heuristic, continually adaptive nature (Gigerenzer et al., 
2022; Pal, 2011). The model’s widely applicable closed-loop control 
framework and flexibly configurable fuzzy logic controller (Cingolani 
and Alcala-Fdez, 2012; Cingolani and Alcalá-Fdez, 2013) endow the 
model with extensibility to simulate many institutions and policies 
simultaneously.

4.2.2. Modelling assumptions
In addition to the primary assumptions of closed-loop control and 

heuristic decision-making that form the model’s conceptual foundation, 
several key assumptions within each sub-model deserve attention.

First, policy goals should be explicitly expressed as vectors (see Eq. 
(1)). Similar to the target temperature of a thermostat, policy goals serve 
as set points that drive the system in the desired direction. Clearly 
defined policy goals provide the foundation for the second assumption: 
institutions evaluate policy performance based on goal-outcome dis-
crepancies. While this assumption simplifies the complexity of real- 
world policy evaluation, it offers an intuitive and practical way to 
operationalise policy evaluation within the model. This approach aligns 
with the heuristic nature of human decision-making in complex envi-
ronments, where simplified strategies are often favoured in practice (but 
may or may not be received better by citizens and more successful in 
achieving targets (e.g., D’Acunto et al. (2021) and Knickel et al. (2009)). 
Furthermore, it is rooted in the principles of closed-loop control systems 
and the thermostatic model in political science, both of which emphasise 
feedback mechanisms that guide adjustments in response to changes 
(Easton, 1965; Wlezien, 1995).

Third, the budgets required for policy interventions should be 
quantifiable. This is a natural assumption, as every policy intervention 
— whether taxation, subsidisation, or the establishment of protected 
areas — requires financial resources. Additionally, the model assumes 
that the budget needed to implement a policy is positively correlated 
with the policy adjustment intensity. This makes intuitive sense because 
the more aggressive a policy is made to influence a land-use system, the 
more resources it typically demands. This may not be the case where 
existing instruments are altered (e.g. Zahrnt (2009)), but a similar logic 
does apply to disincentive policies, such as taxes and fines, which 
require more funding for enforcement and monitoring compared to 
lighter regulations (Lans Bovenberg and Goulder, 2002; Mondal and 
Giri, 2023). The model does not, at present, consider issues of ‘political 
capital’ or other variable constraints that might affect policy imple-
mentation, although the design could be extended to incorporate these 
as explicit or generic factors.

4.2.3. Modelling non-incremental policy changes
As mentioned in Section 2.1, incrementalism is here modelled as 

constrained policy actions, representing an important facet of long-term 
policy change within relatively stable regimes. This aligns with Lind-
blom’s (1959) observation that policymakers operate within the con-
straints of limited cognitive and resource capacities, as well as the 
boundaries of political feasibility inherent in democratic systems. 
Incrementalism in public policy has been widely identified and con-
tinues to be noted as a feature even of policy change involving trans-
formative methods (e.g., digitalisation (Haug et al., 2024), goals 
(Kulovesi and Oberthür, 2020) or situations (Marsden and Docherty, 
2021)). That said, many policy processes are clearly not incremental in 
nature. Non-democratic regimes may (in some cases) be characterised 
by rapid or drastic top-down policy-making, and theories such as 
punctuated equilibrium have been proposed to account for the operation 
of different modes of policy-making within diverse contexts (Benson and 
Russel, 2015; True, 2000).

However, incrementalism does not necessarily preclude radical 
policy changes, in the model or in reality (e.g. Buchan et al. (2019)). 
Here, institutional agents can be enabled to make drastic policy changes 
by setting the budget to be very large, giving policies a high priority, 
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removing policy inertia constraints, using negligible policy time lags, or 
giving the fuzzy logic controller a very wide output range. For example, 
in Zeng et al. (2024a), an institutional agent with a large taxation change 
range for each policy adaptation and without budget or policy inertia 
constraints, demonstrates its powerful ability to diminish the 
goal-outcome errors in meat production in CRAFTY. Similar insights can 
also be gained from the Perceptual Control Theory (PCT) (Forssell and 
Powers, 2009), which can be mathematically analysed and indicates 
that if the closed-loop controller works as an infinitely powerful signal 
amplifier, it can maintain the system’s immunity to very large distur-
bances. Such extreme settings diminish the institutional model’s 
meaningful correspondence to real-world institutional systems, but less 
extreme settings may allow it to simulate institutions whose power and 
resources are highly centralised.

It is noteworthy that if many policies and institutions are considered 
simultaneously, the policies’ net effect is determined by their synergistic 
or conflicting relationships and not their individual attributes alone. 
This may represent an informative target for a model of this kind, for 
instance, applied to climate change or other areas where multiple pol-
icies interact. Modelling in this context could explore the extent to which 
policy centralisation or fragmentation supports the achievement of 
(transformational) targets (Kowalewski and Birch, 2020; Pollak and 
Riekmann, 2008).

