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A B S T R A C T

In intralogistics and manufacturing, autonomous mobile robots (AMRs) are usually electrically powered and
recharged by battery swapping or induction. We investigate AMR route planning in these settings by studying
different variants of the electric vehicle routing problem with due dates (EVRPD). We consider three common
recharging strategies: battery swapping, inductive recharging with full recharges, and inductive recharging with
partial recharges. Moreover, we consider two different objective functions: the standard objective of minimizing
the total distance traveled and the minimization of the total completion times of transport jobs. The latter is
of particular interest in intralogistics, where time aspects are of crucial importance and the earliest possible
completion of jobs often has priority. In this context, recharging decisions also play an essential role. For solving
the EVRPD variants, we propose exact branch-price-and-cut algorithms that rely on ad-hoc labeling algorithms
tailored to the respective variants. We perform an extensive computational study to generate managerial
insights on the AMR route planning problem and to assess the performance of our solution approach. The
experiments are based on newly introduced instances featuring typical characteristics of AMR applications
in intralogistics and manufacturing and on standard benchmark instances from the literature. The detailed
analysis of our results reveals that inductive recharging with partial recharges is competitive with battery
swapping, while using a full-recharges strategy has considerable drawbacks in an AMR setup.
1. Introduction

Advanced hardware and control software currently allows the intro-
duction of autonomous mobile robots (AMRs) for intralogistics tasks,
e.g., in manufacturing sites, warehouses, or transshipment terminals
(Fragapane, de Koster, Sgarbossa, & Strandhagen, 2021). Conventional
autonomous vehicles in intralogistics systems follow fixed tracks using
lines, magnets, or barcodes on the floor or reflectors on the wall to
determine their position (Furmans, Seibold, & Trenkle, 2019). The
new generation of vehicles (typically referred to as AMRs) is free of
infrastructure for localization and navigation (Furmans et al., 2019):
AMRs move freely observing their environment with laser scanners
or 3D cameras which enables them to avoid even dynamic obstacles.
The low infrastructure requirements and high flexibility make AMRs
successful on an industrial scale and, in many applications, outweigh
the higher price per vehicle, which is mainly due to the expensive
sensors.

AMRs are usually electrically powered and two relevant technolo-
gies for recharging exist: battery swapping (BS) and inductive recharging
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(D. Colling).

(IR). In the former, used batteries are swapped with fully recharged
ones. In the latter, the AMRs drive to a station equipped with a recharg-
ing mat, where they are recharged by induction. Battery swapping is
usually faster but requires people or infrastructure for swapping. Induc-
tive recharging is slower but cheaper as it does not require additional
resources. Effective recharging decisions, i.e., when, where (at which
recharging station), and for how long to recharge, are essential when
solving electric vehicle routing problems (EVRP) (Schneider, Stenger,
& Goeke, 2014). This is especially true in route planning for fleets of
electric AMRs where these decisions are crucial for the performance of
the system (Kabir & Suzuki, 2019; McHaney, 1995; Zou, Xu, De Koster,
et al., 2018), because the battery capacity of AMRs is typically limited
and several recharging stops are required throughout the day (Jun, Lee,
& Yih, 2021; Le-Anh & De Koster, 2006). If BS is employed, the recharg-
ing decisions reduce to the questions of when and where to recharge as
the time for swapping batteries is fixed assuming that the vehicle must
not wait. The same is true for IR if a so-called full-recharges strategy
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Fig. 1. Adding job node ‘‘new’’ to the tour results in a postponement of the completion times of stops 3, 4, and 5 in case of PR.
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(FR) is applied, in which vehicles’ batteries are always fully recharged
whenever they visit a recharging station (Desaulniers, Errico, Irnich,
 Schneider, 2016). In this case, the amount of energy to recharge

and, thus, the recharging duration is directly determined by the battery
level upon arrival at the station. In a so-called partial-recharges strategy
(PR), on the other hand, the vehicles are free to recharge any amount
f energy when visiting a station so that the recharging durations are
art of the decision (Desaulniers et al., 2016; Keskin & Çatay, 2016).

Because it strongly simplifies the decision process, FR is often applied in
the battery management of AMR fleets rather than the more flexible PR,
although it can be detrimental for the performance of the system (De

yck, Versteyhe and Shariatmadar, 2020).
In many intralogistics applications timing issues are crucial. Jobs

usually have due dates that must be met and the primary objective is
often to finish jobs as early as possible, i.e., to minimize completion
times of jobs. The latter reduces the risk of disruptions caused by
delays and makes vehicles available for future jobs and recharging.
While the minimization of the sum of completion times is a common
bjective function of production scheduling problems (Pinedo, 2009, p.

130), it has received little attention in the literature on vehicle routing
problems (VRPs) in general and in the EVRP literature in particular.
The only exception we are aware of is the work of Jun et al. (2021)

ho propose a heuristic algorithm for a routing problem considering
echarging decisions for AMR systems with a similar objective function,
amely the minimization of the sum of tardinesses, i.e., the sum of the
elays of all transport requests, also sometimes called the total tardi-
ess. To the best of our knowledge, no exact method has been proposed
onsidering recharging decisions, due dates, and the minimization of
ompletion times or another time-based objective function.

The particular challenge of this problem variant arises from the
interaction between the recharging decisions and the time-related con-
straints and objective. Any time spent for recharging (the detour to
visit a station as well as the actual recharging duration) postpones the
completion times of all jobs following a recharging stop, which gen-
erally favors short and late, i.e., with few succeeding jobs, recharges.
The interaction is particularly pronounced if PR is applied, where also
the recharging duration is part of the decision (see Fig. 1). When
recharging, this results in a direct tradeoff between the battery level
and the time: the longer the recharging duration the higher the battery
level, i.e., the longer the vehicle range, but the later the time, i.e., the
more unfavorable regarding the completion times, and vice versa.

1.1. Contributions

In this paper, we investigate the problem of route planning for
 fleet of electric AMRs in intralogistics under different recharging
trategies. The associated contributions are threefold.

First and to formalize the problem, we introduce a new family of
EVRPs coined the electric vehicle routing problem with due dates min-
mizing completion times (EVRPD-C). By applying the three common
echarging strategies BS, FR, and PR, we consider three different vari-

ants of the problem denoted EVRPD-C(BS), EVRPD-C(FR), and EVRPD-
C(PR), respectively. The novelty here lies in the new completion-time
2 
based objective (CT) which is a main characteristic of the considered
intralogistic AMR route planning problem. Due to the interplay of
objective function and recharging decisions, the EVRPD-C is interesting
not only from a practical but also from a methodological point of view.
For comparison reasons, we also consider the corresponding problem
EVRPD-D for all recharging strategies, which takes the standard VRP
objective of minimizing the total traveled distance (DI) instead of the
completion times.

Second, we propose an effective branch-price-and-cut (BPC) ap-
proach based on state-of-the art techniques for VRPs for solving the
EVRPD-C. The core of the approach are ad-hoc labeling algorithms
tailored to the specific variant (BS, FR, or PR) for solving the column-
generation (CG) subproblems. The main novelty here relates to the
EVRPD-C(PR), for which the pricing subproblem is considerably more
complex compared to the equivalent problem minimizing distances.
We introduce new resource extension functions (REFs) and dominance
rules modeling the tradeoff between battery level and the time, which
translates into costs in the case of minimizing completion times. For the
EVRPD-C(BS) and EVRPD-C(FR), the labeling algorithms are very much
related to their distance-minimizing counterparts that can be adapted
straightforwardly. The same BPC is also used for solving the EVRPD-
D variants employing slightly modified versions (see Section 4.1.1 for
details) of the labeling algorithms of Desaulniers et al. (2016) for
solving the subproblems.

Third, we report an extensive computational study generating man-
gerial and computational insights based on two different sets of bench-

mark instances. The first is derived from the well-known Solomon
instances and is dedicated to planning problems of electrically powered
trucks (Schneider et al., 2014). These instances are mainly included
o assess the computational performance of our algorithm on well-
stablished instances. The second is a newly established benchmark
et derived from a real-world intralogistics application. These instances
eature the typical characteristics of AMRs in intralogistics which differ
onsiderably from road transportation with electric trucks. We provide
ew managerial insights on the intralogistics AMR route planning prob-
em with respect to the different recharging strategies and objective
unctions based on a comprehensive analysis of the problems’ and
olution’s features. All instances and their corresponding solutions are
ublicly accessible on Zenodo (Meyer, Gschwind, Amberg, & Colling,

2024).

1.2. Outline

The remainder of this paper is organized as follows. In Section 2,
we provide an overview of previous research on route planning for
AMRs and briefly discuss exact approaches to VRP variants that are
closely related to the EVRPD-C. Section 3 describes the setting of our in-
tralogistics AMR route planning problem, formally defines the derived
EVRP variants, and presents the extended set-partitioning formulation
used for their solution. The details of our BPC approaches are provided
in Section 4, with a focus on the labeling algorithms. In Section 5,
we introduce the benchmark instances and present the results of our
computational study. Section 6 summarizes the most important insights
about the impact of the objective functions and recharging strategies.
In Section 7, we conclude the paper with a summary and identify areas
for future work.

https://doi.org/10.5281/zenodo.14284157
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2. Related work

The recent surveys (De Ryck, Versteyhe and Debrouwere, 2020;
Fragapane et al., 2021; Le-Anh & De Koster, 2006; Vis, 2006) provide
a good general overview of planning and control problems in the
context of fleets of conventional autonomous vehicles, often referred
o as autonomous guided vehicles or AGVs, and AMRs (note that while
here exists no clear definition or distinction of AGV and AMR, the

term AMR has become more common for freely navigating vehicles).
However, these surveys only briefly touch on battery management. In
contrast, solution approaches for variants of the EVRP were subject
to a large number of publications in the last decade (Erdelić & Carić,
2019; Kucukoglu, Dewil, & Cattrysse, 2021). However in this area, most
f the authors had road transportation with electric trucks or cars in
ind, which has different characteristics than AMRs in an intralogistics

etup (we refer to Section 5 for details on these differences). We,
herefore, focus on reviewing approaches dedicated to route planning
or autonomous vehicles in intralogistics (Section 2.1) that also take

battery management into account or have a time-based objective func-
ion. Furthermore, in Section 2.2, we briefly review previous works on
xact approaches to closely related VRPs. Note that in the intralogistics
ontext, transport tasks typically are of pickup-and-delivery type. In

EVRPs, on the other hand, the tasks to be performed are of single-visit
nature. Therefore, we speak of (transport) jobs in the former case and
customers in the latter.

2.1. AMRs in intralogistics systems

In practice, rule-based approaches are often applied to incorporate
recharging decisions into vehicle routing in the intralogistics context.
There exist a couple of studies investigating the impact of these rules
on the system’s performance (e.g. Ebben, 2001; Kabir & Suzuki, 2018,
2019; McHaney, 1995; Zou et al., 2018). In general, they differen-
tiate between opportunity recharging, automatic recharging, and a
combination of both (e.g. De Ryck, Versteyhe, Debrouwere, 2020; De

yck, Versteyhe, Shariatmadar, 2020; McHaney, 1995). In opportunity
recharging, the vehicles use idle times for recharging. In automatic
echarging, the vehicles drive to a recharging station if the battery
s depleted to a certain threshold and fully recharge the battery or
echarge it to a given threshold. The recharging station is selected by
ules, such as the closest station or the first station on the current route.

The studies show that recharging decisions can have a considerable
impact on the system’s performance. This is especially true if no natural
breaks, such as off-shift times, can be used for recharging and if the
vehicles’ share of idle times does not exceed 50% (Kabir & Suzuki,
2018; Mangiaracina, Perego, Seghezzi, & Tumino, 2019).

To the best of our knowledge, there are only a few more sophisti-
ated optimization approaches to incorporate recharging decisions into
ehicle routing in the intralogistics context. An auction-based approach
or assigning vehicles to recharging stations is proposed in Selmair,

Hauers, and Gustafsson-Ende (2019). The objective of the auction-
mechanism considers the distance, occupation cost, and cost for the
difference of battery levels among the competing vehicles. The auction-
mechanism is applied as part of an opportunity recharging strategy.
Studies using a discrete-event simulation model show that frequent and
fast opportunity recharging is advantageous compared to infrequent but
long recharging because it can increase the number of jobs that can be
performed.

De Ryck, Versteyhe, Shariatmadar (2020) propose a particle swarm
ptimization algorithm to add recharging stations to a predefined
oute of a vehicle. The algorithm determines which recharging station
hould be included at which position in the route and how long the
ehicle should recharge according to a partial (opportunity) recharging
trategy. The objective is to minimize the total traveling time including
he time for recharging. The approach is proposed as a base for decen-

ralized resource management. Computational experiments show that

3 
the total traveling time can be decreased compared to an automatic
recharging strategy.

Jun et al. (2021) addressed effective route planning of a fleet of
electric AMRs under application-specific conditions. They point out that
the battery capacity of AMRs is limited and that the main objective
is to respect the due dates of the transport requests rather than the

inimization of travel cost. The authors propose a mixed integer linear
rogram (MIP) for the pickup and delivery problem with due dates and
artial recharges for minimizing the total tardiness that can solve small
nstances to optimality. For larger instances with up to 50 jobs and ten
MRs, the authors proposed two simple heuristics for a construction
hase and three heuristics for an improvement phase. In contrast to
he MIP, the heuristic approaches only support a full recharge strategy.
heir results show that the total tardiness can be reduced by up to one
uarter if recharging with partial recharges is applied on instances with
 small number of transport requests and AMRs that are initially low
n battery. This effect decreases with increasing instance size but is still
learly present in some cases.

The various studies show that the choice of a suitable recharging
strategy depends on the problem under consideration. If flexibility
n recharging is possible, opportunity recharging seems beneficial to

automatic recharging.

2.2. Exact algorithms for related VRPs

The main characteristics of the EVRPD-C are the inclusion of
echarging decisions and an objective that minimizes completion times.
n the following, we briefly discuss the main exact approaches for

closely related vehicle routing problems.
In Desaulniers et al. (2016), the first exact solution method for

the EVRP with time windows (EVRPTW) is introduced. The authors
propose BPC algorithms for four different variants of the EVRPTW

ith regard to the recharging strategy: single and multiple recharges
llowed per route as well as full and partial recharges. For all variants,
he objective is to minimize total travel costs. The recharging time is
ssumed to be linear. To evaluate the approach, instances are generated
ased on the EVRPTW instances of Schneider et al. (2014) (which are

based on the 100-customer benchmark instances of Solomon (1987) for
the VRPTW). Instances with up to 100 customers and 21 recharging
tations can be solved to optimality. The authors point out that routing
osts and the number of employed vehicles can be reduced when
ultiple and partial recharges are allowed (by 2.6% and by 4.0% on

average compared to full recharges). Then, the number of recharges per
vehicle increases significantly (by 20.7% on average). Duman, Taş, and
Çatay (2022) adopt the approach of Desaulniers et al. (2016) to develop
an exact BPC algorithm and a BPC-based heuristic for the EVRPTW
variants with partial recharges. They are able to provide a few new
best known solutions. Finally, Desaulniers, Gschwind, and Irnich (2020)
propose an acceleration strategy for BPC algorithms on path-based
models, including the four EVRPTW variants considered in Desaulniers
et al. (2016).

Their results show that the acceleration strategy can reduce overall
computation times, and many previously unsolved instances can be
solved to optimality.

