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Abstract — Severe accident (SA) codes and their core degradation models have to deal with strongly 
nonlinear and discontinuous phenomena. In the application of uncertainty quantification to SA simulations, 
the combination of such phenomena may lead to a strong increase in the uncertainty propagated through the 
simulation, as well as to the chaotic behavior of the output variables. In this framework, the application of the 
limit surface search method of the RAVEN tool is proposed for a case where cliff-edge effects of SA phenomena 
determine a bifurcation of an output figure of merit. The algorithm is based on a predictive method making use 
of a support vector machine model, and it is applied with the aim of separating those input values that lead to 
different phenomenologies among the uncertainty calculations. The case study is in regard to the uncertainty 
analysis of the ASTEC code simulation of the QUENCH6 experimental test conducted in the framework of the 
International Atomic Energy Agency Coordinated Research Project I31033.
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I. INTRODUCTION

I.A. Generalities

Nowadays, the nuclear safety community extensively 
relies on numerical simulation codes to analyze postulated 
accidents in nuclear power plants (NPPs). Such tools are 
employed as key elements in assessing compliance with 
safety requirements. Among these, severe accident (SA) 
codes have been developed with the capability to integrate 
reactor thermal-hydraulic simulations with core degrada
tion, fission product transport, and other relevant SA phe
nomena. SA codes are being used for the assessment of 
accident management measures aimed at preventing and 

mitigating the consequences of a SA. In addition, extensive 
applications in industrial, regulatory, and research areas can 
be found.[1] Among the most used and mentioned SA codes 
are Accident Source Term Evaluation Code (ASTEC),[2] 

MAAP,[3] and MELCOR.[4]

Because of the growing maturity and interest in such 
codes, the nuclear research community has recently started 
to investigate the uncertainty embedded in them by taking 
advantage of strategies and tools already consolidated for 
thermal-hydraulic analysis. Therefore, the best-estimate plus 
uncertainty approach[5,6] has started to be used in SA code 
analyses.

Among the international research projects applying the 
state-of-the-art of uncertainty quantification (UQ) to SA 
simulations are the MUSA (Management and Uncertainties 
of Severe Accidents) project,[7] and in parallel, the *E-mail: pietro.maccari@enea.it
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International Atomic Energy Agency Coordinated Research 
Project (CRP) I31033, “Advancing the State-of-Practice in 
Uncertainty and Sensitivity Methodologies for SA Analysis 
in Water Cooled Reactors.”[8,9] In this framework, the appli
cation of the probabilistic propagation of input uncertainties 
method has been the most commonly used for numerical 
simulations.[5,10] In this case, some peculiarities of the SA 
codes have been highlighted within many UQ applications, 
and often, critical issues have arisen.

I.B. Output Bifurcations and Cliff-Edge Effects in SA
Simulations

Because of the intrinsic nature of the involved phenom
ena, SA codes and their models have to deal with strongly 
nonlinear and discontinuous phenomena: with the exponen
tial acceleration of Zircaloy oxidation, the noncontinuous 
degradation, failure, and relocation of core components, and 
the explosive pressure increase consequent to a corium-water 
interaction just a few examples of the nonlinear and discon
tinuous phenomena that SA codes have to deal with.

The combination of such phenomena in a sequence 
may lead to a quick increase in the uncertainty propa
gated through the simulation. For this reason, in the 
application of the probabilistic propagation of input 
uncertainties method, a general spread of uncertainty 
among the several calculations is often observed. And 
in addition, a chaotic and discontinuous behavior of the 
output figures of merit (FOMs) may take place.

As an example, in the UQ study carried out in Ref. [11], 
a discontinuous behavior of the output was observed with 
respect to the variation of an uncertain input parameter. In 
Refs. [12–14], bifurcations of the output FOMs and a general 
uncertainty spread in the results were observed. In particular, 
in the UQ application carried out in Ref. [15], a cliff-edge 
effects deriving from the bifurcation of a specific core degra
dation phenomenon was assessed.

I.C. Motivation of Limit Surface Search Application

The probabilistic propagation of input uncertainties 
method is based on the so called Wilks confidence inter
val formula,[16,17] which is a statistical criteria used to 
choose the minimum number of code calculations 
required to have enough confidence in the results.[5,10] 

A key point for the present work was that, as well 
assessed in Ref. [18], to guarantee the statistics of the 
Wilks formula, the assumption should be made that the 
code model does not show chaotic behavior, which can be 
easily attributed to those systems in which a bifurcation 
of the output domain is observed.