In addition to the capability of mimicking continual policy changes, 
this institutional model can also handle binary (0 and 1) variables, 
which might be useful in situations where structural, qualitative policy 
changes need to be modelled. For instance, a carbon trading sub-model 
could be constructed, with a PID-fuzzy logic controller to determine 
when carbon trading should be allowed or prevented in order to achieve 
a carbon reduction target. Such an approach could also be used to turn 
entire policy areas or actors ‘on’ or ‘off’, representing structural changes 
in governance.

4.3. Limitation and future research

4.3.1. Exogenous impact
“All models are wrong, but some are useful” (Box, 1976). Given the 

complexity of real-world policymaking, let alone its coupling with land 
use dynamics, this model does not attempt to be ‘perfect’. Instead, it is 
intended to serve as a useful starting point for future studies. The current 
model’s capability is limited in dealing with exogenous changes, such as 
unforeseeable disturbances out of the closed-loop system. The model 
might perform well if handling such changes does not require structural 
changes or measures beyond the existing policies. For example, if a 
sudden rise or drop occurs in meat supply, the institutional agent can 
still use existing economic policies to adjust meat supply accordingly. 
However, in cases where novel policies are needed, institutional agents 
may struggle to adapt effectively, such as coping with the consequences 
of unforeseen geopolitical conflicts, environmental disasters, or tech-
nological disruptions. Dealing with these circumstances might require 
drastically shifting policy goals, changing policy adaptation frequencies, 
or even creative policy portfolios (Ghorbani et al., 2023; Howlett et al., 
2018). Future research could incorporate exogenous impact based on 
Punctuated Equilibrium Theory – a non-incrementalism policymaking 
paradigm that considers discontinuous but crucial policy changes (Givel, 
2010; Princen, 2013; True et al., 2019), which is challenging but 
rewarding. A human-in-the-loop mechanism or tailoring the model for 
each individual case might be viable approaches, but it seems unlikely to 
be able to build a model that is generalisable enough for all exogenous 
disturbances given their unpredictable nature, without some role for 
human or artificial intelligence within the model.

4.3.2. Learning processes
When discussing the modelling of learning processes, reinforcement 

learning naturally comes to mind as a prominent approach. Designed to 
enable agents to make effective decisions without supervision 

(Wesselink et al., 2014), reinforcement learning has gained attention in 
policymaking research due to rapid advancements in artificial intelli-
gence (e.g., Osoba et al. (2020), Wolf et al.(2023), and Zheng et al. 
(2022)). This method offers valuable insights into optimal or 
near-optimal solutions for policymaking problems, which can be used to 
guide real-world decision-making processes. Another approach lever-
ages many-objective decision-making, typically employing evolutionary 
algorithms to determine sequences of time-dependent policy actions 
that strive for Pareto optimality (Kasprzyk et al., 2013; Quinn et al., 
2017; Zeng et al., 2024d). However, real-world policymakers do not 
have the luxury of engaging in rapid, intensive trial-and-error learning 
processes. Instead, they learn through slower, more complex pathways, 
often facing overwhelming information (González, 2017).

Moreover, researchers in political science have long observed there 
exist gaps between policy learning and policy change (Moyson et al., 
2017). Increasing governmental institutions’ ability to gather and pro-
cess more information does not necessarily give rise to greater govern-
mental effectiveness (Etheredge and Short, 1983). In the context of 
evidence-based policymaking, political considerations often manifest 
indirectly through disputes over the credibility of evidence, rather than 
through direct discussions about the prioritisation of values (Wesselink 
et al., 2014). This highlights the multifaceted nature of learning in 
policymaking, where cognitive, procedural, and political factors interact 
in shaping outcomes.

In this model, learning processes are not currently incorporated. One 
significant challenge lies in establishing a causal link between policy 
learning and subsequent policy actions. Additionally, parameterizing 
these learning processes introduces the risk of increased model 
complexity, which could hinder interpretability. Nonetheless, the find-
ings in this paper offer a baseline for future experiments that explore 
learning processes. These experiments could reduce reliance on data- 
intensive training by offering an alternative approach that uses expert 
input for parameterisation. The weighting and evaluation of policy 
outcome errors, the budget allocation weights, as well as the internal 
settings of fuzzy logic controllers, are key areas where institutional 
learning could be integrated. An extra layer of fuzzy logic controllers 
(Sharma et al., 2016) or interpretable decision trees (Balcan and 
Sharma, 2024) adjusting these parameters might be promising ap-
proaches. Another choice might be to use state-of-the-art large language 
models, which provide a novel method to simulate human-like experi-
ential learning while generating examinable reasoning behind policy 
actions (Zeng et al., 2024a,b).