In the context of EVRPs, Montoya, Guéret, Mendoza, and Ville-
as (2017) introduced the application of non-linear recharging func-

tions, i.e., piecewise-linear approximations of the real recharging func-
tion. Schulz (2024) proposes a first exact solution approach for an
EVRPTW with a non-linear and concave recharging function (EVRPTW-
NL). In contrast to former works, his piecewise linearization of the
recharging function never underestimates the real battery level. He
develops a branch-and-cut approach that ensures an optimal solution
for the real recharging function. A computational study on generated
instances with 10–100 customers and 2–10 recharging stations shows
that the average number of customers per vehicle mainly determines

whether an instance is difficult to solve. The number of recharging
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stations and the length of the time windows, on the other hand, have
less influence.

Keskin, Laporte, and Çatay (2019) assume that recharging stations
in road transportation networks) have a limited capacity so that ar-
iving vehicles have to wait if the station is occupied. The authors
odel an EVRPTW with a piecewise-linear recharging function and

ime-dependent waiting times at the stations (EVRPTW-NL-WS). They
ormulate the problem as a mixed integer linear program and propose
 matheuristic that combines an Adaptive Large Neighborhood Search
ith the solution of the MILP. To evaluate their approach, the authors
dapt the instances of Schneider et al. (2014). They narrow the time
indows to increase their impact on recharging decisions. Small in-

tances with 5–10 customers can be solved with a general-purpose MIP
olver. These solutions are used to evaluate the performance of the
euristic approach. In general, the results indicate that waiting times
an have an impact on routing decisions.

Wang, Adulyasak, Cordeau, and He (2024) investigate routing a het-
erogeneous fleet with multiple recharging modes and time-
dependent waiting times at recharging stations (WS). Their EVRPTW-
NL-WS is modeled as mixed integer linear programming formulation
and evaluated on modified instances of Hiermann, Puchinger, Ropke,
nd Hartl (2016) and instances of Montoya et al. (2017). For instances
ith up to 320 customers, the problem is solved heuristically with an

terated local search algorithm and a set partitioning model. For small
nstances with 5–15 customers and 4–6 different vehicle types, their
ormulation can be solved with a general-purpose MIP solver. However,
he small instances are used to evaluate the heuristic’s performance and
ot to draw conclusions about the consideration of the various problem

characteristics.
Lam, Desaulniers, and Stuckey (2022) combine the examination

of non-linear recharging functions (NL) and capacitated recharging
stations (CS) in the context of EVRPTWs. Their EVRPTW-NL-CS con-
tains a piecewise-linear recharging function and a scheduling part to

odel recharging around the availability of recharging stations. They
ropose a hybrid BPC algorithm where the scheduling part is solved
ith constraint programming using logic-based Benders decomposition.
he authors evaluate their approach on modified instances of Schneider
t al. (2014) comprising 25–100 customers. The modified instances
ontain fewer recharging possibilities, and the capacities of the recharg-

ing stations are limited to one or two vehicles. Their results indicate
hat the capacity restrictions of the stations are not crucial in most
ases. They also show that an additional recharging capacity at each
tation significantly reduces the capacity restrictions.

Lera-Romero, Bront, and Soulignac (2024) study the effects of time-
dependent travel times and energy consumption in transportation net-
works such as last-mile distribution in large cities and mid-haul logistics
in retail. They propose a formulation for the time-dependent EVRPTW
that includes time-dependent battery consumption, non-linear recharg-
ing times, and time-dependent waiting times at recharging stations
(TD-EVRPTW-NL-WS). The authors develop a BPC framework that
extends and generalizes the work of Desaulniers et al. (2016). For
their experiments, they extend the instances with 25–100 customers
rom Desaulniers et al. (2016) with time-dependent information, non-

linear recharging functions, and time-dependent waiting time func-
tions. They evaluate solutions obtained from a time-independent model
with the time-dependent model and report average time window and
battery capacity violations of 1.4 to 3.6% and 0.5 to 1.1%, respectively.

Gschwind, Irnich, Tilk, and Emde (2019) investigate a variant of
the VRP with time windows minimizing weighted completion times
that arises when planning direct delivery trips in a just-in-time context.
Recharging decisions are not part of the model. The proposed BPC
algorithm consistently solves instances with 25 to 200 delivery trips.
For an overview of related problems minimizing completion times, such
as parallel machine scheduling, we refer to the literature presented
in Gschwind et al. (2019).
 t

4 
Table 1 provides an overview of the most important characteristics
f closely related problems in order to show the differences to the
VRPD-C considered here. For each problem type (Type), we summa-
ize main references to exact solution approaches (Main References),
bjectives and main constraints (Obj. (Main Const.)), battery recharg-
ng strategies and assumptions (Recharging), and characteristics of the
onsidered fleet and optimally solved instance sizes (Fleet and Inst.).

Most EVRPTW variants are evaluated on the instances of Desaulniers
et al. (2016) and Schneider et al. (2014) that are dedicated to road
transportation with electric trucks or cars. This setting is also the
asis for most of the other instance sets. With regard to the choice
f a suitable recharging strategy, it can be summarized that for these

benchmark instances, multiple recharges per route are more beneficial
than single recharges, and PR is more beneficial than FR. A combination
of multiple recharges and PR usually leads to the greatest savings in
terms of routing costs and the number of vehicles used. Our findings
on the impact of recharging strategies for AMR route planning in an
industrial context are presented in Section 6.

3. Problem description and mathematical formulation

In this section, we first present the background and the assump-
ions of the intralogistics AMR route planning problem. We then de-

scribe the EVRPD-C, which formalizes our practical planning problem,
and the considered strategies BS, FR, and PR. Finally, an extended
set-partitioning formulation of the problem is given.

3.1. AMR route planning problem in intralogistics

In intralogistics, AMRs are used, e.g., to supply the assembly stations
of a production line or of a workshop production. Our focus is on
the route planning for a fleet of electric AMRs, including battery
management, given a set of transport jobs to be performed. In the
following, we describe the practical problem setup in more detail.

AMR characteristics. In operative decision making, a usually fixed fleet
f AMRs is available with known characteristics for each vehicle,

such as battery capacity, speed with and without load, or battery
consumption rates for driving and material handling.

• Capacity: AMRs often have a capacity of one unit, as they are able
to transport a single pallet, rack, or small load carrier at a time.

• Range and recharging: Each vehicle has a given battery level at
the beginning and a minimum battery threshold to meet at the
end of its route. The driving range of AMRs is limited so that
several dedicated stops per shift or day are necessary if the AMRs
do not have a large share of idle times. State-of-the-art AMRs are
able to work autonomously with BS or IR. For induction-based
recharging, FR and PR strategies can be applied.

• Positioning: Typically, the AMRs are not based at a common depot
but are spread over the production site. Hence, each vehicle has a
different start and end location for the route planning. Obviously,
the final battery threshold should be sufficient to drive to the next
recharging station.

Transport jobs. In many applications, the material handling part is fully
utomated, and vehicles must not wait in front of a station to take over
r transfer a transport unit. The transport jobs are pickup and delivery
obs, each with individual pickup and delivery locations. Each job has
 due date specifying the latest possible time at which the transport
nit is to be delivered at the delivery location. In some cases, jobs also
ave an availability time for the pickup which we do not consider in
he following.
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Table 1
Overview of the most important characteristics of related problems and main references to exact solution approaches. NL: non-linear recharging,
WS: time-dependent waiting times at recharging stations, CS: capacitated recharging stations, TD: time-dependent, PD: pickup and delivery, D:
due dates, VEH : number of vehicles, DI : distance (or travel time), TR: time for recharging, TV : time window violations, TT : total tardiness, CT :
sum of completion times, TW : time windows, SW : soft time windows, LC: load capacity, BC: battery capacity, SR: single recharge per route,
MR: multiple recharges per route, BS: battery swapping, FR: full-recharges strategy, PR: partial-recharges strategy, HO: homogeneous vehicle
types, HE : heterogeneous vehicle types, SD: single depot, MD: multiple depots, ?: not reported.

Type Main references Obj. (Main Const.) Recharging Fleet and Inst.

VRPTW Gschwind et al. (2019) min VEH, CT No recharging HO, SD
(TW) 25–200 cust.

EVRPTW Desaulniers et al. (2016) min DI SR/MR: FR, PR HO, SD
(TW, LC, BC) (linear) 25–100 cust.

EVRPTW-NL Schulz (2024) min DI, TR MR: PR HO, SD
(TW, BC) (non-linear) 10-100 cust.

EVRPTW-NL-WS Keskin et al. (2019) min VEH, DI, TV MR: PR HO, SD
(SW, LC, BC) (non-linear) 5–10 cust.

Wang et al. (2024) min VEH, DI, TR MR: PR HE, SD
(TW, LC, BC) (non-linear) 5–15 cust.

EVRPTW-NL-CS Lam et al. (2022) min DI MR: FR, PR HO, SD
(TW, LC, BC, CS) (non-linear) 25-? cust.

TD-EVRPTW-NL-WS Lera-Romero et al. (2024) min DI SR/MR: FR, PR HO, SD
(TW, LC, BC) (non-linear) 25–100 cust.

EVRPD-PD Jun et al. (2021) min TT MR: BS, FR, PR HO, SD
(D, LC, BC) (linear) 5–10 jobs

EVRPD-D This work min DI MR: BS, FR, PR HO, MD
(D, LC, BC) (linear) 12–96 cust.

EVRPD-C This work min CT MR: BS, FR, PR HO, MD
(D, LC, BC) (linear) 12–108 cust.
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Objectives. As the traveled distances in intralogistics applications are
omparatively small and idle production resources are very expensive,
he main objective is typically either the minimization of the total
ardiness or the minimization of the sum of completion times. Our focus
s on the latter variant. By finishing jobs early, the risk of delays and
isruptions can be reduced irrespective of the due date.

Further assumptions. Apart from the characteristics introduced so far,
we make the following assumptions:

• The recharging process is modeled in a linear fashion. This is a
common simplification for planning algorithms (e.g., Schneider
et al., 2014). To use non-linear recharging functions, in literature,
often piecewise linear approximations of the recharging functions
are applied (e.g., Montoya et al., 2017). For a recent overview on
approaches with linear and non-linear recharging functions, we
refer to Schulz (2024).

• The capacity of recharging stations in terms of the number of
parallel recharges is not restricted (no waiting). This assumption
typically holds if there is one recharging station with a large num-
ber of parallel recharging mats or battery swapping appliances,
or if recharging stations with a capacity larger than one are well
distributed over the site.

• Vehicles are available during the whole planning period. In prac-
tical applications, this assumption is largely valid, unless vehicles
will be withdrawn for maintenance or inspection work or other
tasks.

• Vehicles only recharge between two jobs, i.e., without any load.
This restriction corresponds to the procedure in practice.

3.2. Electric vehicle routing problem with due dates

According to the description in the previous section, the considered
ntralogistics route planning problem is a variant of an EVRP with
ickup and delivery. However, as AMRs have a unit load capacity

and can only recharge between two transport jobs, the problem can
quivalently be modeled as an EVRP in which pickup and delivery jobs
re represented by visits to a single customer and vehicles are empty
efore/after each of these visits. Recall that we refer to customers in
he general context of EVRPs while we use the term jobs when address-
ng specifically the intralogistics context. For conciseness reasons, we
 c

5 
omit the detailed description of the corresponding pickup and delivery
EVRP and directly present the EVRPD-C in the following. The problem
transformation is described in detail in Appendix A.

The EVRPD-C can be defined on a directed graph 𝐺 = (𝑉 , 𝐴). The
ertex set 𝑉 = 𝑁 ∪𝑅∪𝑂 ∪𝐷 comprises the set of customers 𝑁 , the set
f recharging stations 𝑅, and the sets of origin and destination vertices
and 𝐷, respectively. The arc set is 𝐴 = {(𝑖, 𝑗) ∈ 𝑉 × 𝑉 |𝑖 ≠ 𝑗}.
Let 𝐾 be the set of different vehicle types. A vehicle type 𝑘 ∈ 𝐾

is characterized by origin vertex 𝑜𝑘 ∈ 𝑂, destination vertex 𝑑𝑘 ∈ 𝐷,
load capacity 𝑄𝑘, initial battery level 𝐻 𝑖𝑛𝑖𝑡

𝑘 , battery capacity 𝐻𝑚𝑎𝑥
𝑘 ,

and final battery threshold 𝐻𝑒𝑛𝑑
𝑘 . Two vehicles are of the same type

if they have the same characteristics. The number of vehicles of type
𝑘 is 𝑚𝑘. The set of vertices and arcs relevant for vehicle type 𝑘 are
𝑉𝑘 = 𝑁 ∪ 𝑅 ∪ {𝑜𝑘} ∪ {𝑑𝑘} and 𝐴𝑘 = {(𝑖, 𝑗) ∈ 𝐴|𝑖, 𝑗 ∈ 𝑉𝑘}, respectively.

With each vertex 𝑖 ∈ 𝑉 is associated a latest possible start of
service 𝑙𝑖, corresponding to the due dates for the service at customer
vertices, while we assume 𝑙𝑖 to be not binding for all recharging stations
and origin/destination vertices. Furthermore, a non-negative demand
𝑞𝑖 ≥ 0 is associated with each vertex 𝑖, with 𝑞𝑖 = 0 for 𝑖 ∈ 𝑉 ⧵𝑁 . Recall
that in the AMR route planning context, customer demands and vehicle
apacities are not involved. As we also solve benchmark instances from
he literature that include customer demands and vehicle capacities, we
eep them in the problem and algorithm descriptions.

A travel time 𝑡𝑖𝑗 , a travel distance 𝑐𝑖𝑗 , and a battery consumption
𝑖𝑗 , all of which are assumed to be non-negative and satisfy the triangle
nequality, are associated with each arc (𝑖, 𝑗) ∈ 𝐴. The travel times 𝑡𝑖𝑗
nclude a possible service duration at vertex 𝑖. Note that we assume an
dentical speed profile and battery consumption for all vehicle types.
he generalization of problem description and solution approach to
ehicle-type specific values is straightforward.

As proposed by Desaulniers et al. (2016), all battery related pa-
rameters (𝐻 𝑖𝑛𝑖𝑡

𝑘 , 𝐻𝑚𝑎𝑥
𝑘 , 𝐻𝑒𝑛𝑑

𝑘 , ℎ𝑖𝑗) are given in recharging time units,
.g., ℎ𝑖𝑗 is the time it takes to recharge the amount of energy that is
onsumed for traveling from vertex 𝑖 to 𝑗. Consequently, there is a one-

to-one relation between recharging duration and the battery’s state of
charge in IR, i.e., recharging for 𝛥 units of time increases the battery
level by exactly 𝛥 units. In case of BS, the duration of a recharging stop
s 𝑏. The conversion of energy in recharging time units simplifies the
escription and formulas and avoids numerical rounding errors in the
omputational results.
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The EVRPD-C consists of finding a set of feasible vehicle routes,
at most 𝑚𝑘 for each vehicle type 𝑘 ∈ 𝐾, such that each customer is
isited exactly once and the sum of the starts of service at the customer
odes is minimal (which is equivalent to the minimization of the sum

of completion times). If necessary, a vehicle can visit one or several
(not necessarily different) recharging stations. There is no limit on the
number of visits to recharging stations, neither for an individual vehicle
or recharging station nor in total. Recharging is performed according
to one of the recharging strategies BS, FR, or PR giving rise to three
different variants of the EVRPD-C denoted by EVRPD-C(BS), EVRPD-
C(FR), and EVRPD-C(PR), respectively. With BS, the vehicle battery
is swapped with a fully recharged one at each recharging stop. The
recharging duration equals the constant 𝑏. With FR and PR, vehicles are
recharged by induction, and the amount of energy recharged depends
on the recharging duration. With FR, the vehicles have to be recharge
completely at each recharging stop, while with PR any amount of
energy can be recharged.

