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Abstract
The current state-of-the-art notions in statistical disclosure control face some problems in
real-world data privacy scenarios, by either making best-case assumptions or potentially
degrading the utility of the data. However, in 2017 Erdmann introduces two new syntactic
privacy notions for Relations: Attribute Privacy and Association Privacy. These notions
are defined over the topology of the released data. Notably, they do not include best-
case assumptions, and typically syntactic notions provide good data utility. It is thus
worthwhile to analyze their benefits and drawbacks in the context of existing notions.
Nevertheless, up to this point, no formal analysis has been performed, and no mechanism
has been given for these notions.

Therefore, in this work, we formally analyze the topological notions, providing theoretical
proofs about their protections, and compare them to the current state-of-the-art privacy
notions in statistical disclosure control. Further, we provide a mechanism to achieve
Attribute Privacy, whose utility we empirically analyze. Overall, we reveal multiple flaws
inherent to the topological notions, and come to the conclusion that they are not suited
as a generalized replacement for the existing relational data state-of-the-art. Additionally,
as Association Privacy has the protection goal of hiding associations between people,
we provide an analysis of Association Privacy in the context of graph data privacy. We
find that the existing syntactic graph privacy notion of k-security provides stronger
protections.
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Kurzfassung
Der etablierte Stand der Technik im Feld der statistischen Offenlegungskontrolle stößt in
realen Datenschutzszenarien auf Probleme, da die etablierten Datenschutzbegriffe entweder
auf Best-Case-Annahmen beruhen oder die Nutzbarkeit der Daten potenziell beeinträchtigt
wird. In 2017 führt Erdmann zwei neue syntaktische Datenschutzbegriffe für Relationen
ein: Attribute Privacy und Association Privacy. Diese Begriffe werden über die Topologie
der freigegebenen Daten definiert. Sie treffen keine Best-Case-Annahmen. Des Weiteren
bieten in der Regel syntaktische Datenschutzbegriffe Daten mit guter Nutzbarkeit. Daher
lohnt es sich, die Vor- und Nachteile dieser topologischen Begriffe zu analysieren, und
mit den bestehenden Begriffen zu vergleichen. Allerdings wurde bisher weder solch eine
formale Analyse durchgeführt, noch wurde ein Mechanismus für diese Begriffe entwickelt.

Daher analysieren wir in dieser Arbeit jene topologischen Datenschutzbegriffe formal.
Wir legen theoretische Beweise für ihre Schutzgarantien dar, welche wir mit denen
des etablierten Stands der Technik vergleichen. Darüber hinaus entwickeln wir einen
Mechanismus, welcher Attribute Privacy auf einen gegebenen Datensatz sicherstellt, und
analysieren dessen Nutzen empirisch. Insgesamt zeigen wir mehrere Schwachpunkte der
topologischen Datenschutzbegriffe auf, und kommen zum Schluss, dass diese Begriffe
kein geeigneter Ersatz für die etablierten Begriffe darstellen. Das Schutzziel des Begriffs
Association Privacy, ist es Verbindungen (Assoziationen) zwischen Personen zu verbergen.
Da dies Schutzzielen von Datenschutzbegriffen für Graphdaten entspricht, bieten wir
zusätzlich eine Analyse von Association Privacy im Kontext des Datenschutzes von
Graphdaten. Dabei zeigen wir, dass der existierende syntaktische Datenschutzbegriff für
Graphdaten k-Security stärkere Schutzgarantien bietet.
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1. Introduction
Data collection, aggregation, and publication is a massive field with various sources
and applications: One such application is forecasting competitions, in which companies
release datasets, and challenge the data mining community to achieve a better prediction
algorithm or machine learning model on that dataset. Historically, one such challenge
was the Netflix prize dataset [9], in which Netflix challenged data scientists to beat the
accuracy of their recommendation system, providing a large movie rating dataset. More
recently, the online data science platform Kaggle has become a popular platform among
researchers [10] for such challenges. These challenges include, for example, grocery store
chain sales forecasting, or predicting web-traffic [10]. Kaggle claims on their homepage [34]
385 thousand datasets and over 20 million users. Another public and highly studied
dataset is the U.S. census [3]. Besides relational databases, which typically represent a
record of attributes for a number of individuals, graph data, which is able to represent a
network of individuals, also has a wide range of uses. These range from social network
analysis, to financial services, supply chains, and healthcare [60]. The latter includes, for
example, graph modelling for tracking the COVID-19 pandemic spread [2].

However, data that is insufficiently anonymized bears risks of disclosing sensitive infor-
mation about individuals whose data has been used, especially when used in conjunction
with background data. As an example, the aforementioned Netflix prize dataset was
deanonymized by linking records with the Internet Movie Database [72]. This enabled
the researchers to identify records of known users in the Netflix dataset, and uncover
potentially sensitive information such as apparent political beliefs [72]. Another such
linkage was performed by [79], who linked health records collected and distributed by an
insurance commission with voter registration data, by using the overlapping attributes of
zip-code, birthdate, and sex.

In order to avoid such attacks and more broadly protect a participant’s privacy when
it comes to data analysis, the field of statistical disclosure control (SDC) has emerged.
The goal of SDC is to be able to disclose statistical data in such a way, that privacy of
the participants can still be ensured [90]. To do so, we need to measure the privacy of
the SDC process. Consequently, different privacy notions have been introduced. These
are grouped in syntactic notions, which impose conditions over the published data, and
semantic notions, which apply to release mechanisms that answer data queries. Of those,
in the context of relational data, k-Anonymity[79], and its extensions `-Diversity [65] and
t-Closeness [57] have established themselves as the state-of-the-art (SotA) for syntactic
notions, and ε-Differential Privacy (DP) has established itself as the SotA semantic
notion. Subsequently, these notions have been formally analyzed thoroughly. In the
context of graph data, there seems to not be an agreed upon state-of-the-art yet.

Despite being state-of-the-art, k-Anonymity (and its extensions) exhibit a major flaw
when it comes to privacy guarantees: These notions rely on the strong assumption, that a
data publisher correctly identifies the structure of an attacker’s background knowledge.
If this assumption about the attacker’s background knowledge is broken, the privacy
guarantees of these notions no longer hold. On the other hand, DP makes no such

1



1. Introduction

assumptions and offers strong privacy guarantees. However, DP offers significantly worse
data utility, than the syntactic SotA. This means there is a trade-off to be had, between
strong privacy guarantees, and data utility. This also has been codified by [51] into the
“no-free-lunch theorem”, which states that it is impossible to provide privacy and utility
without making assumptions about how the data are generated.

As a solution to previous notions’ problems, a set of two new privacy notions for
relations is proposed by Erdmann in 2017 [33]. These are the notions Attribute Privacy
and Association Privacy, which leverage the topology of the underlying data. The two
topological notions are introduced in duality to each other, however their protection goals
differ: Attribute Privacy aims to prevent an inference attack, where an attacker with
background knowledge about some attributes of their target can infer more attributes.
Association Privacy is intended to protect the relationship between people, which is more
in line with protection goals we would expect from notions for graph data. These new
notions could potentially offer a better trade-off proposition: They might offer stronger
privacy guarantees than k-Anonymity, as they do not share its assumption about the
attacker’s background knowledge. At the same time, they might offer better utility than
DP, as they are syntactic notions, which typically exhibit better utility than semantic
notions. Further, a later paper [87] claims that a combination of Attribute Privacy and
DP can rectify issues DP has with correlated data.

These notions have stayed relatively unexplored, and in particular, neither a formal
analysis of them nor a comparison with respect to the previous ones has been given.

Consequently, this thesis aims to understand whether the topological notions presented
by [33] offer a favorable trade-off between privacy and utility over the state-of-the-art, and
to find other potential practical applications of these notions. We do this by answering
subsequent research questions. The first of which is as follows: How does the privacy
provided by the topological notions compare to the privacy provided by the current
state-of-the-art SDC notions for relational data? Because notions have different (implicit)
assumptions, we begin answering this by comparing and contrasting the assumptions with
each other, judging the impact on privacy. We further pose follow-up research questions
to compare the privacy provided by the topological notions with the state-of-the-art.
Additionally, we answer whether the topological notions stand in any direct relationship
with the SotA. We do so by introducing a systematic way to convert an arbitrary
database into a relation, and then we either prove a non-implication between notions via
counterexamples or prove an implication.

Furthermore, we explore the resilience of topological notions with respect to the most
common attacks on private data, recompiled in [37], by conducting a theoretical analysis
of attack resilience. For the negative results, i.e., attacks that topological notions fail to
protect against, we perform an example of the target attacks on topologically protected
data, showing directly the success despite the notion. Finally, we compare our resilience
results for the topological notions with existing results for the SotA.

We are also interested in whether attribute privacy could be utilized in use-cases such
as continuous data publishing, or sequential releases. For these use-cases, we need to
understand the composition properties of Attribute Privacy. There are known composition
results for ε-DP, and negative results for k-Anonymity. We investigate the ways in which
Attribute Privacy composes. We do this by introducing new theorems, about a set of
conditions on the relation, that are equivalent to Attribute Privacy. Moreover, we examine
whether these conditions are still met under parallel or sequential composition, and give a
counterexample if the result is negative.
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We also want to investigate the claims of [87], and analyze whether a combination of
Attribute Privacy and DP can solve the problem with correlated input data in DP. For
this question, we analyze the effect of input-correlated data on Attribute Privacy.

We notice that the stated goal of Association Privacy is surprisingly similar to a
protection goal we would expect in the context of graph data. For this reason, we want to
explore, if Association Privacy has a place amongst graph data SDC notions. To investigate
this answer, we first need to establish what the SotA in graph data notions is. This
helps us identify common attack-models and graph-privacy notions with similar protection
goals as Association Privacy. We introduce a method to create a graph from a relation
protected by Association Privacy. We analyze if such graphs are then vulnerable against
the attack models on graph data previously found, by performing such attacks on those
graphs. With this knowledge, we can then judge if there are existing syntactic notions
that provide better graph-data privacy than Association Privacy. We also investigate, if
Association Privacy can be used to protect data that are initially given as graph data, by
mapping it into a relation, protecting that relation, and mapping it back into a graph.