In the case of the occurrence of bifurcations in UQ 
applications to a SA sequence, the present paper proposes 
the use of the limit surface (LS) research method as 
a supporting approach to address such a case. In this 
context, this method can be employed to identify the 
input parameter values that lead to different simulated 
phenomena. Consequently, it may be possible to consider 
the Wilks formula as applicable to more restricted input 
domains, i.e., those identified by the determined LS.

II. METHODOLOGY

II.A. Uncertainty and Sensitivity Analysis

II.A.1. Theoretical Basis: Black Box Model and Chaotic
Behavior

A code model of a NPP is a complex system character
ized by input data (e.g., material and geometric data, bound
ary conditions) that is able to calculate an output response in 
terms of output physical parameters. Due to its complexity, 
the code simulation can be seen as a black box represented 
by a nonlinear deterministic operator L tð Þmapping the input 
random vector ~x into an output vector ~y tð Þ,

Considering the input vector ~x as a stochastic vari
able varying according to a probability distribution func
tion (PDF), ~y is also a random variable with an associated 
PDF.[18] In this sense, we call X the set of all possible 
values of ~x, and Y will be its image in the output space 
given by the mapping through L tð Þ.

According to Refs. [18,19], we can speak of the 
chaotic behavior of the system when its output space 
ends up being the union of disjoint sets. Or in other 
words, if in some points of the input set X (bifurcation 
points xbi

�! 2 X ), the gradient assumes different values 
depending on the direction of approach to the point, i.e.,

Therefore, when chaos is present, the input set can be 
divided into subsets as well (X ¼ [n

i¼1Xi) such that the 
mapping operator L tð Þ will be the same and smooth in each 
subset Xi, but it will vary when passing from one subset to 



another. A schematic representation of nonchaotic and chao
tic system behaviors is reported in Fig. 1.

This can also give hints on the detection of chaotic 
behavior in the framework of the code simulations, 
which, according to Ref. [18], takes place when the 
following three conditions are simultaneously satisfied:

1. The output average value considerably changes.

2. The output variance suddenly increases.

3. The output variables tend to separate into dis
joint groups.

II.A.2. Theoretical Basis: Wilks Confidence Interval
Formula

Considering the previous definitions, the scope of 
the Wilks confidence interval formula is to provide 
a statistical criterion to have enough information on 
the output set Y with a random sampling of a limited 
number of calculations. A key point for the present 
work is that, according to Ref. [18], an assumption on 
which the formula is based is that the mapping L tð Þ, 
representing the code, does not show chaotic behavior.

Within this assumption, the simplest case of scalar output 
variable y, with its PDF being g yð Þ can be considered. 
Carrying out N code runs with N random inputs 

x1
!; x2
!; . . . ; xN

�!� �
2 X , a sample of the output variable

y1; y2; . . . ; yNf g is obtained. Let us now consider the two 
random functions Lðy1; y2; . . . ; yNÞ and U y1; y2; . . . ; yNð Þ, 
called, respectively, the lower and upper tolerance limits. 
Hence, attributing to P the meaning of probability, we can 
write

This relation defines the probability β, which we call the 
confidence level, such that the portion of the output distribu
tion g yð Þ included in the tolerance limits L and U is greater 

than the number γ, called the probability content. Therefore, 
having fixed the values of γ and β (in the 0; 1½ � interval), the 
Wilks formula can be used to determine the number of runs 
N, from which we can determine an appropriate tolerance 
interval L;U½ �. Indeed, in its work,[16,17] Wilks proved that 

the probability that ò
U

L
g yð Þdy > γ holds is equal to

defining r and s such that 0 � r � s � N , L ¼ y rð Þ, 
and U ¼ y sð Þ.

From this, the two-sided tolerance interval formula 
can be derived by selecting the tolerance limits 
L ¼ y r ¼ 1ð Þ and U ¼ y s ¼ Nð Þ, ending up with

Often, we are interested only in the upper tolerance 
limits, in this case, by choosing L ¼ y r ¼ 0ð Þ ¼ � 1 and 
U ¼ y s ¼ Nð Þ, the one-sided tolerance limit formula is 
obtained,

In addition, the formulation was also extended to the 
more general case of p output variables, i.e., 
~y ¼ y1; :::; yp

� �
. In this case, for the one-sided tolerance 

limit, we have[18]

II.A.3. Probabilistic Propagation of Input Uncertainties
Method for UQ Analyses

The application of the probabilistic propagation of input 
uncertainties method to perform a UQ analysis makes use of 

Fig. 1. Schematic representations of (left) nonchaotic and (right) chaotic behaviors of a system.



the Wilks confidence interval formula to determine the mini
mum sampling size N.[5,10,20] When applied to code simula
tions, as a first step, the input vector ~x is defined by selecting 
the relevant input uncertain parameters to the simulation. 
Each parameter is characterized by a reference value and 
a PDF. The output parameters of the study, usually called 
FOMs, should be selected as well.