4.3.3. Empirical applications
Parameterizing decision-making models with empirically valid data 

is particularly challenging in policy-making due to the blend of objective 
and subjective elements involved. Objective aspects such as policy goals, 
budgets, and policy inertial constraints, though seemingly straightfor-
ward, are often complex. Some policy goals are clearly defined and can 
be conveniently integrated into a formal model, yet some are quite 
vague (Convention on Biological Diversity, 2020). Institutions’ budgets 
are rarely fixed or definitive. Policy inertia constraints are abstract 
representations of non-monetary resistance to policy changes, which 
have no direct equivalent. Subjective parameters include the internal 
settings of fuzzy logic controllers, policy evaluation weights, and budget 
allocation weights. Given these complexities, it might be unrealistic to 
expect the model to be fully parameterised using accurate empirical 
data. Nevertheless, it is advisable to strategically prioritise data acqui-
sition using multiple sources and approaches in further studies. To 
enable the application of the model to a more empirical case based on 
“real-world” data, the approaches listed in Table C2 may be useful, and 
the following steps could be taken in future studies:

Historical data: Historical data can be used to parameterise the 
behaviours and attributes required in the model (see Fig. 2). For 
example, historical policy information can be used to define the initial 
policy guess on expenditure on e.g. subsidies for crops, relative to other 
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subsidies and taxes.
Integrate stakeholder feedback: Policymakers and other stake-

holders involved in the decision-making process within the region of 
simulation can be involved in parameterizing the subjective parameters 
of the process. Stakeholder involvement can also help with objective 
parameters such as clarifying policy goals and estimating policy inertia 
to ensure the model runs under reasonable parameter settings.

Simulation design: Policies can be adapted and updated based on 
empirical evidence on the frequency of policy adaptation, tailored to the 
region or country and policy realm of interest. Simulations can be run 
based on current and emerging policies, such as the 30 % Protected 
Areas by 2030. Narrative-based simulation could be useful for handling 
vague or abstract parameters through meaningful narratives. Simula-
tions can also utilise the data derived from other empirically valid 
models.

Sensitivity analysis: A systematic sensitivity analysis could be used 
to explore the impact of changing uncertain and subjective parameters, 
such as policy inertia, policy evaluation, and budget allocation on 
achieving the policy goal and the associated impacts on the land system.

Iterative Refinement: Model parameterisation can be continuously 
refined based on feedback from empirical applications and further 
stakeholder engagement. This iterative process is essential for gener-
ating new insights and adapting to evolving policy landscapes, thereby 
enhancing the model’s utility and effectiveness in supporting policy 
assessment.

In addition, an example of parameterising the institutional model 
with potential application to organic farming in Germany is provided in 
Appendix D.

5. Conclusion

This research has focused on incorporating heuristics and incre-
mentalism as interpretable endogenous institutional decision-making 
behaviours influencing land use change. This approach emphasises the 
provision of relevant information, irrespective of whether the in-
stitutions fail or succeed in achieving policy goals. The theories resonate 
with the algorithms and methods, including PID controller and fuzzy 
control theory, which have been long established in the field of control 

theory. Numerical experiments were carried out to investigate an 
institution that implements two policies influencing ecosystem service 
production. Our findings highlight the potential for using the endoge-
nous institutional model in exploring policy formulation. This approach 
uncovers various processes including the marginal diminishing effect of 
economic policy interventions, asymmetric spill-over effects for 
different ecosystem services, and trade-offs between policy goals. The 
endogenous institutional model demonstrates the ability to uncover 
complex emerging patterns, which have substantial implications for 
land systems. However, challenges and further improvement have to be 
addressed, such as incorporating exogenous impact, institutional 
learning processes, and parameterising the model empirically.
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Appendix A

Table A1 
Attributes and behaviours of an institution agent.

Name Explanation

Attributes Unique ID A unique label that distinguishes an Institution from the others.
 Policies A set that contains all policies.
 Information A container where an institution saves necessary information supporting decision-making.
 Uncertainties A list of variables determining the noise.
 Budget A set of conditions that constrain the monetary sufficiency for implementing policies.
 Decision rules A set of fuzzy rules reflecting how institutions make decisions.
Behaviours Initialisation Set the initial values of institutional attributes.
 Information collection Collect information from the target land use system.
 Prediction Make predictions based on the collected information.
 Policy evaluation Evaluate the performance of existing policies using PID errors.
 Resource allocation Allocate the budget among multiple policies based on budget constraints.
 Policy implementation Apply the resultant policy interventions to the target land use system.
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Table A2 
Attributes of policy.

Name Explanation

Attributes Unique ID A unique label that distinguishes a policy from the others.
 Target service In CRAFTY, the target service is the service an institution intends to influence with this policy. Technically, the target can be any modifiable 

variable in the model.
 Policy type The type of policies can be taxes, subsidies, administrative orders, information, etc. Different types of policies can have very different ways to 

impact the target system.
 Initial guess A value related to the initial policy intervention, which is generated based on the educated guess of model users. The initial guess is crucial for 

policymaking due to the path-dependency feature of complex systems.
 Policy inertia Drastic policy changes are prone to encountering resistance from the public, interested parties, and physical limitations. Ideally, the inertia 

constraint serves as a comprehensive single indicator reflecting all non-monetary resistances to dramatic policy changes.
 Policy goal The ultimate policy goal that the policy is intended to achieve.
 Intervention The policy intervention implemented to influence the target land use system.
 Evaluation results Measured by the PIDs errors that reflect the gaps between the policy goal and target service.
 Time lag It takes time for policy interventions to become fully effective. Institutions also need time to respond to new challenges. The time lag depicts the 

duration between each two policy adaptations.
 Timer The timer is updated and checked every iteration to judge if it is time for policy adaptation.
 Adapting A Boolean variable signifying if it is the time for this policy to be adapted.
 Intervention 

modifier
A variable that modifies the policy intervention based on the evaluation results.