A feasible route for vehicle type 𝑘 ∈ 𝐾 is an elementary 𝑜𝑘-𝑑𝑘-
path in 𝐺𝑘 = (𝑉𝑘, 𝐴𝑘) that respects the vehicle capacity 𝑄𝑘 and for

hich a feasible pair of schedule and battery-recharging plan exists.
et an elementary 𝑜𝑘-𝑑𝑘-path (𝑜𝑘 = 𝑖0, 𝑖1,… , 𝑖𝑝 = 𝑑𝑘) for some 𝑝 > 1

be given. A pair of schedule (𝑇0, 𝑇1,… , 𝑇𝑝) and battery-recharging plan
(𝑋0, 𝑋1,… , 𝑋𝑝) is feasible is it follows the rules of the given recharging
strategy and fulfills the following conditions:

(i) recharging is only allowed at recharging stations
(ii) the service time limits 𝑙𝑖 at all visited vertices 𝑖 are met

(iii) the battery charge level is never negative and never above the
battery capacity 𝐻𝑚𝑎𝑥

𝑘
(iv) when arriving at the destination 𝑑𝑘 the battery charge level is

not smaller than the threshold 𝐻𝑒𝑛𝑑
𝑘

We now formalize these conditions for the three considered recharg-
ing strategies. For FR and PR, condition (i) translates to 𝑋𝑗 = 0 for
𝑗 ∈ 𝑉 ⧵𝑅 and 0 ≤ 𝑋𝑗 ≤ 𝐻𝑚𝑎𝑥

𝑘 for 𝑖𝑗 ∈ 𝑅. Condition (ii) requires
𝑇𝑗−1 + 𝑋𝑗−1 + 𝑡𝑖𝑗−1 ,𝑖𝑗 ≤ 𝑇𝑗 and 𝑇𝑗 ≤ 𝑙𝑗 to hold for all 𝑗 = 1,… , 𝑝. The
battery limits of condition (iii) imply 𝐻 𝑖𝑛𝑖𝑡

𝑘 −
∑𝑞

𝑗=1 ℎ𝑖𝑗−1 ,𝑖𝑗 +
∑𝑞−1

𝑗=1 𝑋𝑗 ≥ 0
nd 𝐻 𝑖𝑛𝑖𝑡

𝑘 −
∑𝑞

𝑗=1 ℎ𝑖𝑗−1 ,𝑖𝑗 +
∑𝑞

𝑗=1 𝑋𝑗 ≤ 𝐻𝑚𝑎𝑥
𝑘 for all 𝑞 = 1,… , 𝑝. Finally, the

inal battery threshold of condition (iv) is given by 𝐻 𝑖𝑛𝑖𝑡
𝑘 −

∑𝑝
𝑗=1 ℎ𝑖𝑗−1 ,𝑖𝑗 +

∑𝑝−1
𝑗=1 𝑋𝑗 ≥ 𝐻𝑒𝑛𝑑

𝑘 . For FR, the following additional condition requires
the battery to be fully recharged at all recharging stations: 𝐻 𝑖𝑛𝑖𝑡

𝑘 −
𝑞
𝑗=1 ℎ𝑖𝑗−1 ,𝑖𝑗 +

∑𝑞
𝑗=1 𝑋𝑗 = 𝐻𝑚𝑎𝑥

𝑘 if 𝑖𝑞 ∈ 𝑅.
For strategy BS, only some slight modifications in these formal-

zations are necessary. First, the duration of all stops at recharging
tations now equals the constant 𝑏, independent of the amount of

energy that is restored by the swap. We, therefore, modify the service
time propagation of condition (ii) to become 𝑇𝑗−1 + 𝑏 + 𝑡𝑖𝑗−1 ,𝑖𝑗 ≤ 𝑇𝑗 if
𝑖𝑞 ∈ 𝑅. Second, the same condition as for FR can model the fact that
after each stop at a recharging station, the vehicle is equipped with a
ully recharged battery.

For comparison reasons, we also consider the related problem
EVRPD-D for all three recharging strategies. The only difference be-
tween EVRPD-C and EVRPD-D is that the latter uses the standard VRP
bjective of minimizing the total traveled distances. Feasibility of a
oute is not influenced by the altered objective function.

3.3. Mathematical formulation

Let 𝛺𝑘 denote the set of feasible routes for a vehicle of type 𝑘 ∈ 𝐾.
Depending on the selected objective, each route 𝑝 is associated with
a cost 𝑐𝑝 consisting either of the sum of service start times of the
customers visited on 𝑝 (EVRPD-C) or of the total traveled distance of
route 𝑝 (EVRPD-D). Parameter 𝑎𝑝𝑛 with 𝑛 ∈ 𝑁 is a binary parameter
indicating if customer 𝑛 is visited by route 𝑝. Binary variable 𝜃𝑝 becomes
one if route 𝑝 is part of the solution and 0 otherwise.

Based on the notation above, we can formulate all problem variants
of the EVRPD as follows:
6 
min
∑

𝑘∈𝐾

∑

𝑝∈𝛺𝑘

𝑐𝑝𝜃𝑝, (1a)

s.t.
∑

𝑘∈𝐾

∑

𝑝∈𝛺𝑘

𝑎𝑝𝑛𝜃𝑝 = 1 𝑛 ∈ 𝑁 , (1b)

∑

𝑝∈𝛺𝑘

𝜃𝑝 ≤ 𝑚𝑘 𝑘 ∈ 𝐾 , (1c)

𝜃𝑝 ∈ {0, 1} 𝑘 ∈ 𝐾 , 𝑝 ∈ 𝛺𝑘. (1d)

The objective function (1a) minimizes the total cost while partitioning
onstraints (1b) assure that each customer is visited exactly once. Con-

straints (1c) limit the number of vehicles of each type. Constraints (1d)
define the domain of the decision variable.

4. Branch-price-and-cut algorithms

As the number of feasible routes is typically too large, formula-
ion (1) cannot be solved directly, and we employ a BPC algorithm for

its solution. A BPC algorithm is a branch-and-bound algorithm in which
the lower bounds are computed using CG. Cuts are added dynamically
o strengthen the linear relaxations. CG is an iterative procedure that
lternates between the solution of a restricted master problem (RMP)
nd the solution of one or several pricing problems. Our RMP is the
inear relaxation of model (1) in which the sets of feasible routes 𝛺𝑘

are replaced by proper subsets 𝛺′
𝑘 ⊂ 𝛺𝑘, 𝑘 ∈ 𝐾. The task of the

pricing problems (Section 4.1), one for each vehicle type 𝑘 ∈ 𝐾,
is to dynamically identify routes (=columns) with negative reduced
cost, if any exist, which are then added to the RMP. If no negative
reduced-cost routes exist, the current linear relaxation is solved to
optimality. The corresponding lower bound can be strengthened by
adding valid inequalities (Section 4.2), and branching is required to
guarantee integer solutions (Section 4.3).

4.1. Pricing problems

Let 𝜋𝑛, 𝑛 ∈ 𝑁 and 𝜇𝑘, 𝑘 ∈ 𝐾 be the dual variables corresponding to
constraints (1b) and (1c), respectively, with 𝜋𝑛 ∈ R and 𝜇𝑘 ≤ 0. For all
problem variants of the EVRPD, the reduced cost of a route 𝑝 ∈ 𝛺𝑘 is
given by 𝑐𝑝 = 𝑐𝑝 −

∑

𝑛∈𝑁 𝑎𝑝𝑛𝜋𝑛 − 𝜇𝑘 and the pricing problem for vehicle
type 𝑘 ∈ 𝐾 is given by

min
𝑝∈𝛺𝑘

𝑐𝑝. (2)

Similar to many other VRPs, the pricing problems (2) are variants of
elementary shortest path problems with resource constraints depend-
ing on the considered EVRPD variant. They can be solved by means
of dynamic-programming labeling algorithms (Irnich & Desaulniers,
2005). In a labeling algorithm, partial paths are iteratively extended
looking for a minimum-cost path from a given source to a given sink.

he partial paths are implicitly represented by labels that store the
ccumulated reduced cost and resource consumption along the partial
aths. The labels are propagated along the network arcs by resource
xtension functions (REFs). To avoid the enumeration of all feasible
aths, dominance rules are employed to eliminate labels that cannot
ead to an optimal solution of (2). We refer to Irnich and Desaulniers

(2005) for a more comprehensive description of labeling algorithms.

4.1.1. Labeling algorithms for EVRPD-D variants
For the variants with the objective of minimizing the total distance

of vehicle routes, we define 𝑐𝑘𝑖𝑗 = 𝑐𝑖𝑗 − 1∕2𝜋̃𝑖 − 1∕2𝜋̃𝑗 with 𝜋̃𝑛 = 𝜋𝑛 for
all customers 𝑛 ∈ 𝑁 , 𝜋̃𝑟 = 0 for all recharging stations 𝑟 ∈ 𝑅, and
𝜋̃𝑜𝑘 = 𝜋̃𝑑𝑘 = 𝜇𝑘. With these definitions, the reduced cost 𝑐𝑝 of a route
𝑝 ∈ 𝛺𝑘 is 𝑐𝑝 =

∑

(𝑖,𝑗)∈𝐴(𝑝) 𝑐
𝑘
𝑖𝑗 , where 𝐴(𝑝) denotes the sequence of arcs

traversed by route 𝑝.
Regarding the FR and PR cases, Desaulniers et al. (2016) have de-

rived ad-hoc labeling algorithms for the more general problem variants
with time windows, i.e., with lower and upper limits for the start of
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service. For the sake of completeness, we also present the core compo-
ents of the labeling algorithms for these variants, which are simplified
ersions of those presented in Desaulniers et al. (2016), enabled by the
bsence of lower time window limits in our case. Please note that the
esources we use slightly differ from those in Desaulniers et al. (2016),

but there is a direct relation between them. We feel, however, that
our resources are more intuitive to interpret. Furthermore, we present
details of the labeling algorithm for the BS variant, which results from
 rather straightforward adaptation of the FR case.

EVRPD-D with full recharges. For the EVRPD-D(FR), a partial path 𝑝 of a
vehicle of type 𝑘 ∈ 𝐾 from its origin 𝑜𝑘 to a vertex 𝑖 ∈ 𝑉 is represented
by a label 𝐿𝑖 = (𝑇 𝑐 𝑜𝑠𝑡

𝑖 , 𝑇 𝑙 𝑜𝑎𝑑
𝑖 , 𝑇 𝑡𝑀 𝑖𝑛

𝑖 , 𝑇 𝑟𝑡
𝑖 , (𝑇 𝑢𝑛𝑟𝑒𝑎𝑐 ℎ𝑛

𝑖 )𝑛∈𝑁 ). The components
of the label have the following meaning:

𝑇 𝑐 𝑜𝑠𝑡
𝑖 the reduced cost of path 𝑝;

𝑇 𝑙 𝑜𝑎𝑑
𝑖 the total load delivered along path 𝑝;

𝑇 𝑡𝑀 𝑖𝑛
𝑖 the earliest start of service at vertex 𝑖;
𝑇 𝑟𝑡
𝑖 the cumulated required recharging time since the last

recharge (if any) or since leaving the depot (otherwise). It
is used to assure that the maximum battery capacity is not
exceeded, and, in case of FR, it determines the recharging time
in recharging stations.

𝑇 𝑢𝑛𝑟𝑒𝑎𝑐 ℎ𝑛
𝑖 binary parameters indicating if a customer 𝑛 ∈ 𝑁 is reachable

(𝑇 𝑢𝑛𝑟𝑒𝑎𝑐 ℎ𝑛
𝑖 = 0) or unreachable (𝑇 𝑢𝑛𝑟𝑒𝑎𝑐 ℎ𝑛

𝑖 = 1). A customer 𝑛 is
unreachable if it has already been visited on 𝑝 or if traveling
directly from 𝑖 to 𝑛 violates its latest possible service time 𝑙𝑛
or the vehicle capacity 𝑄𝑘, otherwise it is reachable.

The initial label at the origin 𝑜𝑘 is given by 𝐿𝑜𝑘 = (0, 0, 0, 𝐻𝑚𝑎𝑥
𝑘 −

𝑖𝑛𝑖𝑡
𝑘 , 𝟎). The extension of a label 𝐿𝑖 along an arc (𝑖, 𝑗) ∈ 𝐴𝑘 is feasible

if the following conditions hold:

𝑇 𝑙 𝑜𝑎𝑑
𝑖 + 𝑞𝑗 ≤ 𝑄𝑘, (3a)
𝑡𝑀 𝑖𝑛
𝑖 + 𝑡𝑖𝑗 ≤ 𝑙𝑗 , (3b)

𝑇 𝑟𝑡
𝑖 + ℎ𝑖𝑗 ≤

{

𝐻𝑚𝑎𝑥
𝑘 −𝐻𝑒𝑛𝑑

𝑘 if 𝑗 = 𝑑𝑘,
𝐻𝑚𝑎𝑥

𝑘 otherwise,
(3c)

𝑇
𝑢𝑛𝑟𝑒𝑎𝑐 ℎ𝑗
𝑖 = 0 if 𝑗 ∈ 𝑁 . (3d)

If the extension is feasible, a new label 𝐿𝑗 = (𝑇 𝑐 𝑜𝑠𝑡
𝑗 , 𝑇 𝑙 𝑜𝑎𝑑

𝑗 , 𝑇 𝑡𝑀 𝑖𝑛
𝑗 , 𝑇 𝑟𝑡

𝑗 ,

(𝑇 𝑢𝑛𝑟𝑒𝑎𝑐 ℎ𝑛
𝑗 )𝑛∈𝑁 ) is created according to the following REFs:

𝑇 𝑐 𝑜𝑠𝑡
𝑗 = 𝑇 𝑐 𝑜𝑠𝑡

𝑖 + 𝑐𝑘𝑖𝑗 , (4a)

𝑇 𝑙 𝑜𝑎𝑑
𝑗 = 𝑇 𝑙 𝑜𝑎𝑑

𝑖 + 𝑞𝑗 , (4b)

𝑇 𝑡𝑀 𝑖𝑛
𝑗 =

{

𝑇 𝑡𝑀 𝑖𝑛
𝑖 + 𝑡𝑖𝑗 + 𝑇 𝑟𝑡

𝑖 if 𝑖 ∈ 𝑅,
𝑇 𝑡𝑀 𝑖𝑛
𝑖 + 𝑡𝑖𝑗 else,

(4c)

𝑇 𝑟𝑡
𝑗 =

{

ℎ𝑖𝑗 if 𝑖 ∈ 𝑅,
𝑇 𝑟𝑡
𝑖 + ℎ𝑖𝑗 otherwise,

(4d)

𝑇 𝑢𝑛𝑟𝑒𝑎𝑐 ℎ𝑛
𝑗 =

{

1 if 𝑗 = 𝑛 ∨ 𝑇 𝑙 𝑜𝑎𝑑
𝑗 + 𝑞𝑛 > 𝑄𝑘 ∨ 𝑇 𝑡𝑀 𝑖𝑛

𝑗 + 𝑡𝑗 𝑛 > 𝑙𝑛,
𝑇 𝑢𝑛𝑟𝑒𝑎𝑐 ℎ𝑛
𝑖 otherwise.