On the base of the case study (e.g., single/multiple 
output, one-/two-sided tolerance limit), the proper Wilks 
formula is used to determine the minimum sampling size 
based on the chosen values of probability content and con
fidence level. Therefore, a Monte Carlo sampling of the 
input parameters is performed to obtain the sets of values 
that will be used as input to the N code calculations. An 
advantage of the present method is that the sampling size is 
not influenced by the number of input uncertain parameters.

II.A.4. Correlation and Sensitivity Analysis

The results of the code runs can be subjected to 
a sensitivity analysis aimed at characterizing the importance 
of each input uncertain parameter on the uncertainty of each 
output FOM.[15,20] This analysis can be performed by calcu
lating correlation or sensitivity coefficients. Commonly used 
are Pearson and Spearman correlation coefficients, which, 
respectively, characterize the linear and the monotonic corre
lation between an input parameter and a FOM. Linear regres
sion coefficients are also commonly used in sensitivity 
analyses.

II.B. Automatic LS Search

II.B.1. LS Definition

Considering again the deterministic nonlinear operator 
L tð Þ representing the code simulation such that ~y tð Þ ¼ L tð Þ~x, 
the goal function C can be introduced, which is a binary 
function that can assume either the value 0 (e.g., system 
failure) or 1 (e.g., system success) based on the response of 
the system ~y tð Þ.[21] Hence, without the loss of generality, let 
us define C such that it does not depend on time, i.e.,

With this definition, it is possible to identify a subdomain 
of the input set X leading to a specific output of the goal 
function. For example, the failure region XF can be defined as 

the subdomain of X where C ¼ 0. Hence, the success region 
XS will be complementary, i.e., XF : Xs ¼ X . In this case, we 
call LS the boundary surface in X separating XF from XS .

II.B.2. LS Application to System Bifurcations

At this point, a connection can be done to the defini
tion of chaotic behavior of a system, as reported in 
Sec. II.A.1. In this view, we can consider a system (e.g., 
a SA code simulation) characterized by an output variable 
that splits into disjoint sets upon sampling from the input 
uncertainty set X (see Fig. 1). In this case, according to 
Ref. [18], the statistic of the Wilks formula will not hold 
if applied on the whole X.

In this context, it might be possible to define a goal 
function C in such a way that the subsets of X that it identifies 
(e.g., XF and XC) match those generated by the bifurcation in 
the system. In this way, the code operator L tð Þ might be 
smooth in at least one of the subsets identified. Therefore, 
upon determination of the LS surface, it becomes possible to 
know the boundaries of the input domains on which the 
Wilks formula could be separately applied.

In general, and in addition to this possibility, in cases 
where a SA code application exhibits a phenomenological 
bifurcation/cliff-edge effect, the identification of the input 
parameter values that drive the transition between phenomena 
(i.e., the LS location) can always be of significant interest.

The methodology proposed in the present work for 
the identification of LS in the case of output bifurcation is 
presented in the following section.

II.B.3. Adaptative Sampling LS Search Method of RAVEN

The LS search algorithm of the Risk Analysis and Virtual
Environment (RAVEN) (tool is introduced in Sec. II.C.2) is 
based on an adaptative-sampling strategy.[21–23] Ideally, the 
identification of the LS location with a pure Monte Carlo 
approach would need the evaluation of the system response in 
the full input domain of uncertainty X, i.e., performing an 
infinite number of calculations, which obviously is not fea
sible. A first, more reasonable approximation consists of 
locating the LS on a Cartesian N-D grid defined in X . In 
this way, the location of the LS will not be exactly known, but 
rather bounded as determined by those nodes between which 
the transition 0 to 1 of the goal function takes place, as in the 
left image in Fig. 2. Therefore, in this case, the LS identifica
tion would require computing a simulation on each node of 
the N-D grid that, for a good grid resolution, would still mean 
too high of a computational cost.