Finally, to ascertain the privacy-utility trade-off, we need to analyze the utility achievable
under the topological notions. As utility is not a property of a notion, but a property of a
mechanism achieving a notion, and for lack of existing mechanisms for the topological
notions, we develop a mechanism for Attribute Privacy. We base this mechanism on
the principle of modifying the topological structure corresponding to the relation. With
this mechanism, we perform utility experiments whose result we compare with the
corresponding utility results of ε-Differential Privacy.

We list our contributions:
• In the context of relational data:

– We classify and formalize the privacy provided by the topological notions, with
respect to the SotA, categorizing their attack resilience against most known
attacks. With this we show that Association Privacy is not suited to protect
relational data, and that Attribute Privacy has better assumptions than the
syntactic SotA but only offers privacy on a narrow attack vector.

– We provide novel composition theorems for Attribute Privacy and discuss the
usability of Attribute Privacy in the context of continual observation. We
find that Attribute Privacy holds under parallel composition, but breaks under
sequential composition. Further, we find Attribute Privacy is not suited for
data under continual observation.

– We analyze the influence correlated input data can have on the protections
given by Attribute Privacy, and show that depending on the type of correlation
Attribute Privacy falters. We consequently judge that Attribute Privacy is likely
not suited to supplement DP.

– We develop a mechanism which achieves Attribute Privacy. We analyze the
utility it provides in comparison with the Laplace-Mechanism for DP. In the
analysis we show that the Attribute Privacy mechanism performs significantly
worse than Laplace, and we provide arguments why similar mechanisms would
have comparable results.

• In the context of graph data:
– We give an overview of SotA syntactic notions, grouped by their protection

goals and assumed background knowledge.
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1. Introduction

– We introduce a method to create a graph from an association-private relation,
and perform an attack analysis on such graphs with graph data adversaries.
We show that the existing syntactic notion of k-security[18] provides better
graph-data privacy, than Association Privacy.

– We further show the infeasibility to directly apply Association Privacy to data,
initially given as a graph.

In the following, we outline the structure of this thesis. We first provide background
information in chapter 2. There, we introduce and explain the current state-of-the-art of
notions in SDC, and elaborate on their challenges in real-world data privacy scenarios.
Additionally, we provide topological foundations that are necessary for the definition and
analysis of the topological notions. We introduce the topological notions that are discussed
in the remainder of the thesis, and lay out their explicit and implicit assumptions. Next,
in chapter 3, we present additional definitions, lemma and theorem, we developed, which
we use for later proofs. Then, in chapter 4 we perform our analysis of the topological
notions in the domain of relational data. There, we perform our composability analysis.
We compare the topological notions with the state-of-the-art notions. This includes a
comparison of the assumptions these notions hold, an analysis of the relationships between
notions, and an attack resilience analysis, of SotA attacker against the topological
notions. Further, we analyze if combining Attribute Privacy with ε-Differential Privacy
can solve DP’s problem with correlated input data. In chapter 5 we answer our research
questions regarding graph data. We summarize the existing protection goals for graph
data and assumed background knowledge. Then we give a brief summary of existing
SotA graph privacy notions, their protection goals, and assumed background knowledge.
Next, we formalize a way to create a graph from an association private relation. Further,
we formalize the adversary for the graph privacy protection goal closest to Association
Privacy’s protection goal. We perform attacks with this adversary against graphs generated
from association private relations. We contrast this with an existing graph privacy notion.
In chapter 6, we introduce our mechanism to achieve Attribute Privacy. Subsequently, in
chapter 7 we analyze its utility and compare it to the utility provided by ε-DP. Finally,
we close the thesis in chapter 8, in which we provide the conclusions we draw from our
work.

We provide additional information on existing informal analysis of graph data algorithms
for privacy in Appendix A.

Our code is available in the following repository https://gitlab.kit.edu/urpyg/
thesis-topology-of-privacy/, in the Scripts subfolder. Images of simplicial com-
plexes are generated using GeoGebra (www.geogebra.org) and PolyMake [39].

1.1. Related Work
We were not able to find usages of the attribute and Association Privacy notions in
other papers with one exception. A flaw of ε-Differential Privacy is pointed out by [87]:
Correlated attributes can allow a successful attribute linkage attack on data that is
protected by DP. The authors suggest a combination of a relaxation of Attribute Privacy
and ε-Differential Privacy to solve this issue. They provide a mechanism and utility
analysis, however the exact protections given are not formally analyzed. We further
investigated this paper’s claims.
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1.1. Related Work

A systematization of privacy notions for relational data is presented in [37]. While this
work does not discuss the topological privacy notions, it does analyze and compare ε-
Differential Privacy, k-Anonymity and its extensions, as well as other privacy notions
(which will not be discussed in the thesis). It also provides attack models, which we use
to test the topological notions against.

There are multiple surveys concerned with graph data privacy: [93, 1] iterate over several
mechanisms, however the corresponding notions are not analyzed or compared with each
other. A more recent survey [60] is focussed on “provable” (semantic) graph privacy
notions. The authors thus compare some differential privacy adaptions for graph data
and pufferfish privacy. They dismiss syntactic notions as not provable but refer to [53] for
a discussion of syntactic notions. However [53] is also only concerned with “techniques”,
and devotes only a paragraph of a short description to each of the 35 discussed techniques.
While this means these surveys lack a formal comparison of syntactic graph privacy
notions, surveys [53, 1] and paper [62] do provide an informal classification of privacy
breaches in graph data, which appears consistent between the works. Further [93] lists
different types of background knowledge, that are assumed by various algorithms for
private graph data.
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2. Background
In this chapter, we introduce concepts used throughout the thesis. This includes the
state-of-the-art SDC notions on relational data, topological concepts needed to define
the topological notions and later proofs, the topological notions themselves, as well as
properties of these notions. In Table 2.1 we list notations we use throughout the thesis.

Notation Description
X The set of all individuals in a given relation
Y The set of all attributes in a given relation
R A relation on individuals and attributes X × Y
x Usually an individual
y Usually a (binary) attribute
Xy The set of all individuals that share the attribute y

in a given relation
Yx The set of attributes, the individual x has in a given relation
ΦR The attribute complex of relation R
ΨR The association complex of relation R
σ A set of individuals; simplex representing individuals in ΨR

γ A set of attributes; simplex representing attributes in ΦR

φR Operator mapping sets of individuals to shared attributes
ψR Operator mapping sets of attributes to sharing individuals
M A mechanism ensuring some privacy notion

Table 2.1.: Notation used in this thesis

2.1. State-of-the-Art SDC Notions for Relational Data
SDC privacy notions are classified in two categories: syntactic and semantic. Syntactic
notions impose conditions over published databases, while semantic notions are defined
over mechanisms that release the data. In this latter case, a database is considered
protected when it corresponds to the output of a private mechanism. Orthogonal to this,
the data to be protected can have different types. Relational data can be represented
using tables, where rows represent individuals, and columns represent attributes. Graph
data can be represented using a graph, usually with vertices representing individuals. In
the thesis, we mainly focus on relational data, however we devote chapter 5 to graph data.

For relational data, the current state-of-the-art of syntactic notions are k-Anonymity [79]
and its extensions `-Diversity [65] and t-Closeness [57]. The semantic state-of-the-art
notion is ε-Differential Privacy [25, 26]. In this section, we explain the intuition and give
formal definitions for these notions.

For most of the thesis, we discuss data given as Individual-Attribute-Relations, which we
define in Definition 2.4.1. In these relations an individual can either have an attribute or

7



2. Background

not have it. For example, individual Bob can have the attribute “high income”, describing
that fact about him. However, the SotA notions are defined over more general relational
databases, in which Bob’s value for the attribute “income” might be “60000”. For this
reason, we define our notation over databases here.

In this thesis, we assume that a database D consists of a single table, with rows corre-
sponding to individuals of an individual set X = {x1, . . . , xn}, and columns representing
attributes y1, . . . , ym. We note v := D[xi, yi] the value of attribute yi for individual xi. In
our above example, xi is Bob, yi is “income”, and v = 60000.

The row representing an individual, which contains this individual’s values for the
attributes, is called a record. Further, given two databases D1 and D2 that have the
same set of attributes, we use set notation to signify relationships between sets of records
contained in those databases. So, for example, we write D1 ⊆ D2 to mean all records in
D1 are also contained in D2.

The idea behind k-Anonymity is that a certain combination of attributes is enough
to identify an individual within a database, which allows an attacker to then read the
target’s sensitive attributes. This combination of attributes is known as a quasi-identifier
(qid), and although it is not an explicit identifier such as a name or address, it can be
used to identify an individual.
k-Anonymity assumes for a given database table T , that T is a subset of some larger

population Ω, such that each record ti ∈ T represents an individual from Ω [65].

Definition 2.1.1 (Quasi-Identifier [65]). A set of nonsensitive attributes {q1, . . . , qw} of a
table is called a quasi-identifier, if these attributes can be linked with external data, to
uniquely identify at least one individual in the general population Ω.

For example, the set of attributes {zip-code, birth date, sex} has been used by Sweeney
to identify the governor of Massachusetts in a dataset of medical records, using an external
dataset of voter registration records [79, Example 1]. k-Anonymity assumes that this set
of attributes, which identifies an individual, qid, is known to the analyst.

Definition 2.1.2 (k-Anonymity [65]). A database D for individuals X and attributes
Y satisfies k-Anonymity, if for every record t ∈ D, there exist k − 1 other records
t1, t2, . . . , tk−1 ∈ D, such that

D[t, y] = D[t1, y] = D[t2, y] = . . . D[tk−1, y] , for all y ∈ qid .

So, the goal of k-Anonymity is to create anonymity groups, such that every qid that
appears in the database appears at least k times. This way, knowing a target’s qid will
not enable an attacker to uniquely identify the target anymore. In a dataset D, which
has been anonymized with k-Anonymity, an equivalence class is a set of records that have
the same values for the quasi-identifier [57].