 Intervention 
history

A container to save the actual policy intervention in each iteration.

Table A3 
Nomenclature.

Variables Variable meaning

Tij
s The time when institution i’s policy j starts.

Tij
e The time when institution i’s policy j ends.

Qij The quantity of policy goal that institution i’s policy j is intended to change.
Gij A vector of 

[
Tij

s ,Tij
e ,Qij] defining the goal of institution i’s policy j.

ε(P)t
Proportional error.

ε(I)t
Integral error.

ε(D)t
Derivative error.

oij
t

Model output under the influence of institution i’s policy j.

C(P) The weight of proportional error.
C(I) The weight of integral error.
C(D) The weight of derivative error.
k The time interval used to calculate integral and derivative errors.
E Weighted sum of proportional, integral, and derivative errors.
F A function representing a fuzzy logic controller that maps.
Aij

t The constrained policy variation of institution i’s policy j at time t.
sign A function output − 1, 0 or 1 according to the sign of its input.
Nij The policy inertia constraint of institution i’s policy j.

Mij
t A multiplier that modifies the institution i’s policy j.

ƞij The step size of intervention institution i’s policy j.
f A function that maps a policy intervention onto the resource needed for implementing this policy.
Vij

t
Desired policy intervention without considering the budget constraints.

Rij
t

The resource needed for implementing institution i’s policy j.
ξj A weight reflecting the comparative importance of policy j perceived by institution i.

rij
t Resource allocated to implement institution i’s policy j.

r∗ij
t Optimal solution for rij

t under the budgetary constraints.
V∗ij

t Policy intervention implemented using resource r∗ij
t .

Bi Total budget of institution i.
cxy An AFT’s competitiveness at land cell (x,y).
pS AFT production level of ecosystem service S.
ViS

t Institution i’s economic policy that targets ecosystem service S.
mS Marginal utility of ecosystem service S.

Y. Zeng et al.                                                                                                                                                                                                                                    Ecological Modelling 501 (2025) 111032 

15 



Table A4 
Parameterisation of the institution, Policy 1.1, and Policy 1.2. Experimental variables are 
highlighted in bold.

Institution parameter Value

Unique ID 1
Policies 1.1, 1.2
Information Crop supply and demand, 

meat supply and demand.
Uncertainties Null
Budget Gain from taxation
Decision rules Tax or Subsidy
Policy parameter First policy Second policy
Unique ID 1.1 1.2
Target service Meat Crops
Policy Type Tax Subsidy
Initial guess 100,000 100,000
Policy inertia constraint 0.2 0.2
Policy goal 1.0 4.0
Intervention 0.0 0.0
Intervention modifier 0.0 0.0
Evaluation result 0.0 0.0
Time lag 1 - 10 1 - 10
Timer Equal to Time lag Equal to Time lag
Adapting False False

Appendix B

Table B1 
Parameterisation of decision rule labelled as “Economic”.

FUNCTION_BLOCK economic

VAR_INPUT
gap: REAL; 

END_VAR
VAR_OUTPUT
Intervention: REAL;
END_VAR
FUZZIFY gap
TERM nhigh:= (− 0.5,1) (− 0.3,0);
TERM nmild:= (− 0.5,0) (− 0.3,1) (− 0.1,0);
TERM nlight:= (− 0.3,0) (− 0.1,1) (0,0);
TERM neutral:= (− 0.05,0) (0,1) (0.05,0);
TERM plight:= (0, 0) (0.1, 1) (0.3,0);
TERM pmild:= (0.1,0) (0.3,1) (0.5,0);
TERM phigh:= (0.3, 0) (0.5, 1);
END_FUZZIFY
DEFUZZIFY intervention
TERM nhigh:= (− 0.2,1) (− 0.1,0);
TERM nmild:= (− 0.15,0) (− 0.05,1) (0,0);
TERM neutral:= (− 0.02,0) (0,1) (0.02,0);
TERM pmild:= (0,0) (0.05,1) (0.15,0);
TERM phigh:= (0.1,0) (0.2,1);
METHOD: COG;
DEFAULT:= 0;
END_DEFUZZIFY
RULEBLOCK No1
AND: MIN;
ACT: MIN;
ACCU: MAX;
RULE 1: IF gap IS nhigh THEN intervention IS nhigh;
RULE 2: IF gap IS nmild THEN intervention IS nmild;
RULE 3: IF gap IS nlight THEN intervention IS neutral;
RULE 4: IF gap IS neutral THEN intervention IS neutral;
RULE 5: IF gap IS plight THEN intervention IS neutral;
RULE 6: IF gap IS pmild THEN intervention IS pmild;
RULE 7: IF gap IS phigh THEN intervention IS phigh;
END_RULEBLOCK
END_FUNCTION_BLOCK
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Table B2 
Parameterisation of decision rule labelled as “Subsidy”.