A more efficient process adopted in RAVEN uses 
a predicting model based on a supervised machine learning 



(ML) algorithm of the classified type (taking only the integer
output, e.g. 0 to 1). In the method, a reduced-order model
(ROM) is trained to predict the outcome of the code simula
tion (in terms of the goal function C ~xð Þ) by using the values
of the already performed calculations. In this way, the pre
diction of the LS location is used to choose the next nodes in
the N-D grid that needs to be explored in order to efficiently
improve the knowledge of the LS location (i.e. adaptative
sampling).

This iterative process, using an active learning 
approach, can be repeated until the prediction of the ML 
model does not improve by further increasing the training 
set (performed calculation). More details about the iterative 
LS search algorithm is described by the scheme in Fig. 3.

Regarding the choice of the following nodes to be inves
tigated, the metric used in RAVEN is based on the distance 
between the already performed evaluations and the LS 

predicted at the current iteration by the ROM.[21] In particu
lar, the points are ranked on the basis of the following:

1. The distance to the predicted LS (the larger the
distance is, the higher the score is for the candidate 
point).

2. The persistence (the larger is the number of
times the prediction of the goal function for that point 
has changed, the higher is the score).

This approach establishes a queue of candidate points, 
with the quantity investigated given by the number of 
calculations performed in parallel.

With respect to the scheme in Fig. 3, the RAVEN 
algorithm requires that the convergence criterion be 
reached after a certain number (user selected) of conse
cutive iterations to end the iterative process. This is done 
to mitigate the effect of nonlinear bias occurring in the 
search, e.g., the algorithm might focus too much on 
a certain region while ignoring other zones, and hence, 
completely hide undiscovered parts of the LS.

In addition, the RAVEN algorithm for LS search 
improves the scheme presented by adding the possibility 
to accelerate the process by means of an adaptive refined 
multigrid approach. More details on the refined multigrid 
approach can be found in Refs. [21,23]. A representation 
of a refined grid is reported in the right image in Fig. 2.

II.B.4. Support Vector Machine ROM

As described previously, the LS search algorithm
leverages an ML model to train a ROM that predicts the 
code response in the input domain. More specifically, it 
predicts the LS position by predicting the response of the 
binary goal function C ~xð Þ at the points of the input domain.

The ML algorithm that was used in the present work is 
a support vector machine for binary classification, adopting 
a “rbf” (exponential) type kernel.[21] The support vector 
machine is a robust and fast running supervised ML model 

Fig. 2. Example of LS identification in a grid defined in a (left) 2D domain and (right) grid refinement.

Fig. 3. Scheme of iterative LS search algorithm in 
RAVEN.



aimed at determining the optimal separation hyperplane 
between data sets having different labels, and it features the 
best performance in binary classification problems. The sup
port vector machine model implemented in RAVEN make 
use of the Scikit-learn library of Python.[24] A similar model 
application to the one of the current work is described in Ref. 
[23], and some different applications can be found in 
Ref. [25].

It should be said that many other supervised ML 
algorithms for binary classification can be used in support 
of the presented method to train the ROM (e.g., decision 
trees, neighbor class).

II.C. Codes and Tools

II.C.1. ASTEC Code

The ASTEC code, developed by the French Institut de 
Radioprotection et de Sûreté Nucléaire (IRSN),[2,26] is aimed 
at the comprehensive simulation of SA sequences in water- 
cooled NPPs, encompassing the SA from the initiating event 
to source term assessments.a The modular structure of 
ASTEC partitions the competency of each code module to 
simulate specific physical phenomena or reactor zones.

Specifically, with respect to the modules used in the 
present work, CESAR manages the thermal hydraulics of 
the coolant circuits, using a six-equation, two-phase ther
mal-hydraulic model. The ICARE module models the reac
tor core geometry and degradation phenomena. The two 
modules are tightly coupled in a SA sequence simulation. 
Applications of the ASTEC code extend across source term 
evaluation, probabilistic safety assessment, accident man
agement studies, and more. ASTEC code version v2.2 beta 
was used in the present work (study carried out with 
ASTEC V2, IRSN all rights reserved [2022]).

II.C.2. RAVEN Tool

The RAVEN[21] tool is a multipurpose software 
developed by Idaho National Laboratory starting from 
2012. It is developed in Python as an open-source code 
using an object-oriented approach. It includes tools, algo
rithms, and models for probabilistic studies, and it is 
designed to perform classical and more advanced statis
tical analyses, parametric studies, LS determination, ML 
with artificial intelligence algorithms, etc. Parallel calcu
lations, for both standard and high performance comput
ing systems, are also fully managed.