However, if within an equivalence class the values of a sensitive attribute S are the
same for all individuals in that equivalence class, the privacy of that sensitive attribute is
not given anymore. In such a case, an attacker is able to read the sensitive attributes of
their target, despite not being able to tell, which individual within the group the target is.

To prevent this kind of attacks, the additional notion of `-Diversity was introduced.
`-Diversity requires each anonymity group to have sensitive attributes, which are diverse
by a metric parameterized over `, for example, entropy ≤ log `.

Definition 2.1.3 (`-Diversity Principle, based on [65, 57]). Given a k-Anonymity table
D, whose qid attributes generalize to q∗. An equivalence class is `-diverse if it contains
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at least ` well-represented values for the sensitive attribute S. A database is `-diverse if
every equivalence class of the table is `-diverse.

Definition 2.1.4 (Entropy `-Diversity [57]). The entropy of an equivalence class E is
defined as

Entropy(E) = −
∑
s∈S

p(E, s) log p(E, s) .

Where S is the domain of the sensitive attribute, and p(E, s) the fraction of records in E,
that have sensitive value s. A table has entropy `-diversity, if for every equivalence class
E Entropy(E) ≥ log ` .

It can still happen that a sensitive attribute is over- or underrepresented within a group
when compared to the whole database. This is rectified by t-Closeness, which ensures the
statistical distribution of sensitive attributes within a group resembles the distribution of
the whole dataset.

Definition 2.1.5 (t-Closeness Principle [57]). An equivalence class has t-Closeness, if the
distance between the distribution of a sensitive attribute in this class, and the distribution
of the attribute in the whole table is no more than a threshold t. A table has t-Closeness,
if all equivalence classes have t-closeness.

The state-of-the-art for semantic notions is ε-Differential Privacy (DP). The goal of
ε-Differential Privacy is to ensure for any participant, that their (non)-presence in a
database is concealed. Intuitively, if an individual removed their record from the dataset,
no output of the mechanism should meaningfully change. More precisely, it ensures that
for any two neighbor databases (databases that differ from each other in one entry, which
represents an individual) the output is ε-indistinguishable. ε-indistinguishably limits, how
much two random variables can differ from each other for any possible event.

Definition 2.1.6 (ε-Differential Privacy [25]). A randomized function K gives ε-Differential
Privacy, if for all datasets D1 and D2 differing on at most one record, and all S ⊆
Range(M),

Pr[K(D1) ∈ S] ≤ exp (ε) · Pr[K(D2) ∈ S] .

ε is also called the privacy budget. Larger ε values correspond to a higher chance of a
correct inference by the attacker, and accordingly also correspond to less privacy. However,
in most DP mechanisms, a larger privacy budget allows for better utility results.

The aforementioned notions encounter certain challenges when applied to real-world
data privacy scenarios. Syntactic notions can be achieved while preserving high data
utility. However, the privacy offered is a best-case scenario, in which an attacker with
more background or different qid knowledge can obtain the target information even if
these notions are satisfied. ε-Differential Privacy presents a worse-case metric, which is
much more robust in terms of privacy, but the trade-off between privacy and utility is not
always easy. The majority of DP mechanisms work for query protection, and the utility
loss increases dramatically when we try to adapt them for microdata publication.

2.2. Composition
Composability in SDC is the property that two or more databases or mechanisms, which
individually satisfy a privacy definition still satisfy the definition collectively, typically
with a change in parameters [21].
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This becomes relevant in the semantic case when multiple queries need to be answered
over the same database. Such queries could, for example, be “how many patients in
zip-code z have a viral infect” for multiple zip-codes z.

However, composition is also relevant in the context of syntactic notions. For example,
for a medical study over a set of individuals, a dataset with k-Anonymity is published, and
a year later, for a follow-up study over the same set of individuals, a new dataset that also
satisfies k-Anonymity is published. It would be desirable, however not trivial to ensure
that the combined dataset still ensures k-Anonymity. Note that while many composability
theorems are generalized to an arbitrary number of data releases, for simplicity, in this
thesis we mostly focus on the case in which two data releases compose.

The most well-known composability theorems are parallel and sequential composi-
tion [69]. Parallel composition analyzes a sequence of data releases, where the data used
for every release comes from disjoint (sub-)databases. More precisely, for every release the
sets of input records (individuals) are disjoint. Typically (as in most use cases) all releases
contain information about the same set of attributes. The full original database D can be
seen as being split horizontally into databases A and B, as pictured in Figure 2.1.

a1 · · · am

1
A...

i

D
...
j

B...
n

Figure 2.1.: Structure of a database for parallel composition

We adapt the definition of a partitioning function from [42, 58]: A k-partitioning
function p = {p1, . . . , pk} is a function, which maps a database to a database of the same
domain, such that for a given database D, pi(D) ⊆ D and pi(D) ∩ pj(D) = ∅, for i 6= j.
Then we differentiate in the semantic and syntactic scenario:

• Semantic: the two corresponding releases would be MA ◦ p1(D) = M1(A) = A′ and
MA ◦ p1(D) = M2(B) = B′. Given that M1,M2 satisfy the privacy notions Γ1,Γ2,
the question is, which privacy notion is satisfied by M := (M1 ◦ p1,M2 ◦ p2).

• Syntactic: the two corresponding releases would be A′ and B′ satisfying the privacy
notions Γ1,Γ2, and the question is which privacy notion is satisfied by the joint
database D′ = A′ ∪B′.

In the semantic setting the mechanisms would fulfil the notion, and we would analyze
for example the bounds of ε both releases give.
Theorem 2.2.1 (Parallel Composition for Differential Privacy, adapted from [69]). Let D
be a database and p = {p1, . . . , pk} a k-partitioning function on D. Let M1, . . . ,Mk be
mechanisms, where Mi is εi-Differentially Private.

The mechanism
M := (M1 ◦ p1, . . . ,Mk ◦ pk)

is ε-Differentially Private with ε = max
i∈1..k

εi
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The intuition behind this is that the presence or absence of a given individual in D,
will at most be represented in one of the sub-databases pi(Di), which means it at most
influences the output of Mi. In the worst case, the Mi whose output is influenced is
εi-DP with the biggest εi.

Sequential composition analyzes a sequence of data releases, where the data used for each
entry in the sequence of data releases comes from potentially overlapping sub-databases.
Here, the releases typically contain data of the same set of records, and potentially
intersecting sets of attributes. The full original database D can be seen to be split
vertically into databases A and B, as pictured in Figure 2.2. Two cases for composing

a1 · · · an

D A B

b1 · · · bm

Figure 2.2.: Structure of a database for sequential composition

databases are

• M(A) = A′ and M(B) = B′: The first release is based on the left part of the
database, the second release is based on the right part.

• M(A) = A′ and M(D) = D′: The first release is based on the left part of the
database, the second release is based on both parts. Because A and B are allowed
to overlap in attributes, this is a special case of the former.

We again differentiate between the semantic and syntactic scenario:

• Semantic: given that M1,M2 satisfy the privacy notions Γ1,Γ2, the question is,
which privacy notion is satisfied by M := (M1 ◦ f,M2 ◦ g), where f and g are
functions where f is defined such that f(D) = A, and g is defined such that
g(D) = B.

• Syntactic: the two corresponding releases would be A′ and B′ satisfying the pri-
vacy notions Γ1,Γ2, and the question is which privacy notion is satisfied by the
joint database D′, in which each record r′ ∈ D′ is the product of combining both
corresponding records r′

1 ∈ A′ and r′
2 ∈ B′.

Additionally, for sequential composition of relations, we will later discern between static
releases and dynamic releases (Definition 4.1.1). This is for the case where each release
contains the superset of attributes of the previous release. In static releases, already
released data is static and cannot be changed. Only new data (for new attributes) is added.
In contrast, dynamic sequential releases allow a later release to contain information that
conflicts with previously released data. Note, that the source data does not change, but a
release mechanism likely changes some attributes, and inconsistencies between releases
might allow an attacker to infer the original state of the data.
ε-Differential Privacy composes sequentially. A composition theorem is given for the

case, in which the source of both releases is the full database.
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Theorem 2.2.2 (Sequential Composition for Differential Privacy [27]). Let M1 be a ε1-
Differentially Private mechanism, and M2 be a ε2-Differentially Private mechanism, their
combination

M := (M1,M2)

is ε1 + ε2-Differentially Private.

The intuition behind this theorem is that the presence or absence of an individual in the
source data affects the output of both mechanisms. However, the individual’s probabilistic
influence on the output of Mi is bounded by exp(εi) (i ∈ {1, 2}), which means by taking
the likelihood of both events (multiplying probabilities), the probabilistic influence on the
combined output is bounded by exp(ε1) · exp(ε2) = exp(ε1 + ε2). This also covers cases in
which the input data to the composing mechanisms is not the full database, as a εi-DP
mechanism M′

i = Mi ◦ fi, that discards information of the input database is trivially
constructed from Mi.

There are multiple results that show that k-Anonymity does not generally compose [78,
38, 77], these attacks rely on inconsistent choice of anonymity classes between releases.
This means an individual can appear in different anonymity classes, and an attacker can,
for example, compare sensitive attributes that are common among all of those anonymity
classes. Some of these attacks are clearly showing a breakdown of privacy guarantees
under sequential composition, as they rely on the entire database D (or overlapping
sub-databases) to be released multiple times [78, Example 3].

All remaining k-Anonymity composition attacks we found rely on the condition, that
at least one individual is present in multiple independently recorded databases that are
released [38, 77]. For example, the same patient appearing in two Hospitals’ databases.
This is arguably parallel composition, as given two independently recorded databases
D1 and D2, each containing a record representing the data of the same individual,
r1 ∈ D1, r2 ∈ D2, it is not necessarily the case that r1 = r2. The record r2 could, for
example, contain additional attributes that are not relevant to the attack, like a secondary
sensitive attribute, that is not captured by r1. With an alternate definition of database
overlap, where D1 ∩ D2 6= ∅ if both databases capture data about the same individual,
the releases on which these attacks work could be classified under sequential composition.