FUNCTION_BLOCK Subsidy

VAR_INPUT
gap: REAL;
END_VAR
VAR_OUTPUT
intervention: REAL;
END_VAR
FUZZIFY gap
TERM plow:= (0,1) (0.15,0);
TERM plight:= (0.025, 0) (0.175, 1) (0.325,0);
TERM pmild:= (0.175,0) (0.325,1) (0.45,0);
TERM phigh:= (0.325, 0) (0.45, 1);
END_FUZZIFY
DEFUZZIFY intervention
TERM neutral:= (− 0.015,1) (0.05,0);
TERM plight:= (0.025,0) (0.075,1) (0.125,0);
TERM pmild:= (0.075,0) (0.125,1) (0.175,0);
TERM phigh:= (0.125,0) (0.2,1);
METHOD: COG;
DEFAULT:= 0;
END_DEFUZZIFY
RULEBLOCK No1
AND: MIN;
ACT: MIN;
ACCU: MAX;
RULE 0: IF gap IS plow THEN intervention IS neutral;
RULE 1: IF gap IS plight THEN intervention IS plight;
RULE 2: IF gap IS pmild THEN intervention IS pmild;
RULE 3: IF gap IS phigh THEN intervention IS phigh;
END_RULEBLOCK
END_FUNCTION_BLOCK

Table B3 
Parameterisation of decision rule labelled as “Tax”.

FUNCTION_BLOCK Tax

VAR_INPUT
gap: REAL;
END_VAR
VAR_OUTPUT
intervention: REAL;
END_VAR
FUZZIFY gap
TERM nhigh:= (− 0.5,1) (− 0.3,0);
TERM nmild:= (− 0.4,0) (− 0.3,1) (− 0.2,0);
TERM nlight:= (− 0.3,0) (− 0.1,1) (0,0);
TERM nlow:= (− 0.1,0) (0,1);
END_FUZZIFY
DEFUZZIFY intervention
TERM neutral:= (− 0.05,0) (0,1) (0.025,1);
TERM light:= (− 0.125,0) (− 0.075,1) (− 0.025,0);
TERM mild:= (− 0.175,0)(− 0.125,1) (− 0.075,0);
TERM high:= (− 0.2,1) (− 0.125,0);
METHOD: COG;
DEFAULT:= 0;
END_DEFUZZIFY
RULEBLOCK No1
AND: MIN;
ACT: MIN;
ACCU: MAX;
RULE 1: IF gap IS nhigh THEN intervention IS high;
RULE 2: IF gap IS nmild THEN intervention IS mild;
RULE 3: IF gap IS nlight THEN intervention IS light;
RULE 4: IF gap IS nlow THEN intervention IS neutral;
END_RULEBLOCK
END_FUNCTION_BLOCK
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Appendix C

Table C1 
Names of the AFTs.

Abbreviation Full Name

VEP Very extensive pastoral
Int_AF Intensive agro-forestry
Mix_P Mixed pastoral
IP Intensive pastoral
Min_man Minimal management
EP Extensive pastoral
Ext_AF Extensive agro-forestry
UMF Unmanaged forest
Multifun Multifunctional
Mix_For Mixed forest
UL Unmanaged land
IA Intensive arable
MF Managed forest
Mix_Fa Mixed farming
Int_Fa Intensive farming
Ur Urban
P-Ur Peri-urban

Fig. C1. Initial distribution of AFTs in CRAFTY-EU.
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Fig. C2. Normalised ecosystem service production levels of the 17 AFTs in CRAFTY-EU.

Fig. C3. Transitions of all AFTs under different policy goals at the end of the model simulation at t2.
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Table C2 
Potential approaches to parameterizing the institutional model in future research.

Parameter/ 
Potential data source

Stakeholder involvement Historical data Narrative-based simulation Empirical modelling data Sensitivity analysis

Institution Policies ✔ ✔ ✔  
Information ✔  ✔ ✔ 
Uncertainties ✔  ✔  ✔
Budget ✔ ✔ ✔ ✔ ✔
Decision rules ✔  ✔  
Policy evaluation ✔  ✔  ✔
Budget allocation ✔  ✔  ✔

Policy Target service ✔ ✔ ✔  
Policy type ✔ ✔ ✔  
Initial guess ✔ ✔ ✔  ✔
Policy inertia ✔  ✔ ✔ ✔
Policy goal ✔ ✔ ✔ ✔ ✔
Time lag ✔ ✔ ✔ ✔ ✔

Appendix D

Example of Parameterizing the Institutional Model: Potential Application to Organic Farming in Germany
The example provided here is intended to enhance understanding of parameterisation and to illustrate guidance for the empirical application of 

this model. It might not be sufficiently detailed for a direct application, as this would require substantially more calibration and verification.
Policy Goal To parameterise the institutional model, policy goals can be taken directly from published policy documents. In this example, the 

Organic Action Plan targets 25 % of EU agricultural land to be under organic farming by 2030 (European Commission, 2024). For Germany, the 
national target is more ambitious, with organic farming expected to cover 30 % of the total agricultural area by 2030. (For unquantified policy goals, 
the framework proposed by Fetting (2020), involving stakeholder input, could be used to establish measurable targets.)

