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Particle production from phase transition bubbles
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While first order phase transitions (FOPTs) have been extensively studied as promising cosmological
sources of gravitational waves, the phenomenon of particle production from the dynamics of the
background field during FOPTs has received relatively little attention in the literature, where it has only
been studied with semianalytic estimates in some simplified settings. This paper provides improved
numerical studies of this effect in more realistic frameworks, revealing important qualitative details that
have been missed in the literature. We also provide easy to use analytic formulas that can be used to

calculate particle production in generic FOPT setups.
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I. INTRODUCTION

The physics of a first order phase transition (FOPT),
where the false (metastable) vacuum of a theory decays into
the energetically favored true (stable) vacuum through the
nucleation and collision of true vacuum bubbles [1-7], has
been widely studied in the literature. Such transitions can
be readily realized in extended sectors in many realistic
beyond the Standard Model (BSM) scenarios [8—22]. The
dynamics of such bubbles admit various interesting phe-
nomena, most notably the production of gravitational
waves (GWs) [23-26] (for a recent review see [27]).

The focus of this paper is the phenomenon of particle
production during FOPTs. In the GW literature, particle
production from FOPTs is generally considered in the
context of interactions between the fast-moving bubble
walls and the surrounding plasma [28-33], which is known
to provide a source of friction that affects bubble dynamics
and the subsequent spectrum of GWs. In this paper, we
focus on particle production that occurs purely due to the
dynamics of the background field itself, independent of
the presence or nature of a thermal plasma. Note that such
particle production, analogous to GW production, is
expected to be a far stronger phenomenon, since particle
coupling strengths are significantly larger than (Planck
suppressed) gravitational couplings. If this particle produc-
tion mechanism is particularly efficient, it can also affect
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the dynamics of bubble collisions and the subsequent
production of GWs.

There are only a handful of papers in the literature that
study particle production from background field dynamics
during FOPTs. The first work to study this phenomenon in
detail, by Watkins and Widrow [34], explored classical
scalar wave production from two-bubble collisions and
direct quantum particle production from such processes.
Subsequent work by Konstandin and Servant [35] per-
formed more detailed studies of this phenomenon in the
context of cold baryogenesis. Building on these results, the
most detailed study of this process was performed in a paper
by Falkowski and No [36], which studied particle produc-
tion at a first order electroweak phase transition, and the
possibility for this to account for dark matter. Several
physical aspects of the process have recently been clarified
in [37]. Reference [38] discussed the issue of gauge
invariance of the operators in a gauged theory. Most recently,
Ref. [39] demonstrated that the formalism used to calculate
particle production with this formalism is gauge-dependent,
but it is nevertheless possible to extract results that are
physically relevant. These papers found that bubble colli-
sions during FOPTs could be a viable source of heavy
particles far above the temperature of the thermal bath,
since the energy density in the boosted bubble walls at
collision can be several orders of magnitude higher than the
background scalar field vacuum expectation value (vev) or
the ambient bath temperature. Such possibilities could
be of particular interest for various beyond the Standard
Model (BSM) applications, as has been explored, e.g., in
[36,38—41].

Most of the above studies relied on semianalytic esti-
mates of particle production in two simplified settings:
perfectly elastic collisions between bubbles, where the
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bubble walls simply reflect off each other without any
further dynamics, or totally inelastic collisions, where the
bubble walls stick together upon collision and dissipate all
of their energy into scalar waves. The purpose of this paper
is to perform numerical studies of bubble collision proc-
esses in more realistic scenarios that capture crucial
physical effects missed in these studies, and provide greater
physical insights into the process.

In Sec. II we introduce the formalism to track the
dynamics of the scalar field after bubble collisions and
calculate particle production from such dynamics, and
describe our numerical setup. In Sec. III, we present our
results, highlighting the main physical aspects and crucial
differences from existing results, and provide easy to use fit
formulas corresponding to our numerical results for general
use. Section IV summarizes our main results and discusses
some broader aspects.

II. FORMALISM

In this section, we present the formalism necessary to
calculate particle production from the collision of two
bubbles, and describe the details of our numerical setup.
For simplicity, we work in the thin wall approximation, and
consider relativistic bubble walls traveling at approximately
the speed of light v,, &~ 1. We study the collisions in (1 + 1)
dimensions, which are nevertheless applicable to 3D setups
where the bubbles are sufficiently large at collision that the
walls can be assumed to be planar at particle physics scales,
which is generally a reasonable approximation.

A. Scalar field dynamics

The background scalar field configuration before colli-
sion is straightforward: it consists of two bubble walls
approaching each other, with the region in between the two
walls in the false vacuum and the region behind the walls
(on the other sides) in the true vacuum.' When the bubble
walls collide, the field undergoes a local excitation at the
collision point. In relativistic collisions, the bubble walls
superpose and the field value at the point of collision is
given by (see [43])

Gatier = 2¢1 — P, (1)
where ¢t and ¢y denote the field values inside and outside
the bubbles, corresponding to the true and false vacua,
respectively. Since ¢, generally does not correspond to a
local minimum of the potential, the field classically rolls
down the potential and oscillates around one of the

'For thick walled bubbles, the scalar field might not be at its
true minimum anywhere inside the bubble, and instead evolves
toward the true minimum and performs oscillations around it as
the bubble expands (see, e.g., [42]). We do not consider such
setups in this paper.

minima.” Depending on the details of the potential, there
are two possible scenarios for the subsequent evolution
(see [34-36] for more details; also see Fig. 2 for illus-
trations of the two cases):

(1) Elastic collisions: In such collisions, which occur
when the minima are (almost) degenerate, the two
colliding bubble walls reflect off each other and the
false vacuum is reestablished in the region between
the receding walls: this corresponds to the scalar
field climbing back over the barrier and into the false
vacuum. Vacuum pressure eventually drives the
walls back to each other, and the walls collide again;
this process is repeated several times, with the walls
becoming less energetic with each collision, before
the true vacuum is finally established.