(4e)

Since the REFs (4) are non-decreasing (see, e.g., Irnich, 2007)
nd the label components are bounded only from above by (3), the

following dominance rule to eliminate unpromising labels is directly
valid (Irnich & Desaulniers, 2005). Let 𝐿𝑘 = (𝑇 𝑐 𝑜𝑠𝑡

𝑘 , 𝑇 𝑙 𝑜𝑎𝑑
𝑘 , 𝑇 𝑡𝑀 𝑖𝑛

𝑘 , 𝑇 𝑟𝑡
𝑘 ,

(𝑇 𝑢𝑛𝑟𝑒𝑎𝑐 ℎ𝑛
𝑘 )𝑛∈𝑁 ), 𝑘 ∈ {1, 2}, be two labels associated with different paths

ending at the same vertex. Label 𝐿1 dominates label 𝐿2 if

𝑇 𝑐 𝑜𝑠𝑡
1 ≤ 𝑇 𝑐 𝑜𝑠𝑡

2 , (5a)

𝑇 𝑙 𝑜𝑎𝑑
1 ≤ 𝑇 𝑙 𝑜𝑎𝑑

2 , (5b)

𝑇 𝑡𝑀 𝑖𝑛 ≤ 𝑇 𝑡𝑀 𝑖𝑛, (5c)
1 2 r

7 
𝑇 𝑟𝑡
1 ≤ 𝑇 𝑟𝑡

2 , (5d)

𝑇 𝑢𝑛𝑟𝑒𝑎𝑐 ℎ𝑛
1 ≤ 𝑇 𝑢𝑛𝑟𝑒𝑎𝑐 ℎ𝑛

2 𝑛 ∈ 𝑁 . (5e)

Note that in case of zero demands for all customers, the load
component 𝑇 𝑙 𝑜𝑎𝑑

𝑖 together with the associated feasibility condition (3a),
EF (4b), and dominance condition (5b) can be omitted. The same

holds true for all other problem variants considered in the following.

EVRPD-D with battery swapping. The labeling algorithm for the EVRPD-
D(BS) is almost identical to the FR case. In fact, the same label com-
onents, initial label, the feasibility conditions (3), and the dominance

rule (5) of the FR case are also used in the BS case. The only difference
is in the REFs (4), where we need to substitute (4c) by

𝑇 𝑡𝑀 𝑖𝑛
𝑗 =

{

𝑇 𝑡𝑀 𝑖𝑛
𝑖 + 𝑡𝑖𝑗 + 𝑏 if 𝑖 ∈ 𝑅,

𝑇 𝑡𝑀 𝑖𝑛
𝑖 + 𝑡𝑖𝑗 otherwise.

(6)

EVRPD-D with partial recharges. With an PR strategy, the amount to
recharge (=the recharging duration) at a recharging station can be
chosen freely. In general, there is a tradeoff between the battery level
(implying the potential range) and the time: the longer the recharging
uration, the higher the battery level, i.e., the longer the range, but

the later the time, i.e., the more unfavorable regarding the customers’
due dates, and vice versa. Even more, the amount needed to recharge
at a recharging station depends on the route-part after visiting this
recharging station, which is unknown for a partial path in a labeling
algorithm. Therefore, additional resources are needed to express and
propagate the corresponding tradeoff function.

A Label 𝐿𝑖 representing a partial path 𝑝 of a vehicle of type 𝑘 ∈ 𝐾
from its origin 𝑜𝑘 to a vertex 𝑖 ∈ 𝑉 comprises the following resources
𝐿𝑖 = (𝑇 𝑐 𝑜𝑠𝑡

𝑖 , 𝑇 𝑙 𝑜𝑎𝑑
𝑖 , 𝑇 𝑡𝑀 𝑖𝑛

𝑖 , (𝑇 𝑢𝑛𝑟𝑒𝑎𝑐 ℎ𝑛
𝑖 )𝑛∈𝑁 , 𝑇 𝑛𝑅𝑐 ℎ

𝑖 , 𝑇 𝑟𝑒𝑚𝐵 𝑎𝑡
𝑖 , 𝑇 𝑝𝑜𝑡𝑅𝑎𝑛𝑔 𝑒

𝑖 ), where
𝑇 𝑡𝑀 𝑖𝑛
𝑖 has a slightly modified meaning compared to the FR and BS cases.

The modified and additional components are as follows:

𝑇 𝑡𝑀 𝑖𝑛
𝑖 the earliest start of service at vertex 𝑖. If a recharging station

is visited on 𝑝 prior to 𝑖, 𝑇 𝑡𝑀 𝑖𝑛
𝑖 incorporates a minimum

recharge, if necessary, to reach vertex 𝑖 battery feasible. If no
recharging station is visited prior to 𝑖, 𝑇 𝑡𝑀 𝑖𝑛

𝑖 is the standard
earliest start of service.

𝑇 𝑛𝑅𝑐 ℎ
𝑖 the number of recharging stations visited along path 𝑝;

𝑇 𝑟𝑒𝑚𝐵 𝑎𝑡
𝑖 the remaining battery level (from the initial level) at vertex 𝑖;

𝑇 𝑝𝑜𝑡𝑅𝑎𝑛𝑔 𝑒
𝑖 the maximum battery level which can be reached if all the

time available for recharging is used for recharging at the
preceding recharging station, taking into account the maxi-
mum battery level 𝐻𝑚𝑎𝑥

𝑘 and the due dates of all customers
between the recharging station and vertex 𝑖. It corresponds
to the potential range of the vehicle. If no recharging station
is visited on 𝑝 prior to 𝑖, 𝑇 𝑝𝑜𝑡𝑅𝑎𝑛𝑔 𝑒

𝑖 equals the remaining battery
level 𝑇 𝑟𝑒𝑚𝐵 𝑎𝑡

𝑖 . In 𝑇 𝑝𝑜𝑡𝑅𝑎𝑛𝑔 𝑒
𝑖 only the potential recharging time

of the last visited recharging station must be considered:
An increase in recharging time at a prior recharging station
would result in a higher remaining battery level on arrival
at the last visited recharging station. Hence, the potential of
the last visited recharging station would be reduced by the
increase in recharging time at the prior recharging station.

Resources 𝑇 𝑡𝑀 𝑖𝑛
𝑖 , 𝑇 𝑟𝑒𝑚𝐵 𝑎𝑡

𝑖 , and 𝑇 𝑝𝑜𝑡𝑅𝑎𝑛𝑔 𝑒
𝑖 model the described tradeoff

etween battery level and time as depicted in Fig. 2 (left plot). The
tradeoff function represents the possible battery level when reaching
vertex 𝑖 given a specific start of service at vertex 𝑖. 𝑇 𝑡𝑀 𝑖𝑛

𝑖 is the earliest
ime vertex 𝑖 can be reached, the corresponding battery level is 𝑇 𝑟𝑒𝑚𝐵 𝑎𝑡

𝑖 .
t represents the remaining battery level (from the initial level), i.e., if
𝑟𝑒𝑚𝐵 𝑎𝑡
𝑖 > 0 then no recharging is performed up to vertex 𝑖. Otherwise,
.e., if 𝑇 𝑟𝑒𝑚𝐵 𝑎𝑡

𝑖 = 0, then 𝑇 𝑡𝑀 𝑖𝑛
𝑖 includes the minimum duration for
echarging that is necessary to feasibly reach vertex 𝑖 (implying that
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Fig. 2. Tradeoff between the earliest start of service time and the possible battery level.
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a recharging station is visited on 𝑝 prior to 𝑖). If a longer recharging
duration is chosen at the recharging station preceding 𝑖 on 𝑝, the
battery level when reaching 𝑖 increases but so does the start of service.

ote that the tradeoff functions are linear with slope 1 due to the
efinition of the battery related parameters (see Section 3.2). The
aximum possible battery level when reaching vertex 𝑖 is 𝑇 𝑝𝑜𝑡𝑅𝑎𝑛𝑔 𝑒

𝑖 .
t is constrained by either the maximum battery capacity or the due
ate of any customer visited after the recharging station preceding
ertex 𝑖. The corresponding start of service at 𝑖 can be computed as

𝑇 𝑡𝑀 𝑖𝑛
𝑖 + (𝑇 𝑝𝑜𝑡𝑅𝑎𝑛𝑔 𝑒

𝑖 − 𝑇 𝑟𝑒𝑚𝐵 𝑎𝑡
𝑖 ) and the maximum possible recharging

uration at the station preceding 𝑖 is 𝑇 𝑝𝑜𝑡𝑅𝑎𝑛𝑔 𝑒
𝑖 − 𝑇 𝑟𝑒𝑚𝐵 𝑎𝑡

𝑖 . If there is no
echarging station visited on 𝑝 prior to 𝑖, 𝑇 𝑝𝑜𝑡𝑅𝑎𝑛𝑔 𝑒

𝑖 and 𝑇 𝑟𝑒𝑚𝐵 𝑎𝑡
𝑖 coincide

and the tradeoff function diminishes to a single point.
The initial label at the origin 𝑜𝑘 is 𝐿𝑜𝑘 = (0, 0, 0, 𝟎, 0, 𝐻 𝑖𝑛𝑖𝑡

𝑣 , 𝐻 𝑖𝑛𝑖𝑡
𝑣 ).

Extending a label 𝐿𝑖 along an arc (𝑖, 𝑗) ∈ 𝐴𝑘 is feasible if (3a), (3b),
(3d), and

𝑇 𝑝𝑜𝑡𝑅𝑎𝑛𝑔 𝑒
𝑖 ≥

{

ℎ𝑖𝑗 +𝐻𝑒𝑛𝑑
𝑘 if 𝑗 = 𝑑𝑘,

ℎ𝑖𝑗 otherwise,
(7)

hold. In case of feasibility, the label components are extended using
EFs (4a), (4b), (4e), and the following components that model the

propagation of the function for the tradeoff between battery level and
earliest service) time:

𝑇 𝑛𝑅𝑐 ℎ
𝑗 =

{

𝑇 𝑛𝑅𝑐 ℎ
𝑖 + 1 if 𝑗 ∈ 𝑅,

𝑇 𝑛𝑅𝑐 ℎ
𝑖 otherwise,

(8a)

𝑇 𝑡𝑀 𝑖𝑛
𝑗 =

{

𝑇 𝑡𝑀 𝑖𝑛
𝑖 + 𝑡𝑖𝑗 if 𝑇 𝑛𝑅𝑐 ℎ

𝑖 = 0,
𝑇 𝑡𝑀 𝑖𝑛
𝑖 + 𝑡𝑖𝑗 + max{0, ℎ𝑖𝑗 − 𝑇 𝑟𝑒𝑚𝐵 𝑎𝑡

𝑖 } otherwise,
(8b)

𝑇 𝑟𝑒𝑚𝐵 𝑎𝑡
𝑗 =

{

𝑇 𝑟𝑒𝑚𝐵 𝑎𝑡
𝑖 − ℎ𝑖𝑗 if 𝑇 𝑛𝑅𝑐 ℎ

𝑖 = 0,
max{0, 𝑇 𝑟𝑒𝑚𝐵 𝑎𝑡

𝑖 − ℎ𝑖𝑗} otherwise,
(8c)

𝑇 𝑝𝑜𝑡𝑅𝑎𝑛𝑔 𝑒
𝑗 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐻𝑚𝑎𝑥
𝑘 if 𝑗 ∈ 𝑅,

𝑇 𝑟𝑒𝑚𝐵 𝑎𝑡
𝑗 if 𝑗 ∉ 𝑅 ∧ 𝑇 𝑛𝑅𝑐 ℎ

𝑖 = 0,
𝑇 𝑝𝑜𝑡𝑅𝑎𝑛𝑔 𝑒
𝑖 − ℎ𝑖𝑗−

max{0, 𝑇 𝑝𝑜𝑡𝑅𝑎𝑛𝑔 𝑒
𝑖 − 𝑇 𝑟𝑒𝑚𝐵 𝑎𝑡

𝑖
−(𝑙𝑗 − 𝑇 𝑡𝑀 𝑖𝑛

𝑖 − 𝑡𝑖𝑗 )} otherwise.

(8d)

The potential range 𝑇 𝑝𝑜𝑡𝑅𝑎𝑛𝑔 𝑒
𝑗 is set to 𝐻𝑚𝑎𝑥

𝑘 whenever a recharging
tation is visited as we assume no time limits on recharging sta-
ions so that the recharging duration is not restricted. Along the path,
𝑝𝑜𝑡𝑅𝑎𝑛𝑔 𝑒
𝑗 is reduced by the consumption ℎ𝑖𝑗 and possible restrictions on
he recharging time at the preceding recharging station. The restric-
ions can result from the remaining battery level and the due date of
ustomer 𝑗 (see function (8d)).

To eliminate provably non-optimal partial paths, the following dom-
inance rule can be applied. Let 𝐿𝑘 = (𝑇 𝑐 𝑜𝑠𝑡

𝑘 , 𝑇 𝑙 𝑜𝑎𝑑
𝑘 , 𝑇 𝑡𝑀 𝑖𝑛

𝑘 , (𝑇 𝑢𝑛𝑟𝑒𝑎𝑐 ℎ𝑛
𝑘 )𝑛∈𝑁 ,

𝑛𝑅𝑐 ℎ
𝑘 , 𝑇 𝑟𝑒𝑚𝐵 𝑎𝑡

𝑘 , 𝑇 𝑝𝑜𝑡𝑅𝑎𝑛𝑔 𝑒
𝑘 ), 𝑘 ∈ {1, 2}, be two labels associated with

different paths ending at the same vertex. Label 𝐿1 dominates label 𝐿2

if

𝑇 𝑐 𝑜𝑠𝑡 ≤ 𝑇 𝑐 𝑜𝑠𝑡, (9a)
1 2

8 
𝑇 𝑙 𝑜𝑎𝑑
1 ≤ 𝑇 𝑙 𝑜𝑎𝑑

2 , (9b)

𝑇 𝑡𝑀 𝑖𝑛
1 ≤ 𝑇 𝑡𝑀 𝑖𝑛

2 , (9c)

𝑇 𝑝𝑜𝑡𝑅𝑎𝑛𝑔 𝑒
1 ≥ 𝑇 𝑝𝑜𝑡𝑅𝑎𝑛𝑔 𝑒

2 , (9d)

𝑇 𝑟𝑒𝑚𝐵 𝑎𝑡
1 + 𝑇 𝑡𝑀 𝑖𝑛

2 − 𝑇 𝑡𝑀 𝑖𝑛
1 ≥ 𝑇 𝑟𝑒𝑚𝐵 𝑎𝑡

2 , (9e)

𝑇 𝑢𝑛𝑟𝑒𝑎𝑐 ℎ𝑛
1 ≤ 𝑇 𝑢𝑛𝑟𝑒𝑎𝑐 ℎ𝑛

2 𝑛 ∈ 𝑁 . (9f)

Conditions (9a), (9b), and (9f) are straightforward due to
non-decreasing REFs and resources being bounded only from above,
analog to the FR case. Conditions (9c)–(9e) model the dominance of
𝐿1
𝑖 ’s tradeoff function over 𝐿2

𝑖 ’s. More precisely, they ensure that for
each relevant start of service 𝑇 ∈ [𝑇 𝑡𝑀 𝑖𝑛

2 , 𝑇 𝑡𝑀 𝑖𝑛
2 + (𝑇 𝑝𝑜𝑡𝑅𝑎𝑛𝑔 𝑒

2 −𝑇 𝑟𝑒𝑚𝐵 𝑎𝑡
2 )] and

corresponding battery level of 𝐿2
𝑖 , 𝐿

1
𝑖 can achieve the same or a higher

attery level at the same or an earlier start of service. An illustrative
example is given in Fig. 2 (right plot). It depicts the tradeoff functions
𝐿𝑙 , 𝑙 = 1,… , 5 of five labels. Function 𝐿1 dominates function 𝐿5, but
does not dominate functions 𝐿2, 𝐿3, and 𝐿4 because condition (9c) is
violated in the case of 𝐿2, condition (9d) in the case of 𝐿3, and (9e) in
the case of 𝐿4.