We would like to acknowledge related concepts, which we will not be using: Specifically
for syntactic notions [75], introduces the dichotomy between continuous data publishing
(based on [13]) and sequential release publishing (based on [88]). In continuous data
publishing the set of attributes is fixed, and records (rows; individuals) are modified, while
in sequential release publishing the set of individuals is fixed and columns (attributes) are
modified. In this context, modification can mean insertions, deletions, reinsertions, and
updates.

For semantic notions [42] define the terms independent and adaptive sequential releases,
which stand orthogonal to the parallel and sequential composition concepts. There the
more general term, adaptive composition, means that any mechanism of the sequence also
receives the outputs of the preceding mechanisms as input. And the less general term,
independent composition, means that the outputs of the mechanisms are independent of
each other.
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2.3. Topological Concepts
In this section we explain topological concepts, needed to define the topological privacy
notions, and through the thesis.

Definition 2.3.1 (Independent set of points [67, Definition 2.3.1]). A set of n+ 1 points
a0, a1, . . . , an in Rm is said to be independent if the vectors a1 − a0, a2 − a0, . . . , an − a0

are linearly independent.

Definition 2.3.2 (n-simplex [67, Definition 2.3.2]). A n-Simplex σ is the set of points

n∑
i=0

λia
i ,

where a0, a1, . . . , an are independent in some Euclidean space Rm, and the λi are real

numbers, such that λi ≥ 0 for all i and
n∑

i=0
λi = 1. The points a0, a1, . . . , an are called

vertices of σ and are said to span σ.
If ai0 , ai1 , . . . air is any subset of vertices of σ, the subspace of σ of those points linearly

dependent on ai0 , ai1 , . . . air is called a face of σ. A face could be empty or the whole of σ.
It is called proper if it is neither of these. Finally, n is called the dimension of σ.

In Figure 2.3 we find one way of simplex representation by drawing each simplex as
their equivalent shape. E.g. a simplex consisting of two points becomes a line between
these two points, a simplex consisting of three a triangle. Throughout the thesis, we will

(a) σ0 (b) σ1 (c) σ2 (d) σ3

Figure 2.3.: Examples of n-simplexes with n = 0, . . . , 3.

denote an n-simplex σ by the set of n+ 1 vertices, that span it. E.g. σ := {a, b, c} is the
2-simplex, spanned by the 3 independent vertices with the labels a, b, and c respectively.
This notation also makes it easier to describe a face of a simplex: Given two sets of
vertices µ and γ, each spanning a simplex, then the simplex spanned by µ is a face of
γ, iff µ ⊆ γ. Referring to the simplices by their vertex sets, µ is a proper face of γ, iff
µ 6= ∅, and µ ( γ.

Definition 2.3.3 (Simplicial Complex [67, Definition 2.3.5]). A simplicial complex K is a
finite set of of simplexes, all contained in some Euclidean space Rm. Furthermore

1. if σ is a Simplex of K, and τ is a face of σ, then τ is in K.

2. if σ and τ are simplexes of K, then σ ∩ τ either is empty, or is a common face of σ
and τ .

An example of an arbitrary simplicial complex can be seen in Figure 2.4. A simplicial
complex is called empty, if it consists solely of the empty simplex. The void complex ∅ is
the simplicial complex with no simplices in it.
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Figure 2.4.: Example of arbitrary simplicial complex

Definition 2.3.4 (Deletion). Let Σ be a simplicial complex and µ ∈ Σ a simplex contained
in Σ. Then

Σ − µ := {σ ∈ Σ | σ * µ}

Definition 2.3.5 (Maximal simplex, adapted from [33]). A simplex µ of Γ is called a
maximal simplex of Γ, iff it is not a proper subset of any other simplex of Γ. In the
following max(µ) will describe the set of maximal simplices of Γ.

max(Γ) 3 µ ⇔ @γ ∈ Γ: µ ( γ .

The term facet (not to be confuces with face) is used synonymously with the term maximal
simplex.

Definition 2.3.6 (Free faces, adapted from [33]). A simplex γ ∈ Γ of a simplicial complex
Γ is called a free face of Γ, iff it is a proper subset of exactly one maximal simplex of Γ.

Γ 3 γ is free ⇔ ∃!µ ∈ max(Γ) : γ ( µ .

For annotation purposes we also define an operator, that returns true, if a given simplex
is a free face on a specified simplicial complex, and the set of all free faces of a simplicial
complex.

Definition 2.3.7 (isFree). Let f be a simplex and S be a simplicial complex. The operator
isFree(f, S) is true, iff f is a free face of S.

isFree(f, S) ⇔ f ∈ S ∧ ∃!m ∈ max(S) : f ( m.

Additionally, denote free(S) the set of all free faces on S:

free(S) := {f | isFree(f, S)} .
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Example 2.3.8. Consider the simplicial complex K pictured in Figure 2.5. K has three
maximal complexes:

{{a, b, c}, {b, d}, {c, d}} = max(K) .

The faces {a, b, }, {a, c} ∈ free(K) are proper free faces, as they are proper subsets of
maximal simplex ∆ = {a, b, c}. However {d} is not a free face, as it is a proper subset of
the two maximal simplexes {b, d} and facet {c, d}.

dc
ba

Figure 2.5.: Simplicial complex K, consisting of a filled, and a hollow triangle

Definition 2.3.9 (Elementary collapse, based on [89][67, p. 72]). Given a simplicial complex
K with a free face τ ∈ free(K). Let σ be the maximal simplex that contains τ : τ ( σ.
The process of passing from K to K − σ − τ is called an elementary collapse. The inverse
operation is called an elementary anti-collapse. If there exists a series of elementary
collapses, that transform K into the simplicial complex containing only a single vertex, K
is called collapsible.

Definition 2.3.10 (Simple-homotopy equivalence [8, 89]). Two simplicial complexes are
of the same simple-homotopy type (are simple-homotopy equivalent), if they can be
transformed into one another via some sequence of collapses and anti-collapses.

We note, that simple-homotopy equivalence is a special case of homotopy-equivalence [89],
which we will not define here, and instead refer to [71, p. 108] for a definition.

2.4. Model Formalization
In this section, we formalize the model on which the topological notions will work.
The privacy-notions work on relations between attributes and individuals having these
attributes. The relation between user and attribute is established when a user possesses a
certain attribute. We usually represent these relations as tables, where columns represent
binary attributes and rows individuals, and • denotes the presence of an entry, an example
of this can be seen in Table 2.2. Mathematically, we can formalize this as follows:

Definition 2.4.1 (Individual-Attribute-Relation). Let X be a finite discrete nonempty
space of individuals, Y a finite discrete nonempty space of attributes and R a relation on
X × Y . Relation R is a set of ordered pairs (x, y) with x ∈ X and y ∈ Y .

Row: For each x ∈ X let Yx = {y ∈ Y | (x, y) ∈ R}. Then Yx consists of all attributes of
individual x.

Column: For each y ∈ Y let Xy = {x ∈ X | (x, y) ∈ R}. Then Xy consists of all individ-
uals who have attribute y.

Given a relational database, we can define the Dowker Complexes.
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Definition 2.4.2 (Dowker Complexes, adapted from [33]). Let R be a relation over indi-
viduals and attributes X × Y . Then the Dowker Complexes are defined as follows.

ΦR = {γ ⊆ Y | ∀y ∈ γ∃x ∈ X : (x, y) ∈ R}
ΨR = {σ ⊆ X | ∀x ∈ σ∃y ∈ Y : (x, y) ∈ R} .

Note that for every relational database, the Dowker Complexes are simplicial complexes.
These complexes ΦR and ΨR, have the same homotopy type (are homotopy equivalent),
and we say they are Dowker dual of each other with respect to relation R.

Thanks to this construction we obtain a topological model of our data, which allows us
to transfer geometric properties to privacy ones. To do so, we need to understand the
interpretation of these two complexes:

• ΦR models attributes shared by individuals. A set of attributes γ 6= ∅ is in simplex
ΦR, iff there exists (at least) one individual xi in the relation with a set of attributes
γi with γ ⊆ γi. In this case xi is called a witness for γ.

• While ΨR models individuals with shared attributes. A set of individuals σ 6= ∅ is in
ΨR, iff there exists (at least) one attribute yi in the relation which is shared by a
group of individuals σi with σ ⊆ σi. yi is called a witness for σ.

For readability, ΦR will sometimes be referred to as the attribute complex, while ΨR

will be referred to as the association complex.

Example 2.4.3. Consider the following relation NH which records for the participants
Alice, Bob, Charlie and Dough, if they live in neighborhood A or B, if they have recently
been to a hospital and if their income is under a certain threshold. Therefore, we have
the following individuals and attributes sets respectively:

X = {Alice,Bob,Charlie,Dough}
Y = {neighborA,neighborB,hospital, income} .

The relation is defined via Table 2.2.

NH neighborA neighborB hospital income
Alice • • •
Bob •

Charlie • •
Dough • •

Table 2.2.: NH relation on X × Y

The Dowker complexes for this relation are the attribute complex ΦNH, and the
association complex ΨNH. They are illustrated in Figure 2.6.

The attribute complex (Figure 2.6a) contains simplices made of sets of attributes. We
can see that σ = {neighborA,hospital, income} is one such simplex. In this case
Alice is a witness for σ.

The association complex ΨNH (Figure 2.6b) contains sets of individuals. An example of
a witness in the association complex is the neighborA that witnesses {Alice,Bob}.

For completeness, the following lists all simplices in the attribute complex, and their
corresponding witnesses:
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(a) ΦNH (b) ΨNH

Figure 2.6.: Dowker Complexes of NH

• {neighborA,hospital, income}, witness: Alice.

• {neighborA,hospital}, witness: Alice.

• {neighborA, income}, witness: Alice.