(i1) Inelastic collisions: In such scenarios, which occur
for potentials with a relatively shallow barrier, there
is no reestablishment of the false vacuum (that is, the
field settles in the true vacuum region); instead, the
collision converts the bubble wall energy to local-
ized field oscillations around the true vacuum.

To study the behavior of the scalar field in generic
collision scenarios, we make use of the so-called trapping
equation from Ref. [43], which allows for a simple
analytical description of the field configuration in the
relativistic bubble wall limit v, & 1, and can determine
whether the collision is elastic or inelastic. The equation of
motion of the field after the collision can be written in terms
of a single variable [43]

1 dv(e)
o2 -0 —= =0, 2
ot (2)
where s is the light-front coordinate s = V1> —x?,

and V(¢) is the scalar potential. The field value at the
collision point after the collision is given by Eq. (1),
Gatier = 2¢1 — g, with vanishing velocity, which provides
the initial conditions for solving this trapping equation.

Following [43], we consider the following generic
potential for the scalar field ¢:

V() = avyd® — (2a+ 4oy’ + (a +3)p*.  (3)

This potential has a metastable minimum (false vacuum) at
¢ = 0 and a global minimum (true vacuum) at ¢ = v,. One
can define a degeneracy parameter €, determined by the
dimensionless parameter a, as

¢ = Vmax_v(¢:0) o a3(a—|—4) (4)
Ve = V(@ =vy) a(a+4)+16(a+3)>

’An exception is a periodic potential, for which ¢, is also a
minimum, hence the new field value after collision is stable and
no oscillations occur after the collision [34-36].
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FIG. 1.
and inelastic cases.

where V.. is the height of the potential barrier separating
the two minima. The shape of the potential can be altered
by changing the value of a (equivalently ¢), as shown in
Fig. 1 (left panel): increasing € increases the height of the
barrier separating the two minima, and also makes the
potential steeper at higher field values. Reference [43]
finds that

€ > 0.22:elastic collisions,

€ < 0.22:inelastic collisions. (5)

In both elastic and inelastic collisions, the field gets excited
to a value ¢,per = 20, beyond the true minimum, then rolls
back over the barrier into the false vacuum regime. A
shallow barrier (corresponding to small ¢) enables the field
to roll again over the barrier and oscillate around the true
minimum, corresponding to an inelastic collision. In con-
trast, a higher barrier (corresponding to large €) prevents the
field from rolling back over the barrier, trapping it instead in
oscillations around the false vacuum, resulting in elastic
collisions where the bubble walls do not disappear but
bounce back, reestablishing the false vacuum in the region in
between. In both cases, the collision is therefore followed by
scalar field oscillations around the corresponding minimum.

In Fig. 1 (right panel), we plot the evolution of the scalar
field corresponding to these two cases, obtained by solving
the trapping equation (2), where oscillations around the two
vacua (¢ = 0(v,) for false (true) vacuum) are clearly
visible. In Fig. 2, we plot the spacetime configurations
of the scalar field for these two cases. We show the two
incoming relativistic bubble walls (approximated as step
functions), which collide at the origin, leading to scalar
field oscillations in the true and false vacua in the elastic
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Left panel: shape of potential for various € values. Right panel: scalar field evolution after collision for representative elastic

and inelastic cases, respectively. Realistically, the elastic
case should feature multiple collisions between the bubble
walls. However, the trapping equation can only track the
evolution of the field in the region between the walls but
cannot incorporate these repeated collisions. In this paper,
we therefore only consider a single collision between the
walls for the elastic as well as inelastic cases, which will
nevertheless capture the main physical effects relevant for
particle production that we are interested in. Reference [34]
showed, through numerical simulations, that elastic colli-
sions lose roughly 30%—40% of the initial wall energy at
every collision over a wide range of parameters. By energy
conservation arguments, this implies that the boost factor at
subsequent collisions is reduced by 30%-40%, and the
typical separation distance between the walls is 60%—70%
of the initial distance. The numerical simulations in [34]
also show that most of the energy is radiated away after a
few collisions. This occurs because when 30%—40% of the
energy is lost at each collision, after a few collisions the
scalar field does not have energy to climb over the barrier
into the false vacuum again, ending the elastic collision
phase. Consequently, we can expect the particle number
densities calculated here to be enhanced by an O(1) factor
when multiple elastic collisions are taken into account.

The dominant oscillation frequency in either case is
determined by the effective mass in the relevant vacuum;
for the toy potential above, these masses are

sz(d’)'
m2 = =2a1?,
f d¢2 $=0 ¢
*V(9)
m3 3B |y, vy(a+6) (6)
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FIG. 2. Scalar field spacetime configurations corresponding to elastic and inelastic bubble collisions (collisions occur at the origin).
(a) Elastic collision (¢ = 0.6, a = 28.4). (b) Inelastic collision (¢ = 0.1, a = 4.4).