II.C.3. RAVEN-ASTEC Coupling

Since RAVEN does not have a dedicated coupling
interface for ASTEC, the coupling was realized by devel
oping a specific Python interface that was embedded in the 
RAVEN source code.[27] The new interface has the same 
features of the “generic” interface of RAVEN, with the 
addition that the software is able to locate the output file 
of ASTEC and inspect its content to understand if 
a simulation has successfully ended or it failed. This is 
a key advantage in the case of UQ studies, where failed 
calculation results must be identified and discarded from the 
statistics. The code coupling is completed by properly mod
ifying the input file of ASTEC as required by RAVEN and 
setting up the input XML file to RAVEN.

In the case of a UQ analysis, RAVEN is able to drive 
the process needed for the study, retrieving instructions 
from the XML file. Accordingly, with the probabilistic 
propagation of input uncertainties method described in 
Sec. II.A.3, the coupling does the following:

1. Provides the sampling size N. RAVEN samples
the values of the selected input uncertain parameters.

2. Creates a set of N different ASTEC input decks
of the same sequence by using the sampled values.

3. Launches the code simulations on the base of the
instructions provided.

4. Collects the simulations results and creates sum
mary results files.

The ASTEC-RAVEN coupling workflow for UQ analysis 
is schematized in Fig. 4. More details are available in 
Ref. [27].

III. CASE STUDY

III.A. ASTEC Simulation of QUENCH-06 Experiment

III.A.1. QUENCH-06 Experiment

The QUENCH test-6 experimental facility,[28] hosted
in the Institute for Applied Materials Physics of KIT 
(Karlsruhe Institute of Technology), was designed to inves
tigate the behavior of hot light water reactor fuel in quench
ing conditions. The test section consists of a rod bundle, 
including 21 fuel rod simulators surrounded by a shroud of 
Zircaloy, an insulation, and an external stainless steel cool
ing-jacket. A total of 20 rods are electrically heated, while 
the unheated rod is filled with ZrO2 pellets and placed at 
the middle of the bundle. In addition, four Zr “corner rods,” 

a This study carried out with ASTEC V2, IRSN all rights reserved 
(2022).



located at the bundle corners, host most of the instrumenta
tion. The test section is sealed by top and bottom plates, 
and the rods are supported by spacer grids.

Steam and argon enter from the bottom, move along 
the bundle, and then exit at the top end, where diagnostic 
instrumentation is located. The quenching water enters in 
the test section through a bottom line. A more detailed 
description of the QUENCH test-6 arrangement can be 
found in Ref. [28]. The experimental sequence lasts for 
about 9000 s and can be considered characterized by 
three phenomenological windows (PhWs):

1. Pre-oxidation PhW: This PhW is from the start of
the sequence up to 6011 s, during which the electric power 
is increased until reaching a temperature plateau, partially 
pre-oxidizing the Zr.

2. Heating-up PhW: In this PhW, the electric power
is increased with a ramp until the first injection of 
quenching water at 7179 s.

3. Quenching PhW: This PhW is from the start of
water injection (7179 s) to the end of the experiment 
(after 9000 s).

The main events of the experiment are summarized 
in Table I, and a more exhaustive description can be 
found in Refs. [15,28].

III.A.2. ASTEC Nodalization of QUENCH-06

The nodalization of the experimental setup was rea
lized with the ICARE and CESAR modules, which are able 
to simulate thermal-hydraulic and early core degradation 
phenomena.[15] The domain is radially divided in two coax
ial fluid channels, as shown in the right image in Fig. 5. The 
nine innermost rods are located inside the inner channel and 
collapse into a single representative rod. The remaining 12 
rods are collapsed into another rod and located inside the 
outer channel, as are the four corner rods.