• {hospital, income}, witness: Alice.

• {neighborB,hospital}, witness: Charlie.

• {neighborB, income}, witness: Dough.

• {neighborA}, witness: Alice or Bob.

• {neighborB}, witness: Charlie or Dough

• {hospital}, witness: Alice or Charlie.

• {income}, witness: Alice or Dough.

And these are the simplices and corresponding witnesses of the association complex:

• {Alice,Bob}, witness: neighborA.

• {Charlie,Dough}, witness: neighborB.

• {Alice,Charlie}, witness: hospital.

• {Alice,Dough}, witness: income.

• {Alice}, witness: neighborA, hospital or income.

• {Bob}, witness: neighborA.

• {Charlie}, witness: neighborB or hospital.

• {Dough}, witness: neighborB or income.
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Definition 2.4.4 (Poset). A partially ordered set, in short poset is a set of elements with a
partial order (≤)

Let R be a relation over individuals X and attributes Y , then we can define the poset
PR associated with the relation R (Adapted from [33]): Let the nonempty set ∅ 6= σ ⊆ X
describe a set of individuals, and the nonempty set ∅ 6= γ ⊆ Y describe a set of attributes.
A poset element of PR consists of an ordered pair (σ, γ). Since, it is labeled with both σ
and γ this kind of poset is also called doubly labeled.

For the poset elements and their order the following holds:

• All individuals in σ have all attributes in γ.

• Iff an individual has at least all attributes in γ, then that individual must be in σ.

• Iff an attribute is shared by at least all individuals in σ, then that attribute must be
in γ.

• Partial order is described by edges in the graph.

• There is an edge between (σ1, γ1) and (σ2, γ2) iff corresponding sets are subset
comparable.

• (σ1, γ1) ≤ (σ2, γ2), when σ1 ⊆ σ2 and γ1 ⊇ γ2. So the poset is ordered from attributes
that are less shared to attributes that are shared by a lot of people

These posets are designed to model inference processes. Attribute inference: Given a
set γ of attributes, if γ is subset of γi in PR and γi is the smallest such superset, we know
individuals with attributes γ also have attributes γi. This lets us infer new information if
γ ( γi. Analogous for association inference with σ and σi.

Example 2.4.5. Continuing Example 2.4.3, we replace individuals names with correspond-
ing numbers 1–4. The poset elements can be gathered from the simplicial complexes’
(recall Figure 2.6) simplices and their witnesses. In order to illustrate this we give the
following examples:

(σ1, γ1) =: ({1}, {neighborA,hospital, income})

is an element of the poset since individual 1, Alice, is a witness for {neighborA,
hospital, income} in ΦNH. Another example is

(σ2, γ2) =: ({1, 2}, {neighborA})

since individuals 1 and 2 are witnesses for {neighborA} in ΦNH, or since neighborA is
a witness for {1, 2} in ΨNH. Furthermore, these elements are subset compatible, since

{1} = σ1 ⊆ σ2 = {1, 2}, and
{neighborA,hospital, income} = γ1 ⊇ γ2 = {neighborA} .

So (σ1, γ1) ≤ (σ2, γ2). In other words, the attribute set γ1 is shared by less people (only
Alice has this combination), while the set γ2 is shared by more people (both Alice and
Bob have this attribute).

The full poset is illustrated in Figure 2.7.
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2.4. Model Formalization

Figure 2.7.: Doubly labeled partially ordered set for relation NH

Concerning attribute inference: Say we have the attribute set γ = {neighborA,
hospital}, then γ is subset of γ1, and γ1 is the smallest such superset. The new
information learned is that if an individual lives in neighborhood A and has been to the
hospital, their income is under the threshold.

On the other hand, if the attribute set is γ = {neighborA}, then γ2 is the smallest
set such that γ ⊆ γ2, and thus no new information is learned.

Definition 2.4.6 (Face Poset [33]). Let Σ be a nonvoid simplicial complex. The partially
ordered set F(Σ) determined by Σ is called the face poset of Σ.

The elements of this poset are the nonempty simplices of Σ. Partially ordered by set
inclusion.

In this case, the connection between the two homotopy equivalent simplicial complexes
ΦR and ΨR translates to two specific maps between the face posets of these complexes.

Definition 2.4.7 (Operators φR and ψR [33]). Let R ∈ X×Y be a relation over individuals
X and attributes Y . The operators between the face posets of attribute complex ΦR and
association complex ΨR, mentioned above, are defined as follows:

φR : F(ΨR)! F(ΦR) ψR : F(ΦR)! F(ΨR)
σ 7!

⋂
x∈σ

Yx γ 7!
⋂
y∈γ

Xy .

Further φR(∅) := Y and ψR(∅) := X.

Recall, that Yx is the set of all attributes of an individual x and Xy is the set of all
individuals that share an attribute y. So when in the definition of φR we cut Yx over
all individuals in σ, that means that we get the shared attributes between all of those
individuals:

• φR(X) = γ is the set of attributes γ, that is shared between all individuals in the
relation.

...

• φR({x1, x2}) = γ′ is the set of attributes γ′, that individuals x1 and x2 have in
common.

• φR({x}) = Yx is the set of attributes Yx of an individual x.
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• φR(∅) = Y is the set of all possible attributes Y in the relation, this would even
include attributes that no individual has.

And analogously in the definition of ψR we cut Xy over all attributes in γ. So we get
all individuals that share all of the attributes in γ:

• ψR(Y ) = σ is the set of individuals σ, that each have all possible attributes in the
relation.

...

• ψR({y1, y2}) = σ′ is the set of individuals σ′, that have both attributes y1 and y2 in
common.

• ψR({y}) = Xy is the set of individuals Xy that have attribute y.

• ψR(∅) = X is the set of all individuals X in the relation, this would even include
individuals that have no attributes.

Chaining both operators, on a set of individuals or attributes, will always produce a
superset of the input. This is because moving from a set of individuals σ that share a
common set of attributes γ, to the set of attributes γ′ that is common between those
individuals, the latter set of attributes should include the former. Dually, when moving
from a set of attributes γ, that is shared between some individuals σ, the set of individuals
σ′, that all have the given attributes, should be larger or equal to the initial set of
individuals σ.

Lemma 2.4.8 ([33, Lemma 43]). Let R be a relation on X × Y .

∀γ ⊆ Y, γ ⊆ (φR ◦ ψR)(γ) .

Dual properties hold:
∀σ ⊆ X, σ ⊆ (ψR ◦ φR)(σ) .

This means such a chaining of these operators maps a face of the corresponding Dowker
complex, to a simplex that contains it. Consequently, a maximal face will always be
mapped onto itself

Corollary 2.4.9 ([33, Corollary 44]). Let R be a relation on X × Y , with both X and Y
nonempty. If γ is a maximal simplex of ΦR, then (φR ◦ ψR)(γ) = γ.

Dual properties hold: If σ is a maximal simplex of ΨR, then (ψR ◦ φR)(σ) = σ.

2.4.1. Assumptions of Attribute Privacy and Association Privacy
Before we finally define the topological notions of Attribute Privacy and Association
Privacy, we present the assumptions for these notions, as they are presented by [33], and
discuss implicitly held assumptions.

Relational Completeness: Any given relation is reflecting the ground truth fully. Any
missing elements observed in reality will deem relation inconsistent. Unobservable but
valid pairs can be omitted.
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Observational Monotonicity: Observation of an attribute for an individual implies
that this individual has that attribute. In other words, the observation of an attribute is
meaningful.

However, the absence of attribute is not significant. If an attribute is not observed for
an individual, it does not imply that the individual does not have that attribute. This
means a lack of properties will not be protected.

So an implicit assumption is that the notion only needs to protect given information. It
is however noted, that if the absence of an attribute is significant and observable, then that
attribute should appear in its original and negated form in the relation. This assumption
is used by [33] to view relationships as monotone boolean functions and thus enable the
use of combinatorial topology.

Observational Accuracy: Observations are accurate. Relationship defines bipartite
graph, assumptions describe (observations of) a sensor. It is however explicitly allowed to
blur relationships (allow uncertainty) to preserve privacy.

Implicit Assumptions: Some assumptions are not explicitly stated, but can be inferred:

• A single record always represents one person (as opposed to the possibility of multiple
people per record, or multiple records for a person).

• Presence or absence in database by itself is not sensitive: This follows from assuming,
that only the presence of attributes is significant.

• Attribute Privacy implicitly assumes, that explicit identifiers have been removed.

• Association Privacy on the other hand, assumes, that explicit identifiers are present.

• No background knowledge abut correlations between individuals or attributes is
assumed.

Strong Attacker: These notions do not assume any prefixed structure of background
knowledge of the attacker.

• Attribute Privacy assumes, that the attacker knows a set of attributes, that the
target individual holds (with the goal of uncovering more attributes of the target
individual).

• Association Privacy assumes, that the attacker knows a set of individuals, that are
associated with each other and can locate those individuals in the relation (with the
goal of inferring further associations).

2.5. Topological Privacy Notions
Now that the necessary background has been given, we can define the topological privacy
notions Attribute Privacy and Association Privacy.

Attribute Privacy aims to protect the attributes of an individual. It does so, by ensuring
that knowing some set of attributes of an individual, the released information, does not
let an attacker infer more information on that individual. And Association Privacy aims
to conceal relationships such as “work on the same secret project together” between
individuals in the released relation. It does so by ensuring, that an adversary, who knows

21
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a set of individuals that are in some relationship with each other, cannot infer more
individuals that are in the same relationship.

Both notions achieve their protection goals, by chaining the previously defined operators
ψR and φR — that map a set of attributes to the set of corresponding individuals and a
set of individuals to corresponding attributes respectively — and requiring the output to
not include any further elements, as this would constitute an inference of attributes or
associations respectively.

Definition 2.5.1 (Attribute Privacy [33]). A relation R with nonvoid Dowker complexes
preserves Attribute Privacy iff

φR ◦ ψR is identity operator on F(ΦR) ∪ {∅} .