B. Mode decomposition and particle production

We now describe the method to calculate particle
production using the scalar field configurations obtained
in the previous subsection. We will follow the formalism
introduced in [34] and further developed in [35,36]; the
interested reader is referred to these papers for further
details.

The formalism consists of treating the moving and
colliding bubble walls and subsequent oscillations as
classical external field configurations of the scalar ¢(x, t).
The probability for this configuration to decay into particles
is extracted from the imaginary part of its effective action,
which is evaluated by decomposing ¢(x,¢) via a Fourier
transform into modes of definite frequency @ and momenta
k. Modes of four-momentum y = w?> —k> > 0 can be
interpreted as off-shell propagating field quanta of ¢ with
mass m> =y, and the probability for each such mode
excitation to decay is given by the imaginary part of its
2-point 1PI (1 particle irreducible) Green function.

Assuming each decay produces a pair of identical
particles, and assuming planar walls in 3-dimensional
space, the number of particles produced per unit area of
bubble wall can be expressed as [34-36]

N

G2 [ Gk P e~ ). ()

Here ¢)(k, ®) is the Fourier transform of the field configu-
ration ¢(x, t). From the optical theorem, the imaginary part
of the 2-point 1PI Green function is given by the sum over
matrix elements of all possible decay processes:

ff® ()] =33 [ AL = @Ol i) (8)

Here the sum runs over all possible final states a that can be
produced, |M(¢ — a)> is the spin-averaged squared
amplitude for the decay of ¢ into the given final state a,
dll, is the relativistically invariant n-body phase space
element, © is the Heaviside step function, and ypin(q) =
(3" m,)?* represents the minimum energy required to
produce the final state particles on-shell. For n-body final
states, one should replace the prefactor 2 in Eq. (7) by the
appropriate number. It should be noted that the evaluation
of |/\_/l(¢ — @)|? can in principle be gauge dependent since
the formalism considers off-shell excitations of the field
configuration, requiring careful consideration for the pro-
duction of gauge bosons in particular [39].

Using y = ®> —k* and &= w® + k%, and integrating
over ¢, the number and energy of particles produced per
unit area can be simplified to [36]

PPl ML o)
e ARl o

Here f(y) encapsulates the relevant details of the under-
lying field configuration in the Fourier decomposition and
hence represents the efficiency factor for particle produc-
tion at the given scale /. The lower limit yy;, is set either
by the masses of the particle species being produced or by
the physical infrared (IR) cutoff scale of the configuration,
which corresponds to the maximal bubble size R, at
collision. The upper, ultraviolet (UV) cutoff is given by
Imax = (71/1,)?, the boosted bubble wall thickness, which
represents the maximum energy scale probed by the
process. Note that Eq. (9) correspond to the case when
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each excitation decays into two particles, and should be
appropriately modified for multibody final states.

From Egs. (7) and (9), it is clear that the computation
consists of two independent components. The first consists
in determining the efficiency factor f(y) from the Fourier
transform ¢(k, w) of the field configuration; this depends
purely on the spacetime dynamics of the background scalar
field during the phase transition. The second piece corre-
sponds to the “particle physics” aspect of the setup:
calculating the decay probabilities of the excitations via
the computation of | M (¢ — )| for all possible decays in a
given model. The focus of this paper will be on the
calculation of f(y) for various realistic field configurations.

C. Numerical setup

In this subsection, we describe the details of our
numerical setup. We study the scalar field over a (1 + 1)
dimensional spacetime region over the interval
[-L/2,L/2] for both x and ¢, with bubble collision taking
place at the origin (0,0) (see Fig. 2). The ¢ < 0 region thus
consists of two bubble walls approaching each other; for
simplicity, we describe this part by two step function walls
approaching each other at the speed of light v,, = 1, with
¢ = 0 in the region between them, and ¢» = v on the other
sides. In principle, the walls have some finite thickness /,,,;
however, at large boosts y,,, this thickness is Lorentz
contracted and cannot be resolved in the numerical studies,
hence we simply treat them as step functions. The field
configuration after collision (in the 7> 0 region) is
obtained by solving the trapping equation [Eq. (2)] for a
given scalar potential [as parametrized by Eq. (3)].

We generate N x N arrays describing the field configu-
ration ¢(x,¢) in this finite x-7 plane; thus, the field is
sampled at spatial and temporal intervals d = L/N. We
then numerically perform a discrete Fourier transform of
this configuration to obtain the efficiency factor f(y) as
described in the previous subsection.

There are three physical scales of relevance: the bubble
size at collision R, (typically a few orders of magnitude
smaller than the inverse Hubble size H~! at the time of the
transition), the scale of scalar field oscillations after
collision, which is given by the mass of the field in the
relevant vacuum, m, ;~ O(vy) [see Eq. (6)], and the
boosted wall thickness scale 1,,/y,,. Typically, the three
scales are very different, R, > v;l > 1,/ generally

separated by several orders of magnitude. Realistically,
one ought to choose L Z R,, and choose spatial and
temporal resolutions such that the other two scales are
resolved. In practice, this is computationally very chal-
lenging, as is well known to the gravitational waves
simulation community. Since the primary goal of our study
is to capture particle production effects, the relevant scale of
interest is the particle physics scale v,, and we choose
values of L that are a few orders of magnitude larger than

v(;l. Unless stated otherwise, the default choices for the

spatial/temporal size and resolution (sampling intervals) for
our numerical studies are

L=40v;' and d=001v;" (10)

In all of our numerical studies, we ensure d < O.Im;}, SO
that the scalar field oscillations are always properly
resolved despite the finite sampling. Note that we cannot
resolve the boosted bubble wall thickness for large y,,
(hence the step function approximation), and can only
study a small fraction of the full bubble size. Nevertheless,
the above setup is sufficient to capture all the important
details of particle production.