Fig. 4. Scheme of ASTEC-RAVEN coupling workflow for UQ analysis.[27]

TABLE I 

Summary of Main Events Characterizing the QUENCH Test-6 Sequence

Time (s) Events PhW

0 Bundle at T = ∼870 K; Ar and steam bottom injection (∼3 g/s both) Pre-oxidation
30 Start of heating up to ∼1473 K

1965 Start of steady temperature oxidation at ∼1473 K
6011 Start of heat-up phase Heating up
6620 Extraction of corner rod B from the bundle
∼7200 Onset of temperature escalations and of significant H2 production
7179 Shutoff of steam and Ar bottom injection; start of quenching with the water “pre-injection” 

(4 L in 5 s); rod failure in the experiment
Quenching

7180 Shroud failure in the experiment
7205 Start of electric power reduction from 18.2 to 3.9 kW
7215 Start of water main injection (time-dependent mass flow rate)
7221 Electric power at 3.9 kW
∼7431 Electric power shutoff; main water shutoff
9000 End of the test



The model also includes grid spacers, plates, shroud, 
insulation, and the external cooling jacket. It is axially 
divided into equal slices of 55 mm in height. The ASTEC 
model is described with more details in Refs. [9,15].

III.A.3. Best-Estimate Simulation of QUENCH-06
Sequence

The simulation of the experimental sequence was car
ried out with ASTEC code v2.2b, with a calculation timing 
of about 10 min. The detailed output results are compared 
against the experimental data in Refs. [9,15]. From the 
time-dependent quantitative accuracy evaluation, carried 
out in Ref. [15], it was concluded that the code featured 
a very good prediction in the pre-oxidation and the heating- 
up PhWs. In the quenching PhW, some discrepancies were 
observed, but the general accuracy was evaluated as good. 
The H2 mass produced along the sequence and the shroud 
temperature are reported in Fig. 6. Figure 7 reports the axial 
profiles of the ZrO2 thickness in the corner rods and in the 
heated rods at the end of the test.

A key point for the present work is the ASTEC pre
diction of the bundle structural status. The simulation cap
tured a local melting of materials at the most heated-up 
level without the loss of component integrity (see Fig. 8), 
similar to what was observed in the post-experiment ana
lysis: local melting occurred, without a major loss of struc
tures integrity.[28] The presence of solid layers of ZrO2 and 
ZrO ensured that the condition of loss of integrity was not 
reached, preventing any material relocation.[15]

III.B. UQ Analysis of the ASTEC Simulation

A UQ analysis of the code simulation was carried out
through the RAVEN-ASTEC coupling and by applying 
the probabilistic propagation of input uncertainties 
method described in Sec. II.A.3. While the study was 
reported in detail in Ref. [15], the key elements and 
outcomes to be used as starting points for the present 
application are summarized in the following section.

III.B.1. Setup of the UQ Analysis

A total of 23 uncertain input parameters to the code
simulation were selected, including geometric data, initial 
and boundary conditions, integrity criteria, and heat trans
fer model parameters. The comprehensive list with the 
associated reference value and PDF can be found in Refs. 
[9,15]. The output FOMs selected were five parameters.

Following the methodology described in Sec. II.A.3, 
the number of code runs was defined based on the Wilks 
confidence interval formula. Hence, by considering the 
one-sided tolerance limit for five FOMs and imposing 
probability content and a confidence level of 95%, 
a minimum number of 181 calculations was 
obtained.[9,15] Accounting for possible code failures, the 
total number of simulations was raised to 200.

III.B.2. Outcomes of the UQ Analysis

The uncertainty of the simulation was characterized
in terms of width of the dispersion band of each FOM. In 

Fig. 5. Section of the (left) QUENCH-06 test section and (right) radial nodalization in ASTEC.[29]



simulations ended up to localized cladding failure and 
material relocation.

This point is evinced in Fig. 10, which shows the rod 
material composition and status after quenching for two 
simulations of the 200 picked up at the two extremes: the 
lowest and the highest heating cases. The scenario in the left 
image in Fig. 10 features no melting of materials, while the 
one on the right is characterized by localized melting and 
relocation around the 9.50-m elevation.

A consequence of this phenomenological bifurcation 
was the separation of one of the selected output FOMs 
into disjoint sets. This can be observed in the right image 
in Fig. 11, which shows the dispersion of the ZrO2 profile 
in the internal ring heated-rod cladding at calculation end.

Fig. 6. (left) Mass produced H2 and (right) shroud temperature at 950 mm of elevation from experimental and code data.

Fig. 7. Axial profile of ZrO2 thickness averaged in the (left) corner rod cladding and (right) in the heated rod cladding at 
calculation end (9000 s) from experimental and code data.

general, a minor uncertainty was observed during the pre- 
oxidation phase, while uncertainty was observed to 
increase during bundle heating up and quenching. As an 
example, Fig. 9 reports the dispersion band of the H2 
mass produced. In Refs. [9,15], this behavior was par-
tially attributed to the nonlinear evolution of the Zr oxi-
dation reaction at temperatures above 1770 K.