4.1.2. Labeling algorithms for EVRPD-C variants
In this section, we detail the labeling algorithms for the variants

ith the objective of minimizing completion times and the three con-
idered recharging strategies. For the EVRPD-C, we define 𝑐𝑘𝑖𝑗 = −1∕2𝜋̃𝑖−
∕2𝜋̃𝑗 with the same definitions for 𝜋̃𝑛, 𝜋̃𝑟, 𝜋̃𝑜𝑘 , and 𝜋̃𝑑𝑘 as in Section 4.1.1.
Note the missing routing distance term 𝑐𝑖𝑗 in the definition of 𝑐𝑘𝑖𝑗
compared to the EVRPD-D case. With these definitions, the reduced
cost 𝑐𝑝 of a route 𝑝 ∈ 𝛺𝑘 is 𝑐𝑝 =

∑

𝑛∈𝑁(𝑝) 𝑇𝑛 +
∑

(𝑖,𝑗)∈𝐴(𝑝) 𝑐
𝑘
𝑖𝑗 , where 𝑁(𝑝)

enotes the customers visited on route 𝑝 and 𝑇𝑛 denotes the earliest
ossible start of service at a customer 𝑛 ∈ 𝑁(𝑝).

The labeling algorithms for EVRPD-C and the different recharging
trategies are all related to those for the corresponding EVRPD-D
ariant. While in the FR and BS cases only the REF for the reduced-cost
esource has to be redefined, the required modifications in the PR case
re much more involved.

EVRPD-C with full recharges. For the EVRPD-C(FR), all components of
the labeling algorithm, i.e., label definition and resources, initial label,
feasibility conditions
(3), REFs (4) and dominance rule (5), are identical to the one for the
EVRPD-D, except for the REF (4a) of the reduced-cost resource which
s substituted by the REF

𝑇 𝑐 𝑜𝑠𝑡
𝑗 =

{

𝑇 𝑐 𝑜𝑠𝑡
𝑖 + 𝑇 𝑡𝑀 𝑖𝑛

𝑗 + 𝑐𝑘𝑖𝑗 if 𝑗 ∈ 𝑁 ,
𝑇 𝑐 𝑜𝑠𝑡
𝑖 + 𝑐𝑘𝑖𝑗 otherwise.

(10)

EVRPD-C with battery swapping. Similar to FR, the labeling algorithms
or the BS variants when minimizing routing distances and when min-
mizing the sum of completion times are almost identical. Again, we
ust need to substitute the reduced-cost REF (4a) by (10) in the latter.
All other components remain.
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EVRPD-C with partial recharges. We now describe the labeling algorithm
or the EVRPD-C(PR). From an algorithmic point of view, this is clearly
he most challenging variant considered. As with PR in the distance-
inimizing variant, the amount to recharge at a recharging station has

o be decided. Again, this can only be done a posteriori because it
epends on the part of the route that succeeds the visit to the recharging
tation which is unknown for all labels not ending at the destination. In
ddition to the tradeoff between battery level and time, there is another

tradeoff between the battery level and the cost when minimizing the
um of completion times: When recharging longer, all customers that
re visited after the respective recharging station are serviced later,
ence their service start time (and completion time) increases. Dealing
ith this additional tradeoff requires an additional resource compared

o the distance-minimization variant. This resource is needed to model
nd propagate the new tradeoff function. Moreover, the definition of
he reduced-cost resource, the reduced-cost REF, and the dominance
ule have to be adapted to account for the more complex situation.

A label 𝐿𝑖 involves the following resources 𝐿𝑖 = (𝑇 𝑐 𝑜𝑠𝑡
𝑖 , 𝑇 𝑙 𝑜𝑎𝑑

𝑖 ,
𝑡𝑀 𝑖𝑛
𝑖 , (𝑇 𝑢𝑛𝑟𝑒𝑎𝑐 ℎ𝑛

𝑖 )𝑛∈𝑁 , 𝑇 𝑛𝑅𝑐 ℎ
𝑖 , 𝑇 𝑟𝑒𝑚𝐵 𝑎𝑡

𝑖 , 𝑇 𝑝𝑜𝑡𝑅𝑎𝑛𝑔 𝑒
𝑖 , 𝑇 𝑛𝐶 𝑢𝑠𝑡

𝑖 ). Compared to the
distance-minimization variant with PR, the additional resource 𝑇 𝑛𝐶 𝑢𝑠𝑡

𝑖
is used, and the definition of the reduced-cost resource 𝑇 𝑐 𝑜𝑠𝑡

𝑖 is slightly
changed. Their meaning is as follows:

𝑇 𝑐 𝑜𝑠𝑡
𝑖 the minimum reduced cost of path 𝑝. If a recharging station is

visited on 𝑝 prior to 𝑖, 𝑇 𝑐 𝑜𝑠𝑡
𝑖 incorporates a minimum recharge,

if necessary, to reach vertex 𝑖 battery feasible. 𝑇 𝑐 𝑜𝑠𝑡
𝑖 corresponds

to the reduced cost of 𝑝 when the start of service at vertex 𝑖 is
𝑇 𝑡𝑀 𝑖𝑛
𝑖 and the battery level reaching vertex 𝑖 is 𝑇 𝑟𝑒𝑚𝐵 𝑎𝑡

𝑖 .
𝑇 𝑛𝐶 𝑢𝑠𝑡
𝑖 the number of customers visited on 𝑝 between the last recharg-

ing station and vertex 𝑖 (inclusive).

As in the distance-minimization case, the tradeoff between battery
evel and time is modeled with resources 𝑇 𝑡𝑀 𝑖𝑛

𝑖 , 𝑇 𝑟𝑒𝑚𝐵 𝑎𝑡
𝑖 , and 𝑇 𝑝𝑜𝑡𝑅𝑎𝑛𝑔 𝑒

𝑖
see Section 4.1.1). The tradeoff between battery level and reduced
ost is modeled using resources 𝑇 𝑐 𝑜𝑠𝑡

𝑖 , 𝑇 𝑟𝑒𝑚𝐵 𝑎𝑡
𝑖 , 𝑇 𝑝𝑜𝑡𝑅𝑎𝑛𝑔 𝑒

𝑖 , and 𝑇 𝑛𝐶 𝑢𝑠𝑡
𝑖 . It

s illustrated in Fig. 3 (left plot). Note first that instead of the battery
level, we could also use the time on the 𝑥-axis describing the tradeoff
(recall that there is a one-to-one relation between the battery level
and the time as given by the first tradeoff function). As by definition
of the resources, the minimum reduced cost 𝑇 𝑐 𝑜𝑠𝑡

𝑖 is obtained with
the minimum battery level 𝑇 𝑟𝑒𝑚𝐵 𝑎𝑡

𝑖 or equivalently the earliest start of
service 𝑇 𝑡𝑀 𝑖𝑛

𝑖 . To realize a higher battery level, the recharging duration
at the preceding recharging station has to be increased. This implies
that the visits at all customers after the recharging station are delayed
by exactly the same amount of time. Hence, their service start times
and the reduced-cost increase correspondingly. The slope of the tradeoff
function is therefore equal to the number 𝑇 𝑛𝐶 𝑢𝑠𝑡

𝑖 of customers between
the last recharging station and vertex 𝑖 (inclusive).

The components of the initial label 𝐿𝑜𝑘 at the origin 𝑜𝑘 are initialized
o the same values as in the distance-minimization variant, and the

new resource 𝑇 𝑛𝐶 𝑢𝑠𝑡
𝑖 is initialized to zero. The feasibility conditions for

label extensions and the REFs also remain, with the exception of the
reduced-cost REF. Its updated version and the REF for 𝑇 𝑛𝐶 𝑢𝑠𝑡

𝑖 are given
by:

𝑇 𝑐 𝑜𝑠𝑡
𝑗 =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑇 𝑐 𝑜𝑠𝑡
𝑖 + 𝑇 𝑡𝑀 𝑖𝑛

𝑗 − 𝑐𝑘𝑖𝑗 if 𝑇 𝑛𝑅𝑐 ℎ
𝑖 = 0 ∧ 𝑗 ∈ 𝑁 ,

𝑇 𝑐 𝑜𝑠𝑡
𝑖 − 𝑐𝑘𝑖𝑗 if 𝑇 𝑛𝑅𝑐 ℎ

𝑖 = 0 ∧ 𝑗 ∉ 𝑁 ,
𝑇 𝑐 𝑜𝑠𝑡
𝑖 + 𝑇 𝑡𝑀 𝑖𝑛

𝑗 +
(𝑇 𝑛𝐶 𝑢𝑠𝑡

𝑗 − 1)
⋅max{0, ℎ𝑖𝑗 − 𝑇 𝑟𝑒𝑚𝐵 𝑎𝑡

𝑖 } − 𝑐𝑘𝑖𝑗 if 𝑇 𝑛𝑅𝑐 ℎ
𝑖 > 0 ∧ 𝑗 ∈ 𝑁 ,

𝑇 𝑐 𝑜𝑠𝑡
𝑖 + 𝑇 𝑛𝐶 𝑢𝑠𝑡

𝑗

⋅max{0, ℎ𝑖𝑗 − 𝑇 𝑟𝑒𝑚𝐵 𝑎𝑡
𝑖 } − 𝑐𝑘𝑖𝑗 if 𝑇 𝑛𝑅𝑐 ℎ

𝑖 > 0 ∧ 𝑗 ∉ 𝑁 ,

(11a)

𝑛𝐶 𝑢𝑠𝑡
𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

0 if 𝑖 ∈ 𝑅 ∧ 𝑗 ∉ 𝑁 ,
1 if 𝑖 ∈ 𝑅 ∧ 𝑗 ∈ 𝑁 ,
𝑇 𝑛𝐶 𝑢𝑠𝑡
𝑖 + 1 if 𝑖 ∉ 𝑅 ∧ 𝑗 ∈ 𝑁 ∧ 𝑇 𝑛𝑅𝑐 ℎ

𝑖 > 0,
𝑛𝐶 𝑢𝑠𝑡

(11b)
⎩

𝑇𝑖 otherwise. p
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Let 𝐿𝑘 = (𝑇 𝑐 𝑜𝑠𝑡
𝑘 , 𝑇 𝑙 𝑜𝑎𝑑

𝑘 , 𝑇 𝑡𝑀 𝑖𝑛
𝑘 , (𝑇 𝑢𝑛𝑟𝑒𝑎𝑐 ℎ𝑛

𝑘 )𝑛∈𝑁 , 𝑇 𝑛𝑅𝑐 ℎ
𝑘 , 𝑇 𝑟𝑒𝑚𝐵 𝑎𝑡

𝑘 , 𝑇 𝑝𝑜𝑡𝑅𝑎𝑛𝑔 𝑒
𝑘 ,

𝑛𝐶 𝑢𝑠𝑡
𝑘 ), 𝑘 ∈ {1, 2}, be two labels associated with different paths ending
t the same vertex. Label 𝐿1 dominates label 𝐿2 if

𝑇 𝑙 𝑜𝑎𝑑
1 ≤ 𝑇 𝑙 𝑜𝑎𝑑

2 , (12a)

𝑇 𝑡𝑀 𝑖𝑛
1 ≤ 𝑇 𝑡𝑀 𝑖𝑛

2 , (12b)

𝑇 𝑝𝑜𝑡𝑅𝑎𝑛𝑔 𝑒
1 ≥ 𝑇 𝑝𝑜𝑡𝑅𝑎𝑛𝑔 𝑒

2 , (12c)

𝑇 𝑟𝑒𝑚𝐵 𝑎𝑡
1 + 𝑇 𝑡𝑀 𝑖𝑛

2 − 𝑇 𝑡𝑀 𝑖𝑛
1 ≥ 𝑇 𝑟𝑒𝑚𝐵 𝑎𝑡

2 , (12d)

𝑇 𝑐 𝑜𝑠𝑡
1 + max{0, 𝑇 𝑟𝑒𝑚𝐵 𝑎𝑡

2 − 𝑇 𝑟𝑒𝑚𝐵 𝑎𝑡
1 } ⋅ 𝑇 𝑛𝐶 𝑢𝑠𝑡

1 ≤ 𝑇 𝑐 𝑜𝑠𝑡
2 , (12e)

𝑐 𝑜𝑠𝑡
1 + max{0, 𝑇 𝑝𝑜𝑡𝑅𝑎𝑛𝑔 𝑒

2 − 𝑇 𝑟𝑒𝑚𝐵 𝑎𝑡
1 } ⋅ 𝑇 𝑛𝐶 𝑢𝑠𝑡

1 ≤ 𝑇 𝑐 𝑜𝑠𝑡
2 + (𝑇 𝑝𝑜𝑡𝑅𝑎𝑛𝑔 𝑒

2 − 𝑇 𝑟𝑒𝑚𝐵 𝑎𝑡
2 )

⋅ 𝑇 𝑛𝐶 𝑢𝑠𝑡
2 , (12f)

𝑇 𝑢𝑛𝑟𝑒𝑎𝑐 ℎ𝑛
1 ≤ 𝑇 𝑢𝑛𝑟𝑒𝑎𝑐 ℎ𝑛

2 𝑛 ∈ 𝑁 . (12g)

Again, conditions (12a) and (12g) are straightforward due to non-
decreasing REFs. Conditions (12b)–(12d) ensure the dominance of 𝐿1

𝑖 ’s
first tradeoff function (battery level vs. time) over 𝐿2

𝑖 ’s analog to the
istance-minimization case. The dominance of 𝐿1

𝑖 ’s second tradeoff
unction (battery level vs. reduced cost) over 𝐿2

𝑖 ’s is guaranteed by
onditions (12c), (12e), and (12f) in a similar fashion. For each poten-

tial battery level 𝐻 ∈ [𝑇 𝑟𝑒𝑚𝐵 𝑎𝑡
2 , 𝑇 𝑝𝑜𝑡𝑅𝑎𝑛𝑔 𝑒

2 ] and associated reduced cost
of 𝐿2

𝑖 , label 𝐿1
𝑖 can realize the same or a higher battery level with

reduced cost that are not larger. The situation is exemplified in Fig. 3
(right plot), which shows the tradeoff functions 𝐿𝑙 , 𝑙 = 1,… , 5 of five
labels. Function 𝐿1 does not dominate functions 𝐿2, 𝐿3, and 𝐿4 because
conditions (12c), (12e), and (12f) are not fulfilled. Function 𝐿1 does
dominate function 𝐿5.

4.1.3. Acceleration techniques
Since the solution of the pricing problem consumes by far the most

omputation time in the BPC, we use additional techniques to speed
p the pricing process. First, we relax the elementary conditions of the
outes and use the well-known 𝑛𝑔-path relaxation (Baldacci, Mingozzi,

& Roberti, 2011) resulting in pseudo-polynomially solvable pricing
problems instead of the strongly NP-hard elementary case. For details
on the general impacts on the BPC algorithm and on the necessary
modifications of the labeling algorithms, we refer to Baldacci et al.
(2011).