Note that the finite size and resolution of our numerical
studies incur various limitations. For the choices in Eq. (10),
our studies can only resolve w, k between 0.05711)4, and
1007v,. In practice, the results can also deteriorate and give
spurious features at scales close to these two limits. Indeed, in
our numerical studies we do observe spurious effects close to
the lower momentum cutoff (i.e., low k values), which
manifest as imaginary components of the Fourier transform.
In our calculations and results below, we therefore take only
the real part of the Fourier transform, which proves to be
effective in eliminating such spurious unphysical contribu-
tions (see Appendix A for a more detailed discussion).

III. RESULTS

In this section, we present the results of our numerical
study. We first discuss our results for the efficiency factors,
comparing them with existing results in the literature
(from [34-36]), before turning to calculations of particle
production.

A. Mode decomposition and efficiency factors

In Fig. 3, we plot the Fourier transform in the @ — &
plane for representative elastic and inelastic collision
configurations (corresponding to those shown earlier in
Figs. 1(b) and 2). In both cases, the main contributions are
seen to be clustered around two main branches, originating
from distinct physical phenomena (see [37] for related
discussions):

(i) Around w* = k*: these correspond to excitations
induced by the process of collision between the two
bubble walls.

(i) Around w®> = k> + m?: these correspond to exci-
tations induced by the scalar field oscillating around
a minimum after the walls have collided, with m
representing the effective mass of the scalar around
the corresponding minimum (false minimum for
elastic collisions, true minimum for inelastic colli-
sions) after the bubbles collide.

These generic features remain applicable for other choices
of e.
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Density plots of the logarithm of the Fourier transforms of field configurations describing elastic (left panel) and inelastic (right

panel) collisions. We also show contours corresponding to @* = k* and w? = k> + m; ; for effective mass m,(m;) in the true (false)
vacua. (a) Elastic collision (¢ = 0.6, a = 28.4). (b) Inelastic collision (¢ = 0.1, a = 4.4).

From this Fourier transform, we can compute the
efficiency factor f(y) as defined in Eq. (9). This can be
done for an arbitrary field configuration as follows. Using
E=w? + k* and y = w* — k%, we can write

N_ 1o e
A (2ﬂ)2/—m ‘”‘/_m dolp(k. ) PIm[E) (@ - )]
_i 7/ v/l . e

B (27;)2A d"/) do|d(k, @) Im[? (0? — k2)]

B % J " i)

Thus, for any function (}(k w), the second integral in
second-to-last step can be numerically evaluated for dis-
crete values of y to numerically obtain f(y).

In Fig. 4, we plot f(y) for various choices of ¢
(which correspond to various barrier heights in the scalar
potential) for elastic (top panel) and inelastic (bottom
panel) collisions in the left column. In the panels in
the right column we also plot the comparisons with
analytic results as calculated in [36] (dashed curves), as
well as our fit functions from Eqgs. (17) and (18) (dot-
dashed curves), which we will describe in greater
detail below.

For a perfectly elastic collision, i.e., when the walls
bounce back with the same relative speed and there is no
energy dissipation in scalar waves, the efficiency factor can

X/ (/1= P B YO
v =
= (2;)2 A (r/? dyIm[E® ()] f (x) (11) be calculated analytically as [36]
|
16 2 2 l 2 _ 2 I ] 7
fee(y) = 12)¢L0g (rw/Lw)” —x +2(r/ w)\/m

Thus the function scales approximately (up to the loga-
rithmic factor) as ~y~2 (this is also consistent with results
in [34,35]). This function is plotted as the red dashed curve
in the top panels of Fig. 4.

9[(yw/lw)2 _Z] (12)

X

|

For both elastic and inelastic collisions, the efficiency
factors obtained from our numerical studies are seen to
approximately follow the power law o y~2 consistent with
the analytical result for a perfectly elastic collision Eq. (12);

023520-6



PARTICLE PRODUCTION FROM PHASE TRANSITION BUBBLES PHYS. REV. D 111, 023520 (2025)

100

Ks
g
0.100 .
€e=0.02 = e=0.1
e=0.04 e=0.12
0.010 E
e =0.06 e=0.14 E
e=0.08 — e=0.18
0.001

1 5 10 50 100

100 £

10E

=
~—
S~
0.100 ¢ 4
0.010¢ 4
0.001
1
X
T T T T
100 2% E
.
-’i ‘,‘ A
o2y ‘o )
oS ‘s
10F AEN . ’ 4
E AN o '
F AN s, : A
Sal e - !
’s:~ R W -
Sess -
1 oot - J
_— DRI Ik W
X R A
~— A !‘
= &
U
Ve
0100y  |=- €=0.02 AN |
£ - RN
RS
PN
v N
— Vot
-- e=0.18 SN *\
0.010¢ - COR Y ) 4
£ PO N
£ Y
COREE
v
RS
PRRY
FURY
0.001 L L Ly Al L
1 5 10 50 100
X