A key outcome of this study was that a reason for the 
general output uncertainty spread could be attributed to 
a phenomenology bifurcation that took place. Indeed, 
since the conditions for loss of integrity of the cladding 
were very close to be reached in the reference simulation 
(see Fig. 8), the perturbation introduced by the uncertain 
parameters sampling made that a part of the UQ 



Fig. 8. (top left) Nodalization of inner ring rods, (top right) outer ring rods, and (bottom) shroud with materials at calculation end 
(9000 s) of ASTEC simulation.

Fig. 9. Dispersion band of H2 cumulative mass against experimental and best-estimate results.



In the right image in Fig. 11, it can be observed that, 
at the most oxidized elevations (0.80 to 1.15 m), a high 
spread of results affected the dispersion band of the ZrO2 
thickness. Furthermore, some results take on a value of 0 
due to local cladding failure and material relocation, 
resulting in a complete separation from the dispersion 
band. This situation should be considered as 
a bifurcation of the output domain of this FOM due to 
the cliff-edge effect of the bundle degradation 
phenomenology.

III.C. Application of Adaptative Sampling LS Search

In Sec. II.A.2, it was underlined that the assumptions
of the Wilks formula should be considered not respected 

for those FOMs ending up in bifurcations (i.e., chaotic 
behavior). In this case, as proposed in Sec. II.B.2, the LS 
surface is determined within the input domain to distin
guish the input parameter values that lead to different 
phenomena. This approach makes it possible to consider 
the Wilks formula as respected on each continuous side 
of the LS.

Considering the FOM bifurcation obtained in the 
UQ analysis of Sec. III.B, a proposed solution is to 
discern the input values that lead to a cladding loss of 
integrity to those that feature always intact structures. 
In other words, we may want to find the input condi
tions for which the simulation evolves to one of the 
two phenomenologies identified, which turns out to be 
a LS search problem.

Fig. 10. Material and status of rod components in the ASTEC simulation for (left) lowest oxidation result and (right) highest 
oxidation result after quenching occurrence.

Fig. 11. Dispersion band of ZrO2 profile in the (left) corner rod at 6620 s and (right) in the internal ring heated rod at calculation 
end against experimental and best-estimate results.



III.C.1. Setup of LS Search Method

According to Sec. II.B, for the present application, it is
possible to consider as binary goal function C the final state 
of cladding, i.e., we set C = 1 for intact cladding, and C = 0 
for failed cladding at calculation end. As mentioned, the LS 
method can be applied to multidimensional problems; yet, 
in order to reduce the computational effort, the number of 
input parameters was limited to the most relevant to our goal 
function. With this purpose, Spearman correlation coeffi
cients were calculated between the 23 input uncertain para
meters and the goal function for the 200 performed 
calculations. The results are reported in Fig. 12.

The coefficients captured a significant negative cor
relation with the electric power factor fpow, a moderate 
positive correlation with the steam mass flow rate 
fmSteam, and a moderate-low negative correlation with 
the timing of quenching dtQuench. The correlation with 
the other parameters was low or negligible. As a result of 
this, only the two most relevant input uncertain para
meters were chosen to be used in the LS search problem, 
i.e., electric power and steam mass flow rate.

The LS search in RAVEN was applied by employing 
a support vector machine algorithm with a rbf-type kernel for 
the ROM training. Given the computational resources avail
able, the number of parallel calculations was chosen to be 10 
and the number of consecutive converging loops to determine 
the end of the research was selected to be eight. The adaptive 
multigrid approach was activated to guarantee the accelera
tion toward convergence and a higher LS resolution.

In the example provided, disregarding the less rele
vant input parameters clearly constitutes an approxima
tion. However, since these parameters are weakly 
correlated with the goal function, the approximation can 
be considered acceptable. In other applications, the num
ber of input parameters must be carefully evaluated, tak
ing into account the following factors:

1. Computational time required for each simulation

2. Available computational resources

3. Correlation between the parameters to be dis
carded and the goal function.

III.C.2. Results of the LS Search

The LS search ended (achieving eight consecutive
converging loops) at a total number of 180 ASTEC 
calculations without reporting any code failure. In 
Fig. 13, the algorithm’s search results are shown in 
terms of the goal function C calculated at the investigated 
points. Each calculation performed is reported in the two- 
dimensional (2D) input domain, and the corresponding 
value of the output goal function is expressed with colors: 
purple (dark) for failed cladding and yellow (light) for 
intact cladding. The input parameters on the two axes 
were normalized on their reference value.