Second, partial pricing (Desaulniers, Desrosiers, & Solomon, 2002)
is used to quickly identify negative reduced-cost routes. It is realized
by subsequently performing pricing on a series of arc-reduced networks
specified by a parameter 𝜅 as follows. Given 𝜅, for each vehicle type
𝑘 ∈ 𝐾 and vertex 𝑖 ∈ 𝑁 ∪𝑅, the number of ingoing arcs (𝑖, 𝑗) ∈ 𝐴𝑘 with
𝑖 ≠ 𝑜𝑘 is at least min{𝜅 , 𝑑−𝑖 }, where 𝑑−𝑖 = |{(𝑗 , 𝑖) ∈ 𝐴𝑘}| is the in-degree of
𝑖 in the full network. We always choose the arcs with the best reduced
costs. The number of outgoing arcs is limited in the analog fashion.
In addition, we keep all depot arcs {(𝑖, 𝑗) ∈ 𝐴𝑘 ∶ 𝑖 = 𝑜𝑘 ∨ 𝑗 = 𝑑𝑘}.
In each CG iteration, we execute the labeling algorithm for all vehicle
ypes 𝑘 ∈ 𝐾 and the same value of 𝜅 one after another. We start with
he smallest value of 𝜅 and increase 𝜅 when no route with negative
educed cost is found for any of the vehicle types. As soon as one or
ore negative reduced-cost routes are found by the labeling algorithm

for any combination of vehicle type and 𝜅, they are returned to the
RMP, and pricing is terminated for this iteration. In our experiments,
we use the sizes 𝜅 ∈ {2, 5, 10, |𝑉𝑘|}.

4.2. Cutting

To strengthen the linear relaxations of the RMP, several families of
alid inequalities have been successfully applied in BPC approaches
or VRPs. In our BPC for the EVRPD variants, we only use limited

memory subset-row inequalities. In pretests, we also experimented with
the well-known rounded capacity cuts (Naddef & Rinaldi, 2002) and 2-
ath cuts (Kohl, Desrosiers, Madsen, Solomon, & Soumis, 1999). Both



A. Meyer et al.

B

w

w
V

l
r
S
a
U

b
r
s
b

∑

n
s
a

t
p

European Journal of Operational Research xxx (xxxx) xxx 
Fig. 3. Tradeoff between the battery level and the possible reduced cost.
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families, however, did not prove helpful, so we do not use them in our
PC.

Subset-row inequalities (SRIs) were originally introduced by Jepsen,
Petersen, Spoorendonk, and Pisinger (2008) for the VRP with time

indows. Each SRI is defined on a subset 𝑈 ⊂ 𝑁 of customers. As
commonly done, we restrict ourselves to subsets of cardinality three. In
this case, a subset-row inequality is given by ∑

𝑘∈𝐾
∑

𝑝∈𝛺𝑘
⌊

𝑢𝑝
2 ⌋𝜃𝑝 ≤ 1,

here 𝑢𝑝 denotes the number of times route 𝑝 visits customers in 𝑈 .
iolated SRIs can be separated by straightforward enumeration.

SRIs are non-robust cuts. Each SRI requires an additional binary
resource in the labeling algorithms for solving the pricing problems,
thus making pricing harder. To reduce the negative impact on the pric-
ing problems, Pecin, Pessoa, Poggi and Uchoa (2017) have proposed a
imited memory variant of the SRIs. Their idea is similar to the 𝑛𝑔-route
elaxation: A vertex memory controls at which vertices the state of an
RI resource remains relevant. We use the same separation algorithm
nd vertex memory as described in Pecin, Contardo, Desaulniers and
choa (2017).

4.3. Branching

Let (𝜃̄𝑝)𝑝∈𝛺𝑘 ,𝑘∈𝐾 be a fractional solution of the RMP (1) and denote
y 𝑏̄𝑟𝑝 and 𝑏̄𝑖𝑗 𝑝 the numbers of times a route 𝑝 ∈ 𝛺𝑘, 𝑘 ∈ 𝐾 visits
echarging station 𝑟 ∈ 𝑅 and uses arc (𝑖, 𝑗) ∈ 𝐴, respectively, in this
olution. To ensure integer solutions, we apply the same hierarchical
ranching scheme as in Desaulniers et al. (2016) slightly adapted to

the heterogeneous case.
First, we branch on the number of routes ∑

𝑝∈𝛺𝑘
𝜃̄𝑝 of a vehicle

type 𝑘 ∈ 𝐾. Second, we branch on the total number of recharges
𝑟∈𝑅

∑

𝑝∈𝛺𝑘
𝑏̄𝑟𝑝 of a vehicle type 𝑘 ∈ 𝐾. Third, we branch on the

umber of recharges ∑

𝑝∈𝛺𝑘
𝑏̄𝑟𝑝 of a vehicle type 𝑘 ∈ 𝐾 at a recharging

tation 𝑟 ∈ 𝑅. Finally, we branch on the total flow ∑

𝑘∈𝐾
∑

𝑝∈𝛺𝑘
𝑏̄𝑖𝑗 𝑝 on

n arc (𝑖, 𝑗) ∈ 𝐴.
For all levels, we always select a branching variable for which the

fractional value is closest to 0.5. We then create two branches, one
forcing the branching variable to be larger or equal to the rounded-
up value and the second one forcing it to be smaller or equal to the
rounded-down value. Branching decisions of the first three levels are
imposed by adding a linear inequality to the RMP, while those of
the fourth level are imposed by temporarily removing infeasible arcs
from the pricing problem networks. Moreover, in all cases, all routes
in the RMP that are not compatible with the branching decisions are
emporarily forced to zero. Note that all branching decisions leave the
ricing problems structurally unchanged.

We explore the search tree using a best-bound-first strategy for the
selection of the next branch-and-bound node.

5. Computational study

The aim of our computational study is twofold. First, we analyze
the computational performance of our BPC. Second, we generate man-
agerial insights on the AMR route planning problem with respect to
 w
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the different recharging strategies and compare the different objective
functions. To this end, we consider two different benchmark sets: Our
first benchmark set (Sol) is derived from a standard benchmark from
the literature for road transportation with electric trucks (Schneider
et al., 2014). This set is primarily used to assess the computational
performance of our algorithm on well-established instances. Our second
et (Karis) introduces new instances originating from a real-world
ilot study in which AMRs were used to supply an assembly line for

sports cars. These instances feature typical characteristics of AMRs in
ntralogistics, which differ considerably from road transportation with
lectric trucks. For example, in the former, we often see:

• short driving times due to short distances,
• short recharging durations due to small battery capacities,
• initial battery level might be low (in contrast, trucks are usually

recharged over night),
• a layout with optimized positions for recharging stations on links

of important sink–source relations,
• a rather regular network, usually without differentiation of street

types and related speeds,
• starting/ending locations of vehicles are distributed,
• symmetric transport jobs with exchange of full and empty trol-

leys.
We published all instances and their corresponding solutions on a

Zenodo repository (Meyer et al., 2024).
The BPC algorithm was implemented in C++ and compiled into

4-bit single-thread code with MS Visual Studio 2015. CPLEX 12.9
ith default parameters (except for the time limit and allowing only
 single thread) was used to reoptimize the RMPs. The computations
ere carried out on a standard PC running Windows 10 with an Intel(R)
ore(TM) i7-6900k processor clocked at 3.2 GHz and equipped with
4 GB RAM main memory. The computational time limit was set to
600 s.

5.1. Benchmark instances

Sol instances. The Sol benchmark is based on the EVRPTW instances
introduced in Desaulniers et al. (2016) and Schneider et al. (2014)
that extend the well-known Solomon benchmark instances for the
VRPTW (Solomon, 1987). They reflect a pure distribution or pick-up
use case with electric trucks on a street network. For the problem
variants addressed, we adapt the instances as follows: First, we ignore
the lower time window limits as we only consider due dates and,
herefore, only need the upper time window limits. Second, we set a
easonable time for BS. Third, we add reasonable bounds on the fleet
ize. In the following, we briefly sketch the main characteristics of the
nstances and detail our adaptations.

The original Solomon benchmark comprises instances with different
eographical distribution of the customers (customers clustered across
he area of consideration, randomly distributed customers, a mixture
f both) and different lengths of the scheduling horizon (short horizon
ith narrow time windows, long horizon with wide time windows).

https://doi.org/10.5281/zenodo.14284157
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Table 2
The number of instances solved to optimality in pre-tests.

#Cust BS FR PR

25 156 165 165
50 117 120 126
All 273 285 291

In all instances, an unlimited fleet of homogeneous vehicles is avail-
able at a common depot. The 100-customer Solomon instances were
adapted to the EVRPTW by Schneider et al. (2014). For details on how
the recharging stations are placed and how the battery capacity, the
onsumption rate, the recharging rate, and the time windows are set

in the adapted instances, we refer to Schneider et al. (2014). Please
ote that the battery-related parameters were created for algorithmic
enchmarking at the instance level. They do not reflect the technologi-
al characteristics of electric trucks. For example, the charging rate was

set in relation to customer service times. The homogeneous vehicles all
start with a full battery and are allowed to return to the depot with an
mpty battery. For our study, we use the mid-sized instances introduced

by Desaulniers et al. (2016) containing only the first 25 or 50 customers
f each instance.

Typically, BS is considerably faster than recharging. For our in-
tances, we set the duration 𝑏 for BS to 10% of the maximum battery
apacity 𝐻𝑚𝑎𝑥

𝑘 , i.e., the duration for recharging the battery from 0% to
00% load, to work with a scalable value.

If completion times are minimized, the fleet size needs to be limited.
therwise, a solution in which each customer is serviced as early
s possible by a dedicated vehicle is trivially optimal. To generate
easonable bounds on the fleet size for each instance, we solved the
VRPD-D with the three recharging strategies and an unlimited fleet in
 preprocessing step and imposed the number of resulting vehicles as
he fleet size limit (v0 instances). To vary the number of vehicles, we
lso consider instances with one (v1) or two (v2) additional available
ehicles. If no optimal solution could be found in the preprocessing
hase, the instance was not considered any further. Table 2 shows the

number of resulting instances per recharging strategy and instance size
given by the number of customers (#cust).

To interpret the results of the computational study correctly, it
s important to understand that our fleet limit procedure may result

in a different number of vehicles for the same instance but different
recharging strategies. This design assures that recharging decisions play
an important role in all recharging setups: The number of necessary
vehicles in case of FR is the highest. If this number is taken as fleet size
limit for the other two strategies, preliminary tests showed that most
tours for BS and PR only contained one recharging station, and studies
on the effects of recharging decisions would not be meaningful. As a
esult, we can only compare the solutions for the different objectives

but not for the different recharging strategies. To compare the effects
of different recharging strategies, we designed the Karis instances
introduced next.

Karis instances. This set of instances originates from the KarisPro Audi
Sport pilot study, in which the AMR KarisPro (see Fig. 4) was tested in
a production site of the Audi Sport GmbH (KARIS PRO Consortium,
2016). In this setup, the sports car Audi R8 was produced in a syn-
hronized assembly with 16 cycles and a cycle time of approximately
0 min. KarisPro AMRs took over the sequenced delivery of vehicle-
pecific material trolleys between the picking area and the assembly
ine, i.e., they transported full trolleys from the picking area to the

assembly line and returned empty trolleys. Before, employees took over
the transport of 33 of these trolleys in each cycle. The pilot study was
conducted in 2016 with the research prototypes of the AMR KarisPro.
The AMR is now commercially available (GEBHARDT Intralogistics
Group, 2022).

Commonly in intralogistics, AMRs have no fixed depot. They either
ait at different recharging stations or at positions where pickup jobs
11 
Table 3
Factor variations of Karis instance set.

Factor Variants

Scenario size (per cycle) S: 6 assembly stations, 12 jobs, 4 vehicles
M: 12 assembly stations, 24 jobs, 8 vehicles
L: 18 assembly stations, 36 jobs, 12 vehicles
XL: 24 assembly stations, 48 jobs, 16
vehicles

Number of cycles 1, 2, 3, 4
Cycle time 30 min
Battery capacity 39 min (duration for recharging battery

from 0% to 100% load)
Battery swapping duration 5 min
Recharging speed FAST: 0.25 (20 s for 1 min driving)

SLOW: 0.5 (30 s for 1 min driving)
Recharging state EMPTY: initial and final level 20%

FULL: initial and final level 80%
SHIFT: initial level 80%, final level 20%

Battery capacity variants 25%, 50%, 75%, 100% (of original battery
capacity)

Recharging station One recharging station between picking
area and assembly line with a capacity
corresponding to the number of vehicles

arrive. In our study, the AMRs start and return to different pickup
stations of the picking area. Hence, we have to handle a heterogeneous
leet with different origins and destinations.

To cover a broad context of industrial applications and instance
izes, we varied the setup of the pilot application and the vehicle
haracteristics. Table 3 gives an overview of the factors determining

the instances and the variants we derived.
The scenario size determines the number of assembly stations, the

umber of jobs per station and cycle, and the number of available
ehicles. The jobs either correspond to the delivery of a full trolley or
he pickup of an empty trolley. The scenario size S corresponds to the
ilot study with six assembly stations, twelve jobs, and four vehicles.
e added three more variants comprising up to 48 jobs and up to 16

ehicles referred to as M, L, and XL (see Table 3). We furthermore
aried the number of cycles from one to four, assuming a fixed cycle
ime of 30 min. If we consider the S scenario size and two cycles, four
ehicles have to cover 24 jobs (12 jobs in each cycle) within 60 min
twice the cycle time of 30 min).

The battery-related parameters are set as follows: We assume a
attery capacity 𝐻𝑚𝑎𝑥

𝑘 of 39 min (duration to fully recharge an empty
attery) as a base value. Additional instances are considered by reduc-

ing 𝐻𝑚𝑎𝑥
𝑘 to 25%, 50%, and 75% of the original value of 39 min. For

BS, we assume a battery swapping duration 𝑏 of 5 min. We consider two
echarging speeds: FAST and SLOW. In the former, for one minute of

driving, 20 s of recharging is necessary. In the latter, the corresponding
recharging duration is 30 s. SLOW was valid for the KarisPro research
prototype. However, in the meantime, the recharging technologies have
improved considerably. We can calculate ℎ𝑖𝑗 by multiplying 𝑡𝑖𝑗 with
the respective recharging speed. The recharging state describes the
initial battery level (𝐻 𝑖𝑛𝑖𝑡

𝑘 ) and the final battery threshold (𝐻𝑒𝑛𝑑
𝑘 ) of the

vehicles as percentage of the battery capacity. In the EMPTY (FULL)
instances, the initial battery level of the vehicles is 20% (80%), and
the final battery level must not be below 20% (80%). For SHIFT, the
vehicles start with almost full batteries (80%) and are allowed to finish
almost empty (20%). This scenario assumes that the vehicles can be
recharged, e.g., overnight.

As in the pilot case study, we assume one recharging station located
between the picking area and the assembly line and whose capacity
corresponds to the number of available vehicles. Distances, driving
times, and energy consumption have been derived from the layout and
the vehicle characteristics of the KarisPro research prototype AMR.

In our computational study, we limit the scenario size and number
of cycle combinations to the following: For battery capacity of 100%,
{𝑆 , 𝑀 , 𝐿} × {1, 2, 3, 4} and {𝑋 𝐿} × {1, 2}, for battery capacities of 25%,
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Fig. 4. The KarisPro AMR research prototype delivers a material transport trolley from the picking area to the assembly line.
Table 4
Overview of Karis instance set.

Scenario Cycles #cust #veh #inst by
battery capacity variants

25% 50% 75% 100%

S 1 12 4 6 6 6 6
2 24 4 6 6 6 6
3 36 4 6 6 6 6
4 48 4 6 6 6 6

M 1 24 8 6 6 6 6
2 48 8 6 6 6 6
3 72 8 – – – 6
4 96 8 – – – 6

L 1 36 12 6 6 6 6
2 72 12 6 6 6 6
3 108 12 – – – 6
4 144 12 – – – 6

XL 1 48 16 6 6 6 6
2 96 16 6 6 6 6

50%, and 75%, {𝑆} × {1, 2, 3, 4} and {𝑀 , 𝐿, 𝑋 𝐿} × {1, 2}. All other
factors are treated according to a full factorial design. In total, this
results in 264 instances that we solved for all objective-recharging
strategy combinations. This results in 264 instances that we solved for
all objective-recharging strategy combinations.