FIG. 4. Efficiency factor f(y) in elastic (top panel) and inelastic (bottom panel) collisions for different potential barrier heights (as
determined by ¢) as a function of y (both axes are in units of v,4). To guide the eye, we also show the effective scalar mass for the highest
and lowest values as dashed vertical lines in each plot on the left panels. For the elastic case, we also show (red dashed line) the analytic
result for a perfectly elastic collision [Eq. (12)]. On the right panel, for comparison, we show the analytical results from Ref. [36] as
dashed curves, and our fit functions Eqs. (17) and (18) as dot-dashed curves, for a few cases. For this plot, we have fixed y,, = 200 and
l, = 1011;1. (a) Efficiency factor for elastic collisions. (b) Comparison with analytical results and fit functions. (c) Efficiency factor for

inelastic collisions. (d) Comparison with analytical results from previous literature (dashed) and our fit functions (dot-dashed).

this component originates from the collision between the
two bubble walls, which is a very rapid process and thus
contains very high frequency components. In addition, the
numerical results show a prominent bump in the spectrum,
peaking at y ~ m? for elastic collisions and at y ~ m{ for

inelastic collisions; this feature can be attributed to the field
oscillations around the corresponding minimum after the
bubble walls collide and the scalar field gets excited away
from the minima. We expect these two features—a power
law « ¥ and a bump peaking at the scalar mass in the
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vacuum that is realized after collision—to coexist for any
realistic potential. Different values of ¢ correspond to
different shapes of the potential, hence different masses
in the two vacua, and we see the positions of the peaks
shifting accordingly in both plots. The vertical dashed lines
in the various panels show the relevant mass scales for a
few cases.

Let us briefly discuss the main differences between our
numerical results and the analytic solutions from [36], as
seen in the right panels of Fig. 4. For elastic collisions (top
row), the analytic limit Eq. (12) misses the bump around
X = m% from scalar field oscillations after the collision we

see for realistic elastic collisions, but otherwise agrees well
with our numerical results. As discussed earlier, the
oscillations are inevitable for generic (nonperiodic) poten-
tials, and therefore represent an important feature that is
missed by the simplified analytic treatment. There are small
discrepancies from the y~2 scaling at y > m%, likely a
combination of energy getting lost to scalar oscillations and
numerical effects from the limitations of the numerical
study, but the results continue to agree up to O(1) factors.

For inelastic collisions, we show [dashed curves in
panel (d)] the analytic result from [36] for a totally inelastic
collision

4vgmi
2 22 6 (h)2
X [()(_ m;)” + mj (y) }

FW T2y 4
x Log " )

fTI()() -

P (13)

This result was derived for a quadratic approximation of the
potential well around the true vacuum, and solving for the
field evolution after the collision (see [36] for details).
There are two notable features: (1) the efficiency factor
features a peak around y = m?, corresponding to scalar
field oscillations after collision, and (2) at momenta higher
than the mass, the value drops off as f(y) ~ y~*, deviating
from the y~2 behavior seen in our numerical results as well
as the perfectly elastic limit. The steeper power law scaling
can be understood by noting that the analytic result in [36]
is only derived for the field configuration after collision,
and assuming that the energy in the walls is completely
transferred to scalar field oscillations. In particular, in [36]
the Fourier transform for a perfectly inelastic collision is
reported to be

~ ﬁ'lwk 21}¢ 1 1
¢inelastic (k’ a)) - 2}’W sinh <%) w2 _ k2 - w2 _ k2 _ m% ’
yW

(14)

which vanishes in the limit m, — 0, i.e., the potential
becomes flat and there are no oscillations. Therefore, this

analytic approach misses the contribution from the collision
process before the scalar waves develop. As our numerical
results demonstrate, considering the spacetime region
including the entire collision process restores the f(y) ~
2 scaling at high momenta. Therefore, the analytic results
from [36] capture the peak in the efficiency factor from
oscillations but severely underestimate the contribution at
y > m?. Note, however, that the peak heights derived from
the analytical result and numerical studies are markedly
different; this discrepancy will be explored in detail in the
next subsection.

Finally, note that the numerical results contain secondary
peaks at higher y, as can be seen in all panels of Fig. 4—
these are very prominent for inelastic collisions, but also
exist for elastic collisions. In all cases, these appear at
2~ (2mg,)?. It is unclear to us whether these higher
harmonics have a physical origin, or are simply artifacts
of the numerical procedure, arising from taking the Fourier
transform over a finite spacetime interval. In any case, they
generally contribute negligibly to calculations of particle
number densities, hence we ignore these secondary peaks
in our subsequent discussions.

B. Characterization of the peak

Beyond the power law feature, the peak due to oscil-
lations is the most important feature in the efficiency factor
spectrum (Fig. 4). We now examine its properties in greater
detail. A peak is characterized by three major properties:
position, width, and amplitude, which are very different
between our numerical results and the analytic results
from [36] [as seen, e.g., in Fig. 4(d)]. For our results,
we find that all three properties are sensitive to the size (L)
of the spacetime region chosen; we plot the peaks for
different choices of L for representative elastic and inelastic
collision scenarios in Fig. 5.