So the operator φR ◦ ψR can be interpreted as describing how the observation of some
attributes implies the existence of other attributes (inference process). And Attribute
Privacy can be interpreted as asking the question “If we go from a set of attributes γ to
all individuals x ∈ σ that share those attributes, and then go back to all attributes γ′

that those individuals share, do we end up with the same set of attributes?”
In the case of a relation that does not preserve Attribute Privacy, this set γ′ is a superset

of γ and so if we have the background knowledge that the target individual has attributes
γ we are able to infer from the relation that the target must also have attributes γ \ γ′.

This could work as follows: We know our target individual is in the relation R and has
the attributes “works at company A” (companyA), and “rides bike to work” (bike). We
find out, that individuals 2, 5, and 12 all share these attributes, and in a next step we
analyze, which (other) attributes are shared between those individuals:

φR ◦ ψR({companyA,bike}) = φR({2, 5, 12}) = {companyA,bike,neighborA} .

This then reveals, that the target also must live in neighborhood A, thus privacy of
attributes is not preserved.

The operator φR ◦ ψR will always produce an output set that contains at least the
input set, as all individuals that share a given attribute set, share that attribute set. The
problem is that the output set could contain additional attributes. So for a relation to
preserve Attribute Privacy, we require the operator φR ◦ ψR to be the identity operator,
as any other operator will reveal attributes.

Definition 2.5.2 (Association Privacy [33]). A relation R with nonvoid Dowker complexes
preserves Association Privacy iff

ψR ◦ φR is identity operator on F(ΨR) ∪ {∅} .

Similarly, ψR ◦φR can be interpreted as describing how associations between individuals
imply other such associations. And Association Privacy can be interpreted as asking the
question “If we go from a set of individuals σ to all attributes that those individuals share
γ and then back to who (else, σ′) has those attributes, do we end up with the same set of
individuals we started with?”

If a relation does not preserve Association Privacy, there is a set of individuals σ for
which we find individuals y /∈ γ that have all attributes σ that are shared between the
individuals of γ as well. So we were able to associate these individuals with the individuals
of γ.
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The duality between the two notions can be seen in the following intuition: With a
relation represented as a table, in which individuals each have a corresponding row, and
attributes have a corresponding column, the Attribute Privacy operator φR ◦ ψR maps
between rows, and the Association Privacy operator ψR ◦ φR maps between columns.

2.6. Properties and Theorems of Topological Notions
With the topological privacy notions defined, this section focuses on how to generally
achieve them and points out some notable properties of the notions.

Definition 2.6.1 (Unique Identifiability, adapted from [33]). Let R be a relation R on
X × Y . An individual x ∈ X of relation R is said to be uniquely identifiable via relation
R, iff ψR(Yx) = {x}. In other words, x is uniquely identifiable via R, when the set of all
individuals, who also have all attributes that x has, only contains x.

Take for example a relation R with the entries {1 7! {a, b, c}, 2 7! {b}, 3 7! {c}}. Nei-
ther individual 2, nor individual 3 are uniquely identifiable, because individual 1 has all
of their attributes.

The absence of free faces in the attribute complex [association complex] imply attribute
[association] privacy. And conversely, with the notable exception of individuals that are
not uniquely identifiable, the presence of free faces in the attribute [association] complex,
implies loss of attribute [association] privacy. This can be formalized as follows:

Lemma 2.6.2. Let R be a relation on X × Y , with X,Y being nonempty. Consider the
following three statements

1. The attribute complex ΦR contains no free faces (no-free-face).

2. R preserves Attribute Privacy (attribute-privacy).

3. Every individual on R is uniquely identifiable (all-unique)

The following implications hold:

no-free-face ⇒ attribute-privacy
no-free-face ⇐ attribute-privacy ∧ all-unique

Dual properties to these statements also hold for Association Privacy.

This Lemma is proven in [33, Lemma 61–63].
To achieve either of the notions, in many cases, the original relation has to be altered.

The types of alterations that can be made to a relation include expanding the dimension of
the relation by adding new columns (attributes) or rows (individuals) but also modifying
the existing relation. These types of alterations have been given names to enable a clear
description of what is being done.

Definition 2.6.3 (Disinformation [33]). An artificial entry in a relation added to achieve
privacy is called disinformation.

Definition 2.6.4 (Discontinuity [33]). Discarded knowledge (so a removed entry) in relation
is called a discontinuity.

Disinformation and discontinuities skew statistics and utility but (aim to) increase
Attribute and/ or Association Privacy
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Attribute and Association Privacy at the same time A further theorem states, that a
relation with more attributes than individuals cannot preserve attribute privacy:

Theorem 2.6.5 (Too many attributes [33, Theorem 65]). Let R be a relation on X × Y
with no blank columns. Suppose that |Y | > |X| ≥ 1. Then R does not preserve attribute
privacy.

The intuition to this theorem is, that for a given individual x that has an attribute a,
there needs to be another individual x′, that does not have this attribute. Individuals x
and x′ are allowed to share other attributes. Otherwise an attacker would be able to —
given the set of shared attributes between x and x′ (which can also be the empty set) —
infer the attribute a from that set of shared attributes. This means, roughly speaking,
each attribute needs at least one individual, that does not possess this attribute.

A dual theorem holds for Association Privacy. In [33, E.3] Erdmann proves that a
relation that preserves both attribute and Association Privacy needs to have the same
amount of individuals as records. Further, both corresponding Dowker complexes need
to be homotopic to spheres. It is proven that these relations come in one of a few forms
(Isometric to a cyclic staircase, to a spherical boundary relation or be composed of such
relations). And while these possibilities are non-trivial, they do severely constrain the
range of possible relations with both of these properties.
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In this chapter, we present a novel characterization of topological notions using free
faces. This theorem (Theorem 3.0.1) enhances the understanding of Attribute Privacy in
correspondence with the attribute complex as well as will be crucial in the rest of the thesis
to prove properties in terms of composition, it further simplifies other proofs, in which we
need to show that a given relation has Attribute Privacy. Besides, we proportionate an
additional general definition and lemma — about the union of multiple relations, and how
that affects the attribute complex — which we also use for our composability arguments.
We state these here, as these are general results, that could be applied in other use cases
as well.

We introduce a generalization of Lemma 2.6.2.

Theorem 3.0.1. Let R be a relation on individuals X and attributes Y. R has Attribute
Privacy iff for each free face f on ΦR, there exists an individual xf that has the attribute
set Yxf = f exactly corresponding to that free face:

∀f ∈ free(ΦR)∃xf ∈ X : Yxf = f ⇔ R has Attribute Privacy .

This means for any given free face f on ΦR, there exists an individual xf that is witness
to f , but not a witness to any m ) f . By definition, ∃m ∈ max(ΦR) : f ( m and there
must exist a witness to m. This is what makes xf non-unique. Thus, this theorem is
a generalization of Lemma 2.6.2, because if ΦR has no free faces, the left part of the
equation will always be true, and because the non-unique individuals of Lemma 2.6.2 are
exactly the witnesses to the free faces.

Proof. “⇒”: Assume ∀f ∈ free(ΦR)∃xf ∈ X : Yxf = f . We will show R has Attribute
Privacy by showing, that

∀γ ∈ F(ΦR) ∪ {∅} : φR ◦ ψR(γ) = γ .

If ΦR has no free faces (free(ΦR) = ∅) we know by Lemma 2.6.2 that R has Attribute
Privacy and we are done. So from now on we will assume that free(ΦR) 6= ∅. Each
nonempty simplex of ΦR can be categorized in one of three categories: Maximal simplices,
free faces, and simplices that are a child of at least two maximal simplices.

We will treat the empty simplex separately. We then consider all remaining cases, by
analyzing each possible category for γ separately.

• Case 1 (γ = ∅) This means that ψR(∅) = X, so we have to show that φR(X) = ∅.
To do this we will show that ∃x1, x2 ∈ X with Yx1 ∩ Yx2 = ∅. Consider f ∈ free(ΦR)
and m ∈ max ΦR : f ( m. By assumption ∃x1 : Yx1 = f . Next we are concerned
with η := m \ f .

– Now either ∃f ′ ⊆ η : f ′ ∈ free(ΦR), for which by assumption ∃x2 : Yx2 = f ′.
– Or ∃m′ ∈ max(ΦR) with m′ 6= m and m′ ) η. Because m′ is maximal, there

exists a witness for it ∃x2 : Yx2 = m′

25
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In both cases there is no overlap between the chosen simplices Yx1 ∩ Yx2 = ∅.

• Case 2 (γ ∈ max(ΦR)) by Corollary 2.4.9, φR ◦ ψR(γ) = γ.

• Case 3 (γ ∈ free(ΦR)) by the assumption ∃xf ∈ X : Yxf = γ. Let ψR(γ) =: σ, then
xf ∈ σ. It follows that

φR ◦ ψR(γ) = φR(σ) =
⋂

x∈σ

Yx =
⋂

x∈σ\
{

xf
}Yx ∩ Yxf

=
⋂

x∈σ\
{

xf
}Yx ∩ γ ⊆ γ

Lemma 2.4.8=⇒ φR ◦ ψR(γ) = γ .

• Case 4 (γ /∈ max(ΦR) ∧ γ /∈ free(ΦR)). Let ψR(γ) =: σ. This means

∃M = {m ∈ max(ΦR) | γ ( m} ∧ |M | > 1

φR ◦ ψR(γ) =
⋂

x∈σ

Yx

maximality
⊆

⋂
m∈M

m
|M |>1= γ .

“⇐”: Assume R has Attribute Privacy. Show that

∀f ∈ free(ΦR)∃xf ∈ X : Yxf = f ,

using proof by contradiction. If there are no free faces there is noting to show. Assume
there is at least one free face without a witness in the relation ∃ ∈ free(ΦR)∀x ∈ X : Yx 6= f .
By definition ∃m ∈ max(ΦR) : f ( m. Because m is maximal, there has to be a witness
for m, and because f is free it is not encompassed by another maximal simplex.