Table 4 provides an overview of the Karis instance set. In par-
ticular, it highlights the main information regarding instance size,
i.e., number of jobs transformed to customers (#cust) and number of
vehicles (#veh), of the corresponding transformed EVRPD. A complete
overview of instance characteristics is given in Appendix B.

5.2. Results for the Sol instances

In this section, we briefly discuss the algorithmic performance of our
BPC variants on the Sol benchmark set and focus on the comparison
of the results considering the two different objective variants. Please
remember that the results of different recharging strategies are not
comparable as the number of vehicles for the same instances varies (see
Section 5.1).

5.2.1. Algorithmic performance
Table 5 summarizes the algorithmic performance of our BPC vari-

ants. It provides the number of instances (#inst), the percentage of
instances solved to proven optimality within the time limit (opt [%]),
the total run time (rt [s]), and the run time for solving the root node (rtr
[s]) in seconds for the instances solved to optimality, and the root node
12 
gap (gap [%]) and number of branch-and-bound nodes solved (#nds)
for the instances solved to optimality. Consistently over all recharging
strategies, the BPC is able to solve to optimality slightly more instances
for the DI objective (76%–79%) compared to the CT objective (66%–
69%). This can be attributed to the harder-to-solve pricing problems in
the CT case, which can be seen from the overall much longer compu-
tation times for the root node. This effect is especially pronounced for
PR, where for CT only a much weaker dominance rule than for DI is
applicable in the labeling algorithm. Root node gaps are very small in
general and consistently smaller for the CT objective, leading to smaller
branch-and-bound trees compared to DI.

5.2.2. Comparing objectives
To analyze the impact of the different objective functions, we filter

the results to the 133 instances for which all six variants – two objec-
tives with three recharging strategies – are solved to optimality. Clearly,
DI objective solutions result in shorter total distances but higher total
completion times compared to CT, and vice versa. The percentage
deviations are shown in Table 6. Over all recharging strategies, the
total traveled distance increases on average by around 23% with a
maximum of 60% if objective CT is applied, while the average increase
in completion times when using the DI objective compared to using the
CT objective is as high as 50% to 60% with a maximum of more than
200%.

We can also observe structural differences in the resulting solutions
of the different objective functions and recharging strategies. For the
sake of brevity, we only summarize the main characteristics in the
following. A more detailed analysis is provided in Appendix C.

Used vehicles: CT solutions always schedule all vehicles, as CT in-
centivizes short routes with early completion times and uses
the initial energy level of the whole fleet. In DI solutions, the
extra vehicles of v1 and v2 are not used to avoid the extra
distance from and to the common depot of the vehicles and
create longer routes to increase the probability of good customer
combinations.

Number of recharging stops: CT solutions tend to have slightly more
recharging stops than DI solutions.

Timing of recharging stops: In CT solutions, recharging stops are
scheduled later than in DI solutions. A large share of routes
contains a recharging stop just before returning to the depot.

Duration of recharging: The recharging duration mainly depends on
the recharging strategy. The insights are similar to the Karis
benchmark and are discussed in the following section.
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Table 5
Performance overview of the BPC on the Sol benchmark.

#cust Strategy #inst DI objective CT objective

opt[%] rt[s] rtr[s] gap[%] #nds opt[%] rt[s] 𝑟𝑡𝑟[𝑠] gap[%] #nds

25 BS 156 86 123.4 43.4 0.012 6.8 79 134.1 100.4 0.004 3.3
FR 165 81 183.9 87.2 0.011 5.4 79 161.4 91.0 0.006 11.3
PR 165 80 199.0 13.8 0.013 8.0 84 197.3 159.0 0.004 5.0

50 BS 117 69 809.7 214.9 0.018 26.7 50 659.4 316.8 0.005 8.5
FR 120 70 607.5 227.2 0.018 26.9 56 520.4 224.2 0.009 19.1
PR 126 71 478.1 166.1 0.017 24.3 48 654.3 237.9 0.007 15.0

All BS 273 79 381.9 108.0 0.014 14.3 66 302.4 169.8 0.005 5.0
FR 285 76 347.1 141.2 0.014 13.7 69 282.9 136.1 0.007 13.9
PR 291 76 311.4 75.1 0.014 14.6 68 335.8 182.9 0.005 8.0
Table 6
Differences in total distance and completion time on the Sol benchmark.

DI objective CT objective

BS FR PR BS FR PR

Mean total distance +23.4% +22.6% +24.0%
Min total distance +1.1% +4.4% +2.8%
Max total distance +58.9% +51.7% +59.8%

Mean total completion time +56.1% +66.0% +62.6%
Min total completion time +1.7% +8.9% +3.3%
Max total completion time +235.7% +241.4% +235.6%
Table 7
Performance overview of the BPC on the Karis benchmark.

Objective #inst opt[%] inf[%] found[%] unkn[%] rt[s] rtr[s] gap[%] #nds

DI 792 43.2 20.3 5.4 31.1 254.6 4.1 0.003 126.2
CT 792 54.4 20.3 8.2 17.0 179.8 18.1 0.001 30.8
i

S

5.3. Results for the Karis instances

In this section, we detail our computational results for the Karis
enchmark, focusing on an in-depth comparison of the obtained solu-
ions to generate managerial insights on the AMR route planning prob-
em with respect to the different recharging strategies and objective
unctions.

5.3.1. Algorithmic performance
Table 7 summarizes our results aggregated by objective function.

he additional columns have the following meaning: the percentage
of provably infeasible instances (inf[%]), i.e., instances for which we
could prove that no feasible solution exists, the percentage of instances
for which a feasible solution without proven optimality could be found
(found[%]), and the percentage of instances for which no feasible
solution has been found within the time limit (unkn[%]). Overall, and
in contrast to the Sol instances, we can see that the CT variant seems
to be easier compared to DI: More instances are solved to proven
optimality, and the average run time is smaller. This behavior can
mainly be attributed to the smaller gaps leading to much smaller search
trees in the CT case. The times for solving the root node, on the other
hand, are much larger for CT, indicating that the corresponding pricing
problems are harder to solve compared to those of the DI objective.

For both objectives, our BPC was able to determine feasibility (opt
r found) or infeasibility for the majority of instances (83% for CT,
9% for DI). Fig. 5 shows the percentage of instances with known

status (feasible or infeasible) of the two objectives over the number
of customers. Our BPC reaches a high share of instances with known
status for up to 48 customers per instance, especially in the case of
CT and irrespective of the recharging strategy. However, the numbers
drop considerably below 50% if we include 96 and more customers.
Another factor influencing the hardness of the instances can be read
from Table 8. It provides an overview of solutions for instances with
48 customers resulting from different combinations of the number of
cycles (Cyc) and the scenario sizes (Scenario). Apparently, the instances
become harder when the number of cycles and, hence, the planning
13 
Table 8
Overview of solution status for instances with 48 customers.

Objective Cyc Scenario #inst opt[%] infeas[%] found[%] unkn[%]

DI 1 XL 72 55.6 44.4 0.0 0.0
2 M 72 63.9 18.1 16.7 1.0
4 S 72 2.8 6.9 1.4 89.0

CT 1 XL 72 48.6 44.4 6.9 0.0
2 M 72 62.5 18.1 15.3 4.0
4 S 72 70.8 6.9 5.6 17.0

horizon increases leading to generally longer routes. This effect is not
surprising, but it is much more pronounced for the DI objective. This
can be attributed to the fact that in CT always all vehicles are used to
obtain the shortest possible routes with small completion times, while
DI incentivizes long routes using a low number of vehicles to minimize
distances.

5.3.2. Comparing objectives
For comparing the results of the different objectives, we filtered the

nstances to those for which we found an optimal solution for both
objective variants. In the case of BS, 139 instances are left, in the
case of FR 91, and in the case of PR 134. Table 9 shows the mean,
minimum, and maximum increase of the total distance and the total
completion time if the respective other objective is used. It can be
seen that differences in this AMR scenario are smaller than for the
ol benchmark. The total distance traveled increases by about 10%

to 15% on average (with maximum of around 30%) when using the
CT objective, while the average increase in completion time when
using the DI objective ranges from 33% for FR to around 50% for BS.
Maximum values are consistently above 100% for the latter case.

5.3.3. Comparing recharging strategies
We now perform an in-depth comparison of the recharging strate-

gies by looking at the feasibility of the instances, the recharging behav-
ior, and the solution quality.
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Fig. 5. Percentage of instances with known status over the number of customers.
Table 9
Differences in total distance and completion time on the Karis benchmark.

DI objective CT objective

BS FR PR BS FR PR

Mean total distance +14.0% +11.7% +13.5%
Min total distance +1.8% +0.1% +0.7%
Max total distance +29.6% +28.3% +26.7%

Mean total completion time +52.3% +33.5% +43.0%
Min total completion time +6.7% +3.7% +5.9%
Max total completion time +148.7% +176.7% +183.9%
d
(

S
e
r

Table 10
Overview of solution status by recharging strategy for CT variant for instances with
100% battery capacity.

Strategy #inst Opt Found Infeasible Unknown

BS 84 51 7 0 26
FR 84 25 5 33 21
PR 84 42 6 7 29

Feasibility. Table 10 shows the solution status by recharging strategy
or the considered 84 instances with a battery capacity of 100%. As
he objective does not affect feasibility, we only show the results for
T. If BS is applied, no instance is provably infeasible. If IR is applied,
n the other hand, several instances turn out to be infeasible. With an
R strategy, 33 out of the 84 instances (39%) are infeasible. If an PR
trategy is applied, the number decreases to only seven instances (8%).
his shows that in the case of IR, a larger AMR fleet size compared to
S is necessary to remain feasible. However, the PR strategy is able to
onsiderably reduce this drawback of IR.

We next analyze the impact of the battery on feasibility, also con-
sidering the instances with a battery capacity of 25, 50, and 75% of
he original capacity. In Fig. 6(a), we compare the number of infeasible
nstances out of the 41 instances for which there is no unknown solution
tatus over all considered battery capacities and recharging strategies.
nterestingly, not all recharging strategies benefit from a larger battery
apacity. While for BS and PR the number of infeasible instances
ecreases with a larger battery, for the FR strategy, the number of
nfeasible instances stays at a very high level and even increases
f the battery capacity goes up from 75 to 100%. This somewhat
ounter-intuitive behavior can be easily explained. An increased battery
apacity results in a longer average recharging duration for FR, which
n turn may imply that some deadlines can no longer be met. Fig. 6(b)
14 
highlights that this effect is particularly pronounced if the vehicles start
with an empty battery (EMPTY) and have to recharge relatively early
uring the route. However, even if the vehicles start with a full battery
FULL), the increase in battery capacity from 75 to 100% results in

more infeasible solutions.

Recharging Behavior. We analyze the recharging behavior of the differ-
ent recharging strategies separately for each objective. Also, we filter
the instances to the ones for which optimal solutions are known for all
recharging strategies. In the CT case, this leaves us with 100 instances:
6 for EMPTY, 39 for FULL, and 55 for SHIFT.

Fig. 7(a) depicts the total number of recharges per instance dif-
ferentiated by the recharging state. As expected, recharging plays a
major role in scenarios EMPTY and FULL in which the vehicles start
and may return with almost empty and full batteries, respectively. In
these scenarios, the average number of recharges per route is above
one, irrespective of the recharging strategy, see Fig. 7(b). For scenario
HIFT, where the vehicles start almost full and may return almost
mpty, recharging plays a minor role with an average number of
echarges per route of less than 0.5.

An overview of the total time spent for recharging and the average
recharging duration is provided in Figs. 7(c) and 7(d), respectively.
Fig. 7(e) gives the total recharging duration relative to the total route
duration. Note that for BS, the average recharging time equals the
duration 𝑏 = 300 s for swapping the battery. The total recharging
duration makes the advantage of the BS technology obvious. Over all
three scenarios, PR needs, on average, 2.2 times longer for recharging
while FR even needs 3.7 times longer. This advantage does not only
affect feasibility (see above) but also the total completion times (see
below). The only exception is in scenario SHIFT, where the total
and even the average recharging duration for PR is lower. Here, PR
solutions use the flexibility to recharge more often but even shorter
than 300 s on average. This picture is reconfirmed by Fig. 7(e).
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Fig. 6. Number of infeasible instances over the battery capacity by recharging strategy (a) and by recharging state in case of FR (b) for the 41 instances with known status for
all considered variants.
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The figures also clearly unveil the shortcomings of the FR strategy:
s expected, the average recharging duration lies considerably above

hose of the other two strategies. Even more, also the total recharging
uration is, on average, 1.7 times longer over all recharging states than
or PR. This means that the battery level at the end of the planning

horizon is considerably higher than necessary, especially in the EMPTY
and SHIFT scenarios, in which vehicles are allowed to return almost
empty.

We can also see that the additional flexibility of PR compared to FR
is intensively used in the optimal solutions. This is especially true for
he EMPTY scenario for which the number of recharges is highest, but
he average recharging duration is comparatively short. For reaching
 low total completion time, many but short recharging stops are
cheduled.

For the DI objective, the number of instances used in this analysis,
.e., for which optimal solutions are known for all recharging strategies,
re 3 for EMPTY, 19 for FULL, and 48 for SHIFT. Fig. 8 corresponds to

Fig. 7 for the DI objective. Figs. 8(a) and 8(b) show that both the total
umber of recharges and the average number of recharging stops per
oute are lower than in the CT case. This confirms that DI incentivizes

to avoid recharging stops in order to avoid detours to the recharging
stations. In contrast, the effects considering the sum of recharging
durations, the average recharging duration, and recharging duration
relative to the route duration as depicted in Figs. 8(c), 8(d), and 8(e),
respectively, are very similar to those observed for the CT objective.

In Fig. 9, we analyze the structure of the resulting routes of all
optimal solutions. The graphs provide the following information. On
he 𝑥-axis, we depict the positions of all recharging stops relative to
he number of stops of the corresponding route. On the 𝑦-axis, the
echarging durations of all recharging stops relative to the planning
orizon of the corresponding instance are given. Recall that for BS
 constant battery swap duration 𝑏 is assumed. The differences in
he chart result from different planning horizons and should not be
nterpreted otherwise.

The graphs illustrate that the objective mainly influences the dis-
tribution of the relative positions of the recharging stops. With a CT
objective, clearly, left-skewed distributions are obtained compared to
the considerably more symmetric distributions with DI. The relative
recharging durations, on the other hand, are determined by the recharg-
ing strategy. With both objectives, PR allows considerably shorter
recharging durations than its FR counterpart.

Solution quality. To compare solution quality, we look at the relative
deviations of the resulting total distance and total completion time of
FR and PR compared to BS. Table 11 provides an overview of these
eviations when the CT and DI objectives are applied. To maintain
15 
Table 11
Relative deviations of total distances and total completion times compared to BS
solutions over 100 (70) instances for which an optimal solution was found for all
three recharging strategies and CT (DI) objective.

Objective Strategy #inst Relative deviation DI Relative deviation CT

Mean Min Max Mean Min Max

CT FR 100 −0.3% −8.6% 9.9% 8.4% 0.0% 134.6%
CT PR 100 0.6% −3.0% 11.7% 0.6% −5.2% 17.6%

DI FR 70 1.6% 0.0% 10.5% 1.0% −35.3% 38.8%
DI PR 70 0.8% −0.8% 4.7% −2.7% −35.2% 15.4%

comparability, we filtered the instances to the 100 (70) instances for
which we found an optimal solution applying the CT (DI) objective for
all three recharging strategies.