For the analytic solution from [36], given by Eq. (13), the
peak always occurs at the scalar mass in the true vacuum,
corresponding to oscillations around the true minimum. In
contrast, our numerical results in Figs. 4 and 5 show that the
peaks occur slightly below the mass of the scalar for both
elastic and inelastic collisions. This behavior can be
understood by noting (see, e.g., right panel of Fig. 1) that
the initial field excitations after the collision are not
oscillations, and the oscillations in the first few cycles
are not symmetric around the corresponding minimum,
which distort the peak away from the true mass. As more
and more “proper” oscillations around the minimum are
incorporated by including a larger number of oscillation
cycles—which occurs when a larger region of spacetime is
considered, i.e., for larger values of L—the peaks indeed
shift closer and closer to the true mass, as seen in Fig. 5.

The peak widths also reflect this behavior. Because of
these initial nonoscillatory and nonsymmetric excitations,
the peaks are quite broad, and neither smooth nor sym-
metric around the scalar mass. Again, as more “proper”
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f(x)
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FIG. 5.
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(b)

Efficiency factor peak dependence on the size of the field configuration considered (parametrized by L, shown here in units of

v,) in elastic (left panel) and inelastic (right panel) cases (axes in units of v,). The dashed curves are obtained using the fit functions in
Egs. (17) and(18). The solid vertical lines correspond to the effective mass of the scalar field in the relevant vacuum. All dimensionful
quantities are in units of v,. (a) Elastic cases (¢ = 0.6). (b) Inelastic cases (¢ = 0.1).

oscillations are incorporated for larger L values, the
peaks are seen to become smoother and more symmetric.
Furthermore, for larger L, as the scalar waves spread out in
space and the oscillation amplitude becomes smaller, the
quadratic approximation for the potential around the
minimum becomes better and better, hence the peaks get
more sharply pronounced around the scalar mass, as is
clearly visible in Fig. 5.

Next, we comment on the amplitude of the peaks. The
initial analytic result derived in [36] for the totally inelastic
case was divergent at y> — m?, which is simple to under-
stand: since the calculation corresponds to all of spacetime
and contains an infinite number of oscillation cycles, the
efficiency factor diverges at y> — m? as there is infinite
power at this frequency. In the corrected formula from [36]
shown in Eq. (13), this divergence is regulated through the
prescription

(r =mi)* = (x —mi)* + mPl /s, (15)

where 1,/y,, is the boosted wall thickness. However,
the physical motivation for this correction is unclear: in
the postcollision phase in a perfectly inelastic collision, the
boosted wall thickness before collision is irrelevant. In fact,

|

S etastic 0() = frE (Z) +

the comparison with our numerical results [see Fig. 4(d)]
suggests that the prescription in Eq. (15) is too extreme: the
numerical results suggest that the amplitude of the peaks
should be significantly larger. Furthermore, from Fig. 5, we
see that the peak amplitude scales as L2, which is indeed
the correct scaling for the number of oscillation cycles
contained in an L x L region of spacetime.

C. Fit functions

We now provide easy to use fit functions to our
numerical results that can be used to calculate the particle
production efficiency factor f(y) for generic setups. For a
given model, one would need to determine whether the
collisions are elastic or inelastic, and have the following
quantities at hand

{U(]ﬁ’mt?mf’yw’lw’R*’F} (16)

Here I' is the decay rate of the scalar undergoing the phase
transition, R, is the typical bubble size at collision, and the
remaining parameters are as defined earlier. Using these
parameters, the efficiency factors can be formulated as

15m?

L2 —(y — m? +12m,/L,,)?
exXp ) 5
440m2 /12

) (elastic collisions) (17)
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—(x —m{ +31m¢/L,)?

vgLy
Sinelastic ()() = frE (Z) + > €Xp
4dmg

Here, fpg is the efficiency factor for a perfectly elastic
collision, given in Eq. (12), and L, = min(R,,T'""). The
dot-dashed curves in Fig. 4 and the dashed curves in Fig. 5
are made using these formulas, but taking L, =L as
defined for the numerical setup. We have checked that
these formulas provide good fits for a broader range of ¢
values beyond those shown in the figures (see Appendix B
for more examples).

For the power law component, we have simply used the
analytic result fpg for perfectly elastic collisions Eq. (12),
which provides good fits to our numerical results from both
elastic and inelastic collisions. There are small discrepan-
cies at large and small y (see Fig. 4 right panels), likely due
to some energy getting lost to scalar oscillations and
possible numerical effects from the limitations of the
numerical study. Nevertheless, since these only lead to
O(1) deviations, and as this form is motivated from physical
considerations [34,36,37], we choose to keep the analytic
formulation fpg.

We find that the peaks are well approximated by
Gaussian functions of the forms shown in Eqs. (17) and
(18), with the parametrization and numerical factors
chosen purely to best match the numerical results for a
wide range of potential shapes. In particular, note that we
have added an offset factor in the numerator of the
exponential to account for the fact that peaks shift away
from the scalar mass m, ; when smaller regions of space-
time are considered. From the plots, it is clear that the fits
capture the tips of the peaks very well, but break down
further away from the peak as the peak shapes become
non-Gaussian and irregular; nevertheless, we have checked
that this introduces at worst an O(1) factor discrepancy
for particle production calculations for any choice of
parameters.

Recall from the discussion in the previous subsection
that the properties of the peak in the spectrum depend
strongly on L, the size of the spacetime region considered.
While L is a parameter for our numerical studies, in the fit
formulas we have prescribed instead the physical counter-
part L, = min(R,,I"""). Realistically, our derived results
are only valid for scalar waves within a single bubble, of
size R, (this cutoff scale for the peak was also mentioned
in [36]); beyond this, scalar waves from multiple bub-
bles interfere, which is not captured by our study, hence R,
is the maximal size for which our results should be
valid. However, if the scalar waves decay rapidly before
they propagate such distances, as can occur if the scalar
has efficient decay channels, then the correct size of
spacetime region to consider where scalar oscillations are
relevant is instead the decay length, I'~!. Our prescription of

650m? /L3

> (inelastic collisions) (18)

L, = min(R,,T""") is therefore intended to select the smaller
of these two physical scales.