∃xm ∈ X : Yxm = m

@m′ ∈ max(ΦR) : m′ 6= m ∧ f ( m′ .

It follows that
φR ◦ ψR(f) = φR({xm}) = Yxm = m ) f ,

which is a conflict with the assumption.

We assert, that, like for Lemma 2.6.2, a dual theorem for Association Privacy could be
constructed. With this Theorem, we observe, that strategies to achieve the notions of
Attribute Privacy or Association Privacy can involve the elimination of free faces.

We briefly give a privacy interpretation of this theorem: Each individual x in the
relation is witness to the simplex γ = Yx in the attribute complex, representing all of their
attributes. However, a given individual is also a witness to all simplices γ′ ( Yx in the
attribute complex.

Consider a set of attributes, that appears in the attribute complex as a simplex s that is
the proper subset of two distinct maximal simplices m1,m2, that have only s in common.
So an adversary that has the attribute set s as background knowledge cannot infer further
attributes, as they cannot know if their target individual is a witness to m1 or a witness
to m2.

Now consider a set of attributes, that appears in the attribute complex as a simplex f
that is the proper subset of only one maximal simplex m. As m is maximal, there is a
witness individual x, that produces m. Because f ⊂ m, individual x is also witness to f .

26



If there is no other witness x′ to f , an adversary with f as background knowledge can
infer that their target must also have attributes m. However, if there is another individual
x′, that is witness to f , but not witness to m, then an adversary cannot be sure if their
target is x or x′.

Next, we define how two relations are combined, and analyze how this affects the
attribute complex of the combined relation:

Definition 3.0.2 (Union of relations). Let XA, XB be nonempty sets of individuals, and YA,
YB nonempty sets of attributes. Let RA be a relation on XA ×YA and RB be a relation on
XB ×YB. Then the union of those relations, is the relation RAB on (XA ∪XB)× (YA ∪YB),
which contains all entries of RA and RB.

RAB = {(x, y) | (x, y) ∈ RA ∨ (x, y) ∈ RB}

We observe, that if the input sets of attributes are the same, the attribute complex
of the union of two relations, consists of the simplices of the source relations attribute
complexes.

Lemma 3.0.3 (Union of Attribute Complexes). Let XA, XB be nonempty sets of individuals,
Y a nonempty set of attributes, RA be a relation on XA × Y and RB be a relation on
XB × Y . Let RAB = RA ∪RB. Then

ΦRAB
= ΦRA

∪ ΦRB
.

Proof.

ΦRAB

Definition 2.4.2= {γ ⊆ Y | ∀y ∈ γ∃x ∈ (XA ∪XB) : (x, y) ∈ RAB}
= {γ ⊆ Y | ∀y ∈ γ∃x ∈ (XA ∪XB) : (x, y) ∈ (RA ∪RB)}

Definition 3.0.2= {γ ⊆ Y | ∀y ∈ γ

∃x ∈ (XA ∪XB) : (x, y) ∈ {(x, y) | (x, y) ∈ RA ∨ (x, y) ∈ RB}}
= {γ ⊆ Y | ∀y ∈ γ

(∃x ∈ XA : (x, y) ∈ RA)
∨
(∃x ∈ XB : (x, y) ∈ RB}

= {γ ⊆ Y | ∀y ∈ γ∃x ∈ XA : (x, y) ∈ RA}
∪
{γ ⊆ Y/ | ∀y ∈ γ∃x ∈ XB : (x, y) ∈ RB}

Definition 2.4.2= ΦRA
∪ ΦRB

.
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4. Privacy for Relational Data
In this chapter, we will compare the topological notions to their closer relatives: SDC
notions on relational data. Relational data, not to be confused with relations, describes
traditional databases, which can be represented as tables. This stands in contrast with
graph-data, which we will discuss in chapter 5.

This chapter is structured in three sections. First we analyze the composability
properties of Attribute Privacy (section 4.1). Next, in section 4.2, we compare the
topological notions with the state-of-the-art for relational data. This systematization
includes a comparison of assumptions of the notions, analysis of the relation the notions
stand in with each other, and an evaluation of common attacks against the topological
notions. Finally, in section 4.3 we discus, whether Attribute Privacy could improve on
DP, when the input data is correlated.

4.1. Composability Analysis
In this Subsection we investigate the composition properties of Attribute Privacy. Namely
we will investigate, whether Attribute Privacy composes in parallel, or sequentially

We would like to point out, that [33, Chapter 10] introduces the concept of informative
attribute release sequences. While this concept also tackles sequentially released information,
it is quite separate from the one of composability. Informative attribute release sequences
work on the assumption, that some relation without Attribute Privacy has been released.
And that an individual wants to disclose their attributes, one-by-one, while not being
uniquely identified on the relation for the longest amount of time.

We observe that the topological notions do not quantify the “amount of privacy” (like
the privacy budget ε in ε-DP) and can only be fulfilled or not fulfilled. It cannot be said
that the privacy is broken by some degree, but rather can be broken entirely by new
information.

Since Attribute Privacy is a syntactic notion, we want to focus on released relations
that both have Attribute Privacy, and not concern ourselves with the mechanism used
to create those releases. However it is of note, that for sequential composition, it can
happen that the same pair of individual and attribute (a cell in the tabular representation)
appear in both releases, and contain conflicting data. This additional information might
be used by an attacker, to infer some information about the “true” state of the original
database, from which these releases were created. This cannot be modeled in the context
of Attribute Privacy. If we avoid these conflicts, we can avoid discussions about original
data and mechanisms entirely and only concern ourselves with the released relations
themselves. We note, that in parallel composition there is no overlap by definition so
these kinds of conflicts do not occur.

For sequential composition we formalize this notion of non-conflicting releases:

Definition 4.1.1 (Static and Dynamic Releases). Let

• X be a set of individuals, and Y a set of attributes.
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• R be a relation on X × Y .

• XA, XB ⊆ X with XA ∩XB 6= ∅ be two overlapping subsets of individuals.

• YA, YB ⊆ Y subsets of attributes.

• RA ⊆ R, RA ∈ XA × YA a sub relation of R:

RA := {(a, b) | (a, b) ∈ R ∧ a ∈ XA ∧ b ∈ YA} .

• RB ⊆ R, RB ∈ XB × YB a sub relation of R:

RB := {(a, b) | (a, b) ∈ R ∧ a ∈ XB ∧ b ∈ YB} .

• M : V ×W, aux 7! V ×W be a release mechanism for relations ensuring Attribute
Privacy, where aux is an arbitrary auxiliary input.

Further let M(RA, ∅) := R′
A be a release of RA and M(RB, RA) := R′

B a release of RB.
The releases R′

A and R′
B are called static, iff

∀x ∈ XA∀y ∈ YA : (x, y) ∈ RA ⇔ (x, y) ∈ RB . (4.1.1)

Otherwise they are called dynamic releases.

So in static releases the new release should have the same data as the prior-release, save
for the additional data.

In the following we will define parallel and sequential composition for Attribute Privacy,
by requiring that the combination two (parallel or sequentially) released attribute private
relations is also attribute private

4.1.1. Parallel Composition
We start with parallel composition for Attribute Privacy and show that Attribute Privacy
always composes in parallel.

Definition 4.1.2 (Parallel Composition for Arribute Privacy). Two attribute-private rela-
tions, RA, RB with the same set of attributes Y , but non-overlapping individualsX∩X ′ = ∅
compose in parallel, iff the union of both relations RA ∪RB is an attribute-private relation.

Proposition 4.1.3 (Attribute Privacy composes in parallel). Two attribute-private relations,
RA, RB with the same set of attributes Y , but non-overlapping individuals X ∩ X ′ = ∅,
always compose in parallel.

Proof. We denote by RAB the union of relations RA ∪RB (Definition 3.0.2). An we denote
the corresponding attribute complexes by A, B and AB, respectively. Per Lemma 3.0.3,
the attribute complex AB consists of all the simplices in A and B, AB = A ∪B.

We need to prove that RAB satisfies Attribute Privacy.
First we show that no new free faces are created, so any free face in AB stems from

either A or B. So we show that

free(AB) = free(A) ∪ free(B) . (4.1.2)
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Recall that for any given f ∈ free(f, AB) ⇒ ∃m ∈ max (AB) : f ( m. Since no new
simplices are created, f has to be a simplex in either A or B: f ∈ AB ⇒ f ∈ A ∨ f ∈ B.
Likewise and because no simplices are destroyed1

m ∈ max (AB) ⇒ m ∈ max (A) ∨m ∈ max(B) . (4.1.3)

Now we consider all cases

• Case 1 (f ∈ A ∧ f ∈ B) f ∈ A ∧ f ∈ B
(4.1.3)=⇒ f ∈ (free(A) ∪ free(B)). If f appears

in both source complexes, since m is maximal in at least one of the source complexes,
f is free in at least one of the source complexes.

• Case 2 (f ∈ A ∧ f /∈ B)
– Case 2.1 (m ∈ max(A) ∧m /∈ max(B)) f ∈ A ∧m ∈ max(A) ⇒ f ∈ free(A)
– Case 2.2 (m /∈ max(A) ∧m ∈ max(B)) Case not possible because

m ∈ max(B) (B is SC)=⇒ ∀s ( m : s ∈ B

conflicts with assumptions f /∈ B ∧ f ( m.
– Case 2.3 (m ∈ max(A) ∧m ∈ max(B)) Case not possible analogous to case 2.2.

• Case 3 (f ∈ B ∧ f /∈ A) analogous to case 2.

With this we can now show the main part of the proof. We do this by analyzing two
cases.

• Case 1 ((free(A) ∪ free(B)) = ∅) attribute complexes A and B have no free faces.
We show that in this case AB does not have any free faces either and thus fulfils
Attribute Privacy. We proceed by reductio ad absurdum:
Assume AB has a free face f . Because of Equation 4.1.2 it follows that f ∈
(free(A) ∪ free(B)) This stands in conflict the the case considered.