Information Historical data can be used to initialise key parameters. For example, the share of organically farmed land in Germany increased from 
1.6 % in 1994 to 11.4 % by the end of 2023 (Kuhnert, 2024). This historical trend provides a basis for estimating the gap between the target (30 %) and 
the current share of organic farming. Spatial information on crop management (at least at state resolution) can be used to establish baseline distri-
butions that affect subsequent uptake of organic farming (Kuhnert, 2024). Uncertainties may occur during real-world information collection, so the 
collected data can be adjusted and tested using predefined value distributions to account for relevant biases or errors.

Budget According to Becker et al. (2022) and Lampkin and Sanders (2022), in Germany, organic farming is supported under the Second Pillar of the 
CAP Strategic Plans (2023–2027), which allocates approximately 20 % of its funding to organic farming. The second pillar represents about 10 % of 
Germany’s total CAP budget of over €30 billion for the period. Based on these figures, the approximate annual funding for organic farming in Germany 
can be inferred. This budget can be distributed evenly across the years or adjusted to follow an expected growth trajectory for organic farming areas.

Time Lag The institutional model should include time lags to account for the delayed effects of policy changes. Historical CAP funding periods, 
such as 2014–2020 (European Council, 2019) and 2023–2027 (European Council, 2024), suggest a time lag of 5–7 years for major adjustments. 
However, the EU Strategy on Adaptation to Climate Change (Climate ADAPT, 2024) advocates for faster responses, indicating that shorter time lags (e. 
g., 2–3 years) might also be meaningful.

Initial Guess When historical data is unavailable for a new policy, an initial parameter estimate can be inferred. For organic farming, conversion 
subsidies for arable land in Germany average €394/ha/year and maintenance subsidies are €264/ha/year (Kuhnert, 2023). These values can serve as 
initial subsidy levels for the model.

Policy Inertia Historical data on subsidies for organic farming can be analysed to determine the maximum and minimum annual changes. This 
range can be used to approximate policy inertia, which can help constrain the model to realistic variations and avoid erratic behaviour. Sensitivity 
analyses can further test the impact of different levels of policy inertia on model outputs.

Decision Rules, Policy Evaluation, and Budget Allocation These elements involve subjective judgment by policymakers. Hypothetical settings can 
be tested to align with intuitive decision-making. For instance, a straightforward decision rule could be: IF the gap between the policy goal and the 
current outcome is large, THEN adjust the policy significantly. For policy evaluation, historical trends in organic farming coverage, which show steady 
growth with minimal fluctuations, suggest that using the latest coverage of organic farming land might be enough to estimate the gap between the 
policy goal and actual coverage. Budget allocation can be estimated based on historical funding allocation within the CAP framework if multiple 
policies sharing the same budget account are considered. For greater accuracy, in-depth interviews with stakeholders—such as policymakers from the 
Federal Ministry of Food and Agriculture or experts from the Thünen Institute (Özdemir, 2022)—could further clarify strategies for policy adjustments 
and budget planning.

Data availability

I have shared the links to my data and code in the manuscript.
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González, V.B., 2017. Modelling Adaptation Strategies for Swedish Forestry under 
Climate And Global Change. http://hdl.handle.net/1842/25380.

Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W.M., Railsback, S.F., Thulke, H.-H., 
Weiner, J., Wiegand, T., DeAngelis, D.L., 2005. Pattern-oriented modeling of agent- 
based complex systems: lessons from ecology. Science. 310, 987–991. https://doi. 
org/10.1126/science.1116681.

Grzymala-Busse, A., 2010. The best laid plans: the impact of informal rules on formal 
institutions in transitional regimes. Stud. Comp. Int. Dev. 45, 311–333. https://doi. 
org/10.1007/s12116-010-9071-y.

Guidara, A., 2020. Policy Decision Modeling With Fuzzy Logic: Theoretical and 
Computational Aspects. Springer Nature.

Guo, J., Li, F.Y., Tuvshintogtokh, I., Niu, J., Li, H., Shen, B., Wang, Y., 2024. Past 
dynamics and future prediction of the impacts of land use cover change and climate 
change on landscape ecological risk across the Mongolian plateau. J. Environ. 
Manage. 355, 120365. https://doi.org/10.1016/j.jenvman.2024.120365.

Haug, N., Dan, S., Mergel, I., 2024. Digitally-induced change in the public sector: a 
systematic review and research agenda. Public Manag. Rev. 26, 1963–1987. https:// 
doi.org/10.1080/14719037.2023.2234917.