Table 11 indicates that the recharging strategy only has a rather
small impact on the resulting distances if the DI objective is applied.
or FR, the total distance is, on average, 1.6% higher with a maximum
f 10.5%. For PR, the increase is 0.8% on average, with a maximum of

4.7%. In some cases, PR even enables shorter distances than BS.
The picture is different if we compare the total completion time

applying the CT objective. In this case, FR solutions are, on average,
ore than 8% worse than BS solutions with a maximum of 134%.

n contrast, the CT objective value of the PR strategy is, on average,
nly 0.6% higher than that of the BS strategy with a maximum of
8% and, hence, seems to be almost competitive. The more detailed
nalysis in Fig. 10, which provides the percentage deviation for the
ifferent recharging state scenarios, reveals that the impact of the
echarging strategy on the total completion time is most pronounced
or the EMPTY scenario, in which recharging is most relevant. There,
he total completion time of FR is, on average, more than 50% higher
ompared to BS. When looking at total distances while applying the CT
bjective, the deviations of FR and PR compared to BS are with −0.3%
nd +0.6%, respectively, almost negligible.

6. Impact of recharging strategies

To the best of our knowledge, exact solutions for practical instances
of AMR route planning in an industrial context have been generated for
the first time in this paper. Our results allow the comparison of two dif-
ferent objective functions and, more importantly, different recharging
strategies in a realistic manufacturing scenario. In the following, we
summarize the main insights:

• BS decouples recharging and route execution and can generally
be considered the most time-efficient recharging technology. This
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Fig. 7. Recharging behavior over 100 instances for which an optimal solution was found for the CT objective by recharging strategies.
is confirmed by our study. BS results in solutions with lower
total completion time than IR in almost all of our scenarios.
This comes at the cost of more expensive infrastructure and a
larger number of batteries, which belong to the most expensive
components of AMRs. Furthermore, the time-efficiency advantage
of BS decreases if recharging in known off-peak hours, e.g., after
a shift, is possible.

• An FR strategy, which is often proposed as a simplifying heuristic
if IR is applied, performs poorly in our AMR scenario. A large
number of infeasible instances can, in practice, only be countered
with a larger vehicle fleet. Furthermore, in cases where recharg-
ing plays an important role, e.g., scenario EMPTY, solutions show
16 
a 50% higher average total completion time compared to BS. Even
more and regardless of the results for our specific scenario, the
effect that a larger battery capacity of the vehicles leads to more
infeasibilities is not only counter-intuitive but, in our opinion,
unacceptable.

• Surprisingly, for our AMR scenario, PR proved to be almost
competitive to BS. Its solutions show only a few infeasibilities,
and the average total completion time is, on average, below
4%, even in the EMPTY scenario. The results also highlight that
the additional degree of freedom of deciding on the recharging
duration compared to FR is extensively used. A route structure
with many short recharging stops and a tendency to late recharges
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Fig. 8. Recharging behavior over 100 instances for which an optimal solution was found for the DI objective by recharging strategies.
a

is beneficial. This has to be considered when designing new
heuristics for the problem.

• In general, we can state that the battery recharging strategy
mainly impacts the feasibility and, hence, the fleet size. If a
sufficiently large vehicle fleet is in place, the CT objective is
considerably more sensitive to the recharging strategy than the
DI objective. This means that if time is critical, e.g., in the man-
ufacturing context, PR or BS are advantageous. Our results also
indicate that it depends on the setup whether BS or PR performs
 a

17 
better. Hence, the use of case-specific assessments considering
also the investment cost is necessary.

7. Conclusions and outlook

In this paper, we investigated the problem of AMR route planning in
n intralogistics context. To this end, we introduced several variants of
n electric vehicle routing problem with due dates considering different



A. Meyer et al.

i
(
s

t

European Journal of Operational Research xxx (xxxx) xxx 
Fig. 9. Relative recharging durations and relative positions of recharging stops over all routes of all optimally solved instances by recharging strategy and objective.
recharging strategies and objective functions. For recharging, we stud-
ed battery swapping (BS) and inductive recharging with charging mats
IR). For the latter, we further considered the widely applied recharging
trategy with full recharges (FR) and the considerably more complex

recharging strategy with partial recharges (PR). As objective functions,
he classical minimization of travel distances and the minimization of
18 
the total completion time of all jobs were investigated, where the latter
is of particular interest in the intralogistics context.

We proposed an effective branch-price-and-cut approach (BPC) for
solving all six problem variants. From an algorithmic point of view,
the core contribution of this paper is the development of an ad-hoc
labeling algorithm for solving the pricing problems of the PR variant,
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Fig. 10. Percentage deviations of BS solutions over 100 instances for which an optimal solution was found for the CT objective by recharging strategies.
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minimizing the total completion time. The crucial point here is dealing
with the tradeoffs between battery level and time as well as battery
level and cost (in terms of total completion time of all jobs).

We reported an extensive computational study on instances adapted
from the Solomon standard benchmark set (Sol) and a newly intro-
duced benchmark set from an industrial intralogistics use case (Karis)
to demonstrate the performance of our exact algorithms. In the case of
the Sol dataset, we analyzed 1698 instances with up to 50 customers.
Across all recharging strategies, the BPC approach consistently solved
a slightly higher proportion of instances to optimality under the DI
objective (76%–79%) compared to the CT objective (66%–69%) within
a run time limit of 3600 s. In the case of the Karis dataset, we
evaluated 1584 instances with 12 to 144 customers. We solved 74%
of the instances, proving either optimality or infeasibility for the DI
objective and 63% for the CT objective, also with a run time limit of
3600 s.

Apart from the computational aspects, we extensively analyzed the
impact of the different recharging strategies and objective functions
by comparing solution quality and discussing structures of optimal
olutions. Surprisingly, PR shows very good objective values compared
o BS, while the simplifying FR strategy seems inappropriate for the

addressed context. The results of our study motivate the development
f new heuristics for PR, while the typical solution structures should be
sed in their development.

In future work, broader studies incorporating more instances with
ifferent layouts and positioning of recharging stations or transport

job situations could be considered to evaluate other logistics scenarios:
Aspects such as a capacity larger than one, release dates for transport
jobs, a fleet size varying over time, or dynamically arriving transport
jobs might be relevant. To find a suitable recharging strategy for a
specific application context, the investment cost and maintenance for
the infrastructure need to be incorporated.

Apart from the intralogistics use case, modern AMRs are also at-
tractive for other domains. Delivery robots are currently considered as
one of several concepts to tackle challenges caused by the continuously
ncreasing number of packages in urban areas (Boysen, Fedtke, &

Schwerdfeger, 2021; Mangiaracina et al., 2019). In package delivery,
‘‘companies like Amazon want to make deliveries to customers as
soon as possible’’ (Poikonen, Wang, & Golden, 2017), meaning that
the total completion time as an objective also plays a crucial role in
route planning. However, the characteristics of package delivery differ
from those of the context of intralogistics. Hence, in future work, we

ould like to extend our models to urban logistics and consider related
enchmark instances. In this context, it could also be relevant to take

into account the possibly limited capacities of recharging stations.
19 
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Appendix A. Transformation of EVRP with pickup and delivery to
EVRP

As stated in Section 3.2, the considered AMR route planning prob-
em corresponds to an EVRP with pickup and delivery (EVRP-PD).

Because AMRs have a unit load capacity and can only recharge between
two jobs, the EVRP-PD can be modeled as an EVRP. In this section, we
explain the transformation.

In the EVRP-PD, a transport job consists of transporting some load
from a given pickup location to a given delivery location. If the capacity
of the vehicles is assumed to be one and recharging with loaded
transport units is not allowed, the AMRs immediately have to drive
to the delivery station of a job after they have picked up the load at
the corresponding pickup station without the possibility to visit any
other location in between. Hence, the transport jobs can be treated as
visiting a single customer in an EVRP. To this end, the following input
data needs to be transformed:

• Each customer 𝑛 ∈ 𝑁 represents a transport job. Visiting a cus-
tomer corresponds to performing this transport job, i.e., picking
up the load at the pickup location, transporting the load from
the pickup to the delivery station, and delivering the load at the
delivery location.
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Table 12
Detailed characteristics of Karis instances.
Instance group #inst Num Cust Num Veh Rch. Sp. Battery cap Init battery Final battery

n |𝐾| ℎ𝑖𝑗∕𝑡𝑖𝑗 𝐻𝑚𝑎𝑥 𝐻 𝑖𝑛𝑖𝑡 𝐻𝑓 𝑖𝑛𝑎𝑙
Scenario size

S 96 {12,24,36,48} 4 {0.25,0.5} {9.75,19.5,29.25,39} {0.2,0.8} 𝐻𝑚𝑎𝑥 {0.2,0.8} 𝐻𝑚𝑎𝑥

M 60 {24,48,72,96} 8 {0.25,0.5}
L 60 {36,72,108,144} 12 {0.25,0.5}
XL 48 {48,96} 16 {0.25,0.5}

Number of cycles

1 96 {12,24,36,48} {4,8,12,16} {0.25,0.5} {9.75,19.5,29.25,39} {0.2,0.8} 𝐻𝑚𝑎𝑥 {0.2,0.8} 𝐻𝑚𝑎𝑥

2 96 {24,48,72,96} {4,8,12,16} {0.25,0.5}
3 36 {36,72} {4,8,12,16} {0.25,0.5}
4 36 {48,96,144} {4,8,12,16} {0.25,0.5}

Recharging speed

SLOW 396 {12,24,36,48, {4,8,12,16} 0.25 {9.75,19.5,29.25,39} {9.75,19.5, {9.75,19.5,
72,96,108,144} 29.25,39} 29.25,39}

FAST 396 {12,24,36,48, {4,8,12,16} 0.5
72,96,108,144}
s
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• Consider an arc (𝑖, 𝑗) ∈ 𝐴. If 𝑖 ∈ 𝑁 , then 𝑖 geographically
represents the delivery station of the corresponding job. If 𝑗 ∈
𝑁 , then 𝑗 geographically represents the pickup station of the
corresponding job.

• If 𝑖 ∈ 𝑁 , the parameter 𝑡𝑖𝑗 represents the time for performing the
job corresponding to customer 𝑖 ∈ 𝑁 as well as the time to reach
vertex 𝑗 ∈ 𝐽 . More precisely, 𝑡𝑖𝑗 then comprises the service time
at the pickup location, the travel time from the pickup location
to the delivery location, and the service time at the delivery
location of the transport job corresponding to customer 𝑖 ∈ 𝑁 .
Furthermore, it comprises the travel time from the corresponding
delivery location of 𝑖 to the geographic location represented by 𝑗,
i.e., the pickup location corresponding to 𝑗 if 𝑗 ∈ 𝑁 , the location
of recharging station 𝑗 ∈ 𝑅, or the location of destination depot
𝑗 ∈ 𝐷.

• The interpretation of parameter ℎ𝑖𝑗 with 𝑖 ∈ 𝑁 is analog to
𝑡𝑖𝑗 . It includes the battery consumption for handling the load
at the pickup location, traveling with load from the pickup to
the delivery location, and for handling the load at the pickup
location of the job corresponding to customer 𝑖. Additionally, it
includes the battery consumption for traveling without load from
the delivery location corresponding to 𝑖 to the geographic location
represented by 𝑗.

• Similarly, if 𝑖 ∈ 𝑁 , then parameter 𝑐𝑖𝑗 comprises the travel
distance from pickup to delivery location of the job corresponding
to customer 𝑖 as well as the travel distance from the delivery
location corresponding to 𝑖 to the geographic location represented
by 𝑗.

Appendix B. Detailed characteristics of Karis instances

Table 12 gives an overview of the instance characteristics differen-
iated by the three instance groups Scenario Size, Number of Cycles,
nd Recharging Speed.

Appendix C. Detailed computational results for the Sol instances

In this section, we discuss the structure of the resulting routes,
applying the different objectives and recharging strategies in more
epth. As in Section 5.2.2, we filter the results to the 133 instances for

which we solved all six variants – two objectives with three recharging
strategies – to optimality.

Fig. 11(a) displays the share of available vehicles that are used in
he optimal solutions. CT solutions consistently use always all vehicles
20 
in all recharging strategies, while in DI solutions, the number of used
vehicles corresponds to the number of vehicles determined in the pre-
processing step. This is because the DI objective incentivizes long but
fewer routes, avoiding the extra distances from and to the origin and
destination depot of the vehicles and increasing the probability of good
customer combinations. The CT objective, on the other hand, bene-
fits from scheduling all available vehicles. The positive effect for the
completion times results from shorter routes with earlier completion
times of the contained customer visits, and from the usage of the initial
energy of the whole vehicle fleet.

Fig. 11(b) shows that, on average, the number of recharges in CT
solutions is higher than in DI solutions. Apparently, the DI objective
tries to avoid frequent recharges to reduce detours to the recharging
tations. In contrast, the CT objective accepts more and preferably short
echarging stops to avoid the postponement of customer visits later on
he routes. This difference is most evident for PR where the durations
f the recharging stops can be kept as short as possible.

With the DI objective, the selection of a recharging station strongly
depends on the shortest detour. Furthermore, we can observe a ten-
dency to recharge in the middle of the route which can be explained
as follows. Visiting a recharging station early on the route is only a
good choice if the delays of the arrivals at later stops have no negative
effects on the due dates. Visiting a recharging station late on the route
is only possible if the battery level allows it. The charts in Fig. 12
illustrate that this effect consistently occurs for all recharging strategies.

n the 𝑥-axis, they show the positions of the recharge stops relative to
all stops of a route for all routes of all solutions. For the DI objective,
the distribution is quite symmetric, with a mean of 0.5 and a rather
high variance. Fig. 11(c) shows that less than 20% of the routes contain
a visit to a recharging station just before returning to the destination
depot. On the contrary, in CT solutions, the share of routes for which
he last vertex before the destination depot is a recharging station is
igh for all recharging strategies. For PR, this happens in almost all
outes. Accordingly, in Fig. 12, the distributions of the relative positions
f the recharging stops are strongly skewed to the left for all recharging
trategies.

To analyze the impact of the objective function and the recharging
trategies on the length of the recharging stops, Fig. 12 depicts on
he 𝑦-axis the recharging duration per recharging stop relative to the
lanning horizon of the corresponding instance. Recall that for BS, the
attery swap duration was set to 10% of the battery capacity (𝐻𝑚𝑎𝑥

𝑣 )
nd, hence, the duration of each recharging stop of a given instance is
onstant. The differences in the chart result only from different battery
apacities of the instances and should not be interpreted otherwise.

For FR, the recharging duration depends directly on the current
battery charge level, and hence, a recharging stop relatively early in
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Fig. 11. Recharging behavior over 133 instances for which an optimal solution was found for all six variants.
Fig. 12. Relative recharging duration and relative position of recharge stop over all routes of all instances by recharging strategy (different plots) and objective (color). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
the route results in relatively short recharging durations. Even more,
Fig. 12 shows that also most of the late recharging stops still feature
rather short recharging durations, indicating consistently high battery
charge levels. For the CT objective, however, a considerable share of
the late recharging stops take around 20% of the planning horizon. This
explains the difference in the sums of the recharging durations between
DI and CT depicted in Fig. 11(d).

For PR, Fig. 12 reveals that most recharging stops are rather short,
irrespective of the objective function. This shows that the additional
degree of freedom of this strategy is heavily used, especially with
the CT objective. The strongly left-skewed distribution of the relative
recharging duration in Fig. 12 and the number of recharges per instance
in Fig. 11(b) mean that solutions for the variant with CT and PR com-
prise comparatively many but short recharging stops. This is especially
21 
noteworthy because the use of the whole vehicle fleet leads to higher
initial battery charge levels, and yet more recharge stops are scheduled.
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