Finally, it is important to understand the limits within
which our fit functions are applicable. As discussed earlier,
due to the finiteness of the chosen region of spacetime, our
studies can only resolve , k between 0.057zv,, and 1007 v,
and, strictly speaking, our numerical results are only valid
within these values. However, from the plots and fit
functions above it is clear that the efficiency factor simply
scales as a power law ~y~2 beyond these limits, and our fit
functions can simply be extrapolated in this manner until
additional physical effects become relevant. In the ultra-
violet (UV), the results are not applicable for distances
smaller than the boosted wall thickness /,,/y,,, as effects
related to the finite width of the bubble wall, which we have
not taken into account, become important; therefore,
Ymax = Y2/ 12 represents the UV cutoff for the fit functions.
Likewise, the infrared (IR) cutoff is given by the inverse of
the bubble wall radius R;!; at physical scales larger than
this, the existence of multiple bubbles should be taken into
account, which will modify the efficiency factor.

D. Particle production

As an application of the results derived in the previous
sections, and to highlight the differences compared to
existing results in the literature [34-36], in this section,
we calculate particle production for a simple scenario.

Consider a scalar y that couples to ¢ via the interaction
term 1 Av4¢py?. For this simple case, the imaginary part of
the 2-point 1PI Green’s function is

22 4m?
21 =246y — (2m,,)2).

19
32z X (19)

Im(f(2> (X) )¢* —>ypy =

Here, ms, = ﬂvfﬁ + m3; y gets a mass contribution from the
phase transition (first term) in addition to its bare mass m,
(second term).

In Fig. 6, we plot the number of y particles produced per
unit area of bubble wall, n,, /A, for both elastic and inelastic
cases as a function of the mass m,,, fixing 4 = 1, calculated
using Eq. (9). We plot the results obtained with our fit
functions as solid curves, and the results obtained from
using the analytic formulas from [36] [Eqs. (12) and (13)]
as dashed curves.

For elastic collisions, we see that particle production is
enhanced at 2m,, < m; relative to the analytic estimate due
to the presence of the peak in the efficiency factor due to
oscillations, which is absent in the analytic result, but
matches the analytic result at higher masses when the
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FIG. 6. Particle number produced per unit bubble wall area as calculated using the fit functions to our numerical results (solid curves)
and from previous analytic results in the literature [36] (dashed curves), for elastic (left panel) and inelastic (right panel) cases (axes are
in units of v,). For this plot, we have fixed A = 1,1, = 10v,,y = 500, and L, = 80/v,. (a) Elastic collision (¢ = 0.6). (b) Inelastic

collision (¢ = 0.1) plots.

resonance peak becomes kinematically inaccessible. At
large masses, the number per unit area scales as ~(m/T)~2,
where T is the temperature of the bath (assuming 7' v).
Note that this scaling applies only to the production of
scalars [with the decay probability given by Eq. (19)]; for
other interaction forms this power dependence can change.

For inelastic collisions, particle production is also
enhanced for 2m, < my, as the analytic estimate under-
mines the amplitude of the peak; however, this is now only
true for the chosen set of values, and for other parameter
choices (in particular a larger value of y,,/1,,), it is possible
that the analytic results could predict higher particle number
densities. The crucial difference is seen at larger masses,
where the particle number for the analytic estimate drops far
more steeply than for our results. In this large mass regime,
our results predict that particle number per unit area scales as
~(m/T)™? as in the elastic case, in stark contrast to the
~(m/T)™® scaling predicted by the analytic result.

It is worth emphasizing that this produced particle
number is per unit surface area of bubble walls, and will
diffuse into the volume of the bubbles, which should be
accounted for in calculations of overall particle number
densities.

IV. DISCUSSIONS AND SUMMARY

In this paper, we performed numerical studies of particle
production from realistic bubble collision configurations
during first order phase transitions, building on simplified
treatments of this effect in either perfectly elastic or totally
inelastic configurations in the literature [34—36]. Our main
findings can be summarized as follows:

(i) In all realistic scenarios, elastic as well as inelastic,

the efficiency factor for particle production f () (see
Fig. 4) consists of a power law f(y) ~ y~2 from the
collision process between the bubble walls, and a
peak around y ~ mif (where m,, m; are the scalar

field masses in the true and false vacua), correspond-
ing to scalar field oscillations around the true or false
minimum after bubble collisions respectively. Sim-
plified treatments in the literature miss the peak for
elastic collisions and the power law at high energies
for inelastic collisions, but our numerical results
indicate that both features exist in realistic collision
scenarios.

(ii)) We characterize the nature of the peak (see
Sec. I B), clarifying its dependence on physical
parameters and phenomena, in particular on the
volume of spacetime that the scalar oscillations
extend to.