Heald, D.A., 2002. Public policy towards cross subsidy. Ann. Public Cooperat. Econ. 68, 
591–623. https://doi.org/10.1111/1467-8292.00066.

Hegmon, M., 2017. Path Dependence The Oxford Handbook of Southwest Archaeology, 
pp. 1–13. https://doi.org/10.1093/oxfordhb/9780199978427.013.7.

Helmke, G., Levitsky, S., 2004. Informal institutions and comparative politics: a research 
agenda. Perspect. Polit. 2, 725–740. https://doi.org/10.1017/S1537592704040472.

Hocherman, T., Trop, T., Ghermandi, A., 2024. Time lags in environmental governance – 
a critical review. SSRN. https://doi.org/10.2139/ssrn.4689647.

Holzhauer, S., Brown, C., Rounsevell, M., 2019. Modelling dynamic effects of multi-scale 
institutions on land use change. Reg. Environ. Change. 19, 733–746. https://doi.org/ 
10.1007/s10113-018-1424-5.

Howlett, M., Capano, G., Ramesh, M., 2018. Designing for robustness: surprise, agility 
and improvisation in policy design. Policy Soc. 37, 405–421. https://doi.org/ 
10.1080/14494035.2018.1504488.

Hu, T.X., Zhang, X.S., Bohrer, G., Liu, Y.L., Zhou, Y.Y., Martin, J., Li, Y., Zhao, K.G., 2023. 
Crop yield prediction via explainable AI and interpretable machine learning: dangers 
of black box models for evaluating climate change impacts on crop yield. Agric. For. 
Meteorol. 336, 109458. https://doi.org/10.1016/j.agrformet.2023.109458.

Huang, S.-L., Lee, Y.-C., Chiang, L.-Y., 2022. Assessing the synergies and trade-offs of 
development projects in response to climate change in an urban region. J. Environ. 
Manage. 319, 115731. https://doi.org/10.1016/j.jenvman.2022.115731.

Jakoby, O., Grimm, V., Frank, K., 2014. Pattern-oriented parameterization of general 
models for ecological application: towards realistic evaluations of management 
approaches. Ecol. Modell. 275, 78–88. https://doi.org/10.1016/j. 
ecolmodel.2013.12.009.

Kahneman, D., 2011. Thinking, Fast and slow: Farrar. Farrar. Straus and Giroux.
Kasprzyk, J.R., Nataraj, S., Reed, P.M., Lempert, R.J., 2013. Many objective robust 

decision making for complex environmental systems undergoing change. Environ. 
Modell. Softw. 42, 55–71. https://doi.org/10.1016/j.envsoft.2012.12.007.

Y. Zeng et al.                                                                                                                                                                                                                                    Ecological Modelling 501 (2025) 111032 