It can be observed that the plot delimitates a boundary 
(LS) dividing the input domain in two zones for the two 
possible values of the goal function. The LS can be approxi
mated as a straight line, crossing the x-axis at about 1.01 and 
the y-axis at about 1.003. The calculations located above the 
LS will result in the failure of cladding, while those having 
input values located below the LS will have final intact 
structures. Therefore, for results where the steam mass flow 
rate value (normalized) is higher than about 1.01, the clad
ding will always be intact, no matter the value assumed by the 
fuel electric power (within its adopted uncertainty range).

For points too close to the LS, the goal function 
result will not be known with good confidence. The 
higher the resolution of the LS needed and the higher 
the grid refinement, the higher the final number of calcu
lations will be. The implemented algorithm allows for 
having a very good estimation of the LS position by 
using a limited number of calculations.

In the plot in Fig. 14, the color of the points is in this 
case refer to the order of execution of the calculation 
along the LS search. It can be observed that the first 
calculations (darker color) are randomly distributed in 
the input domain, while as the research advances, the 
following calculations converge on the LS line.

Fig. 12. Spearman coefficients between the goal function 
C and the 23 input uncertain parameters.



IV. CONCLUSIONS respected on the whole domain of uncertainty,[18] thus mak
ing the method unusable.

In this scenario, in the present work, it was proposed that 
the application of the LS search method in RAVEN would be 
a useful strategy in support of UQ analyses evolving into 
a phenomenological bifurcation, i.e., separation of a FOM 
into disjoint subsets. This adaptative sampling method was 
used to identify the boundary between input the subdomains 
evolving to different phenomena. In this way, the Wilks 
formula might be considered to be respected on each identi
fied input subdomain, provided it is smooth in this case.

Fig. 13. Calculations executed in the LS search in terms of input values (normalized) and corresponding goal function value: 
purple (dark) for failed and yellow (light) for intact cladding.

Fig. 14. Calculations executed in the LS search in terms of input values (normalized) and corresponding order of execution in 
a color scale.

The first aim of the present work was to highlight how 
the peculiarity of SA simulations may present a challenge 
for UQ application due to the presence of strongly nonlinear 
and discontinuous phenomena. Indeed, application of the 
probabilistic propagation of input uncertainties method to 
SA simulations often results in a spread of the output 
uncertainty, discontinuous behaviors, and even bifurcations 
of the FOMs into subsets. It is also stressed out, as in these 
cases, the statistics of the Wilks formula might not be 



The proposed case study dealt with the ASTEC code 
simulation of an experimental sequence involving early 
core degradation phenomena. Since in the reference 
simulation the bundle components were close to achiev
ing loss-of-integrity conditions, the uncertainty intro
duced into the UQ analysis by input random sampling 
caused a localized cladding failure in part of the UQ 
simulations. This determined the separation of a FOM 
(i.e., ZrO2 thickness in cladding).

The LS method was initiated by defining the goal func
tion C on the basis of the final state of cladding (intact vs. 
failed). The two most closely correlated input parameters 
were selected by calculating the Spearman correlation coeffi
cients with the values of C. Therefore, the iterative LS 
method was applied by means of RAVEN-ASTEC coupling, 
selecting a support vector machine algorithm. A good con
vergence of the method was achieved in 180 simulations. The 
LS surface was outlined with a good resolution on the 2D 
input domain, identifying those input parameter values that 
led the simulation to evolve into one of the two phenomen
ologies identified.

The case study presented was an example with the ambi
tion to propose a preliminary solution to a UQ study in which 
the statistics cannot be respected, as often happens in SA 
applications. In this context, the accurate identification of 
the input subsets evolving into different phenomena would 
already be considered a valuable result for many applications, 
as it adds relevant information to a chaotic system. 
Furthermore, in scenarios where it is necessary, such as UQ 
studies focused on statistically determining the safety limits of 
the system, a possible next step could involve applying the 
UQ specifically to one continuous side of the identified LS 
line. This approach should yield a more statistically robust 
solution.

While the method described requires a relevant num
ber of additional numerical calculations, this computa
tional effort can be justified by the precision and 
valuable insights it provides. Yet, it remains essential to 
assess the trade-off between computational cost and the 
added value on a case-by-case basis.
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