(iii) For a simple scalar production scenario (see
Sec. Il D), we find that the simple analytic estimates
in the literature underestimate the production of
particles. For particle masses smaller than the mass
of the scalar undergoing the phase transition, this is
due to the analytic estimates missing or under-
estimating the peak in the efficiency factor. For
masses higher than the scale/temperature of the
phase transition, we find that number densities scale
as ~(m/T)~? in all cases. This matches the results in
the literature for elastic collisions, and is far stronger
than the ~(m/T)~® scaling found in [36] for totally
inelastic collisions. Notably, this gives a signifi-
cantly larger particle abundance than the familiar
e~™/T Boltzmann suppressed abundance from ther-
mal processes for m/T > O(10). Our results there-
fore confirm that collisions of boosted bubble walls
can be an efficient source of heavy particles. More-
over, our results show that this is true for runaway
bubble collisions in general, independent of whether
they are elastic or inelastic.

(iv) We provide easy to use analytic formulas that fit our
numerical results: Eq. (17) for elastic collisions,
Eq. (18) for inelastic collisions, together with
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Eq. (12). These are valid for energies between the
inverse bubble radius at collision R;' and the inverse
boosted bubble wall thickness y,,/l,,, and can be
used to estimate particle production in generic
bubble collision setups.

In this paper, we have focused on improving the results
for the efficiency factor for various bubble collision
configurations through numerical studies. More detailed
discussions of the underlying physics, including under-
standing the relative contributions from various stages of
the phase transition, the physical aspects of the collision
process, and possible importance of resonant effects are
discussed in a companion paper [37]. These results have
since been applied to various BSM phenomena, such as
dark matter [39] and leptogenesis [41]. Copious particle
production from bubble collisions can also modify the
gravitational wave signals from such phase transitions; this
will be addressed in future work [44].

Let us briefly discuss some limitations of our results. Our
results were derived for a specific parametrization of the
scalar potential Eq. (3). It is possible that a potential that is
very different could produce results that can deviate
from our findings; however, the qualitative form of our
results (discussed above) is robust, and should continue to
hold. Our numerical studies were also carried out for a
single collision of two planar walls over a spacetime region
significantly smaller than the size of a typical bubble
at collision. More realistic scenarios involving multiple
collisions (as can occur for the elastic case), or multiple
bubbles of different sizes, could introduce additional
physical features that might be relevant, but are beyond
the scope of this paper. Furthermore, we have ignored the
backreaction from particle production on the dynamics of
the scalar field, but this could be relevant if particle
production is a very strong effect. All of these represent
interesting directions for further careful study.

Without IR cutoff
1000

1000

With IR cutoff (Ajg = 47/L)
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APPENDIX A: SPURIOUS CONTRIBUTIONS
AND IMAGINARY COMPONENTS

As mentioned in the text, the finite size of our numerical
studies (size L) can incur spurious effects close to the lower
frequency and momentum cutoffs (i.e., low @, k values
~2x/L). To avoid such effects, one should take an infrared
(IR) cutoff close to w, k ~ 27/ L. However, this IR cutoff is
not straightforward to incorporate in our numerical studies,
since the efficiency factor is calculated in terms of the
variables & = @” + k% and y = @? — k? in order to facilitate
direct comparisons with previous results in the literature.
However, these spurious contributions are correlated with
imaginary components of the Fourier transform. This is
illustrated for a sample case in Fig. 7.

The left panel shows the efficiency factor as calculated
using the formalism discussed in the main text, without
taking any IR cutoff; we plot the absolute value of the
function, as well as its real and imaginary components,
which shows that the function is clearly dominated by its

Comparison

100

100

S 1
~
0.100
0.10 | —— Absolute Value 0.10f | —— Absolute Value
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—— Real —— Real 0.010 cal, Ain
0.01 0.01 ) —— Abs, Ajp = 47/L
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FIG. 7. Different components of the efficiency factor for € = 0.06. We compute separately the efficiency factor from the real and

imaginary parts of the Fourier transform, as well as its absolute value. Left: straightforward numerical computation without imposing an
IR cutoff. Center: Imposing a cutoff for contributions from modes with w, k < 4z /L. Right: comparison between the real contribution
without IR cutoff and the absolute value with the IR cutoff imposed, showing excellent agreement.
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FIG. 8. Comparison between our numerical results and the analytic fit formula Eq. (17) for elastic collisions.
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FIG. 9. Comparison between our numerical results and the analytic fit formula Eq. (18) for inelastic collisions.
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imaginary component. In the central panel, we impose the
IR cutoff by manually removing the contributions corre-
sponding to w, k < 4z /L before performing the change of
variables and computing the efficiency factor. This shows
that while real component remains more-or-less unchanged
compared to the left panel, the imaginary component gets
significantly suppressed and no longer provides the dom-
inant contribution. In the third panel, we overlay the real
part of the efficiency factor calculated without the IR cutoff
with the absolute value of the corresponding computation
with the IR cutoff imposed; these are found to agree within
a factor of 2. We have checked several other cases
(corresponding to different values of ¢), and found that
these correlations persists for all checked cases. Based on

these observations, in our calculations we therefore take
only the real part of the Fourier transform, which is
computationally easier to implement, instead of taking
an IR cutoff for the w, k values.

APPENDIX B: COMPARISON BETWEEN
NUMERICAL RESULTS AND FIT FORMULAS

Here we plot the comparisons between our numerical
results and our analytic fit formulas Egs. (17) and (18) for
different potential shapes (i.e., different values of €) for elastic
(Fig. 8) and inelastic (Fig. 9) collisions. For these plots, we
have fixed y,, = 200, [,, = 10/vy, and L, = 40/v,.
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