21 

https://doi.org/10.1016/j.ecolmodel.2020.109312
https://doi.org/10.1016/j.ecolmodel.2020.109312
https://doi.org/10.1080/01402382.2014.936707
https://doi.org/10.1080/01402382.2014.936707
https://doi.org/10.1016/j.landusepol.2023.106752
https://doi.org/10.1080/01621459.1976.10480949
https://doi.org/10.1080/01621459.1976.10480949
https://doi.org/10.1016/j.jenvman.2023.119882
https://doi.org/10.1016/j.jenvman.2023.119882
https://doi.org/10.1016/j.jenvman.2023.117937
https://doi.org/10.1038/s41558-019-0400-5
https://doi.org/10.5194/esd-10-809-2019
http://refhub.elsevier.com/S0304-3800(25)00018-3/sbref0015
http://refhub.elsevier.com/S0304-3800(25)00018-3/sbref0015
https://doi.org/10.1016/j.progress.2018.07.002
https://doi.org/10.1016/j.progress.2018.07.002
https://doi.org/10.1080/00029890.1911.11997596
http://refhub.elsevier.com/S0304-3800(25)00018-3/sbref0018
http://refhub.elsevier.com/S0304-3800(25)00018-3/sbref0018
https://doi.org/10.1016/S0020-0255(99)00127-9
https://doi.org/10.1016/S0020-0255(99)00127-9
http://refhub.elsevier.com/S0304-3800(25)00018-3/sbref0020
http://refhub.elsevier.com/S0304-3800(25)00018-3/sbref0020
http://refhub.elsevier.com/S0304-3800(25)00018-3/sbref0021
http://refhub.elsevier.com/S0304-3800(25)00018-3/sbref0021
http://refhub.elsevier.com/S0304-3800(25)00018-3/sbref0021
https://doi.org/10.1080/18756891.2013.818190
https://doi.org/10.1068/c053
https://climate-adapt.eea.europa.eu/en/eu-adaptation-policy/strategy
https://climate-adapt.eea.europa.eu/en/eu-adaptation-policy/strategy
https://www.cbd.int/sp/targets
https://www.cbd.int/sp/targets
https://doi.org/10.2307/2082975
https://doi.org/10.1007/s11625-020-00834-6
https://doi.org/10.1007/s11625-020-00834-6
https://www.econstor.eu/handle/10419/232543
https://www.econstor.eu/handle/10419/232543
https://doi.org/10.5772/2662
http://refhub.elsevier.com/S0304-3800(25)00018-3/sbref0030
http://refhub.elsevier.com/S0304-3800(25)00018-3/sbref0030
https://doi.org/10.1073/pnas.2215674121
https://doi.org/10.1111/j.1466-822X.2004.00131.x
https://doi.org/10.1111/j.1466-822X.2004.00131.x
https://doi.org/10.1111/j.1467-6486.1983.tb00197.x
https://agriculture.ec.europa.eu/farming/organic-farming/organic-action-plan_en
https://agriculture.ec.europa.eu/farming/organic-farming/organic-action-plan_en
https://www.consilium.europa.eu/en/policies/cap-reform/
https://www.consilium.europa.eu/en/policies/cap-reform/
https://www.consilium.europa.eu/en/policies/climate-change/#2030
https://www.consilium.europa.eu/en/policies/climate-change/#2030
https://www.consilium.europa.eu/en/policies/cap-introduction/cap-future-2020-common-agricultural-policy-2023-2027/
https://www.consilium.europa.eu/en/policies/cap-introduction/cap-future-2020-common-agricultural-policy-2023-2027/
https://www.consilium.europa.eu/en/policies/cap-introduction/cap-future-2020-common-agricultural-policy-2023-2027/
https://www.eca.europa.eu/lists/ecadocuments/sr17_21/sr_greening_en.pdf
https://www.eca.europa.eu/lists/ecadocuments/sr17_21/sr_greening_en.pdf
https://www.esdn.eu/fileadmin/ESDN_Reports/ESDN_Report_2_2020.pdf
https://www.esdn.eu/fileadmin/ESDN_Reports/ESDN_Report_2_2020.pdf
http://refhub.elsevier.com/S0304-3800(25)00018-3/sbref0041
http://refhub.elsevier.com/S0304-3800(25)00018-3/sbref0041
https://doi.org/10.1016/j.jenvman.2019.109702
https://doi.org/10.1016/S0377-0427(00)00435-0
https://doi.org/10.1016/j.envsoft.2017.06.039
https://doi.org/10.1016/j.envsoft.2017.06.039
https://doi.org/10.1016/j.landusepol.2020.105237
https://doi.org/10.1016/j.erss.2020.101782
https://doi.org/10.1016/j.erss.2020.101782
https://doi.org/10.3389/fenvs.2023.1159923
https://doi.org/10.3389/fenvs.2023.1159923
https://doi.org/10.1146/annurev-psych-120709-145346
https://doi.org/10.1037/0033-295X.103.4.650
https://doi.org/10.1037/0033-295X.103.4.650
https://doi.org/10.1146/annurev-orgpsych-012420-090506
https://doi.org/10.1146/annurev-orgpsych-012420-090506
https://doi.org/10.1093/acprof:oso/9780199744282.001.0001
https://doi.org/10.1093/acprof:oso/9780199744282.001.0001
https://doi.org/10.1111/j.1541-1338.2009.00437.x
https://doi.org/10.1111/j.1541-1338.2009.00437.x
http://refhub.elsevier.com/S0304-3800(25)00018-3/sbref0053
http://refhub.elsevier.com/S0304-3800(25)00018-3/sbref0053
http://hdl.handle.net/1842/25380
https://doi.org/10.1126/science.1116681
https://doi.org/10.1126/science.1116681
https://doi.org/10.1007/s12116-010-9071-y
https://doi.org/10.1007/s12116-010-9071-y
http://refhub.elsevier.com/S0304-3800(25)00018-3/sbref0057
http://refhub.elsevier.com/S0304-3800(25)00018-3/sbref0057
https://doi.org/10.1016/j.jenvman.2024.120365
https://doi.org/10.1080/14719037.2023.2234917
https://doi.org/10.1080/14719037.2023.2234917
https://doi.org/10.1111/1467-8292.00066
https://doi.org/10.1093/oxfordhb/9780199978427.013.7
https://doi.org/10.1017/S1537592704040472
https://doi.org/10.2139/ssrn.4689647
https://doi.org/10.1007/s10113-018-1424-5
https://doi.org/10.1007/s10113-018-1424-5
https://doi.org/10.1080/14494035.2018.1504488
https://doi.org/10.1080/14494035.2018.1504488
https://doi.org/10.1016/j.agrformet.2023.109458
https://doi.org/10.1016/j.jenvman.2022.115731
https://doi.org/10.1016/j.ecolmodel.2013.12.009
https://doi.org/10.1016/j.ecolmodel.2013.12.009
http://refhub.elsevier.com/S0304-3800(25)00018-3/sbref0069
https://doi.org/10.1016/j.envsoft.2012.12.007


Kaur, R., Singh, A., 2019. Fuzzy logic: an overview of different application areas. Adv. 
Applic. Math. Sci. 18, 677–689.
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