• Case 2 (free(A) ∪ free(B)) 6= ∅) Now for the case in which one or both of the
contributing simplicial complexes have free faces:
Because of Equation 4.1.2 we know that any free face in AB is also a free face of
A or B. Because of Theorem 3.0.1 we know that because RA and RB are attribute
private, for each free face in A and for each free face in B there is a witness. Together
this means that for each free face in AB there is a witness, thus RAB has Attribute
Privacy. Formally:

free(AB) = free(A) ∪ free(B) (4.1.2)
∧ ∀f ∈ free(A) ∃xf ∈ XA : Yxf = f (Theorem 3.0.1)
∧ ∀f ∈ free(B) ∃xf ∈ XB : Yxf = f (Theorem 3.0.1)

=⇒ ∀f ∈ free(AB) ∃xf ∈ XAB : Yxf = f
Theorem 3.0.1=⇒ RAB has Attribute Privacy .

Thus we have shown, that in all possible cases RAB has Attribute Privacy.
1m has to be maximal in the source simplicial complex it appears because m ∈ X, X ∈ {A, B} ∧ m /∈

max(X) ⇒ ∃w ∈ X : m ( w ⇒ w ∈ AB m ∈ max(AB).
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4.1.2. Sequential Composition
Next, we define sequential composition for Attribute Privacy and then show that Attribute
Privacy does not generally compose sequentially.

Definition 4.1.4 (Sequential Composition for Attribute Privacy (Static Releases)). Let
relations and releases be like in Definition 4.1.1. When R′

A and R′
B are static releases,

they compose sequentially, iff R′
A ∪R′

B has Attribute Privacy

Proposition 4.1.5. Given two attribute-private relations, RA, RB with the same set of
individuals X, but non-overlapping attributes Y ∩ Y ′ = ∅, the union of both relations
RA ∪RB is not necessarily an attribute-private relation.

The intuition behind this is that a relation with Attribute Privacy necessarily has more
records than attributes, and by composing two databases side-by-side, can result in a
database that has more attributes than records, even if the individual databases had
Attribute Privacy.

Proof. We proof this by counterexample. Consider relation R, shown in Table 4.1a. If the
sub-relation consisting of record 1 and attribute a is released, it has Attribute Privacy.
Likewise, release the relation consisting of record 1 and attribute b and has it Attribute
Privacy. However combining those back to relation R it is obvious that it does not have
Attribute Privacy.

{1} × {a} 3 R′ := {(1, a)} has attr. privacy
{1} × {b} 3 R′′ := {(1, b)} has attr. privacy

{1} × {a, b} 3 R = R′ ∪R′′ = {(1, a), (1, b)} does not have attr. privacy .

Further: Allowing the attribute sets to overlap, does not “solve” this issue.

Proposition 4.1.6. Given two attribute-private relations, RA, RB with the same set of
individuals X, and overlapping sets of attributes Y 6= Y ′ ∧ Y ∩ Y ′ 6= ∅, the union of both
relations RA ∪RB is not necessarily an attribute-private relation.

Proof. Consider relation S, shown in Table 4.1b. If the sub-relation consisting of records
1, 2 and attributes a and b is released, it has Attribute Privacy. Likewise release the
relation consisting of records 1, 2 and attributes b and c and it has Attribute Privacy.
However combining those back to relation S it is obvious that it does not have Attribute
Privacy.

{1, 2} × {a, b} 3 S ′ := {(1, a), (2, b)} has attr. privacy
{1, 2} × {b, c} 3 S ′′ := {(2, b)(1, c)} has attr. privacy

{1, 2} × {a, b, c} 3 S = S ′ ∪ S ′′ = {(1, a), (2, b), (1, c)} does not have attr. privacy .
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R a b
1 • •

(a) Tiny relation that
does not compose

S a b c
1 • •
2 •

(b) Small relation that
does not compose

Table 4.1.: Small relations that do not compose sequentially

4.1.3. Attribute Privacy under Continual observations

A common problem in SDC is to provide repeated private access to data in the scenario
in which data needs to be updated over time. This is called privacy under continual
observations of a system’s state [24, 29]. This is broadly studied in SDC, because it has
numerous applications, such as monitoring traffic conditions, search trends, or epidemic
incidences [29].

While we showed in subsection 4.1.2, that generally two releases do not compose
sequentially, it is possible to construct a mechanism that produces static releases that
do compose sequentially. For example the mechanism that always produces the empty
relation for the second release. Of course such a mechanism would not be useful in any
practical application. So here we want to analyze if it is possible to construct a useful
mechanism for continual observation. Assume R is a relation over individuals X and
attributes Y = {a1, . . . , an}. To match the use case this mechanism would produce a
sequence of static releases R1 ( . . . ( Rn with Ri = Ri−1 ∪δi, ∈ [1..n] and δi ∈ X×{ai}.
To satisfy sequential composition, Ri−1 and Ri have to sequentially compose for i ∈ [2..n].
In the following we motivate, why we believe that such a mechanism would provide poor
utility.

We would like to note that relations with more attributes than individuals cannot have
Attribute Privacy, and thus with more attributes and the same amount of individuals,
achieving Attribute Privacy gets “harder”. As more attributes are added the likelihood of
Attribute Privacy being broken increases, and more disinformation or discontinuities are
being required.

Assume the mechanism has already released Rj−1 and the released data contains an
individual x that has an attribute ai and no other individual has that attribute. If now
a new attribute aj is introduced and individual x would have this attribute, the release
cannot contain it, otherwise φ ◦ ψ({i}) = {i, j}. In any subsequent release Rk, individual
x cannot contain ak either for the same reason. The same logic can be generalized, and
any individual that has is unique in any release. It cannot gain any new attributes in any
new releases without loosing Attribute Privacy.

We conclude that Attribute Privacy is likely not suitable for continual observation.

4.2. Analysis and Systematization

In this section, we will compare the topological privacy notions with current state-of-the-
art privacy notions, in their assumptions and attack resilience. This includes an analysis
of possible relationships between the notions.
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4.2.1. Comparison of Assumptions

In the following, we discuss the differences between the (explicit and implicit) assumptions
of k-Anonymity, ε-Differential Privacy, and the topological notions.

All notions discussed here, except for Association Privacy, (implicitly) assume that
explicit identifiers have been removed from the database. In contrast, Association Privacy,
assumes individuals and their properties are known.

An assumption that is shared by all notions discussed here, without exception, is
that each record represents a single distinct individual. Note however that this is an
assumption for the underlying data, and not necessarily for the anonymized dataset, in
which records may be duplicated. Both of these common assumptions are fairly standard,
and representative of many scenarios, in which data about individuals is stored and shared.
k-Anonymity assumes that a single quasi-identifier qid that contains all attributes

that can be used to identify a person within a database exists and is known to the data
publisher [37]. This also means that any other combination of attributes cannot be used
to identify an individual within a database. The topological notions, or ε-Differential
Privacy do not share this assumption. Assuming a known qid is the biggest drawback of
k-Anonymity, since it relies on the publisher getting it right at the time of publishing,
which is not necessarily very realistic.

The topological notions assume that the presence of an individual in the database in
itself is not sensitive (only the presence of attributes is significant). k-Anonymity does not
make any explicit assumptions about this. This stands in contrast to ε-Differential Privacy,
which assumes the presence (or the absence) of the target’s record in the database already
reveals some sensitive information about the target [27]. This is a realistic assumption,
especially in cases, in which the mere participation in a study holds a certain social stigma,
f.e. a medical study on patients with a sexually transmitted disease.

Additionally ε-Differential Privacy assumes, that aside from the record of the target
individual, the adversary knows all records of the input database. This assumption assures
strong protection, and protects against the case, in which multiple malicious individuals
in the database collude. Neither the topological notions nor k-Anonymity share this
assumption.

Attribute Privacy’s and Association Privacy’s assumption of observational monotonicity
and the accompanying implicit assumption that the lack of a property is not significant
and only given information needs to be protected, is not shared by either k-Anonymity or
ε-Differential Privacy. This assumption is coupled with the statement, that if the absence
of a certain attribute should be important, then a negated version of that attribute should
be introduced, which makes it more realistic, and avoids pathological counter examples.
Even so, it is not a very common assumption to hold on relational data. However, unlike
the qid-assumption of k-Anonymity, it does not have immediate obvious drawbacks on the
privacy provided once it does not hold. Additionally [33] states, that it would be possible
to give an alternative definition for the topological notions without this assumption.

None of the notions discussed here assume correlated data, which means they implicitly
assume that there are no correlations between records or between attributes known to
the adversary. In the context of ε-Differential Privacy, this is a topic of research, and
alternative notions, or alterations have been proposed to solve this issue [95].

With these assumptions alone, we see, that ε-Differential Privacy provides by far the
strongest privacy guarantees. In contrast, the assumptions of k-Anonymityweaken it
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in a major way, and the topological notions likely stand in some place between. We
summarized the assumptions of the notions in Table 4.2.

Explicit
identifiers
removed

Record
represents

single
distinct

individual

Mere
presence

is
sensitive

No
QID

No
obser-

vational
mono-

tonicity

Correlated
data

Attribute Privacy 3 3 7 3 7 7

Association Privacy 7 3 7 3 7 7

k-Anonymity 3 3 7 7 3 7

ε-Differential Privacy 3 3 3 3 3 7

Table 4.2.: Comparison of Assumptions between topological notions, k-Anonymity, and
ε-Differential Privacy

4.2.2. Relationships between Notions
Sometimes different privacy notions are equivalent, proportional or simply one implies
the other. This is the case of `-Diversity that by definition implies k-Anonymity, in the
sense that if a database satisfies the first condition it also satisfies the second one. In this
section, we would like to compare the topological notions with the already existing ones
in this perspective.

Since Topological notions are defined from a syntactic perspective, we will focus on the
relation with the syntactic notions, in particular, with k-Anonymity. Besides, we first
focus on implications on real data, so if presumed real database D fulfills notion N1, does
it also fulfill notion N2?

To properly answer this question in relation to k-Anonymity we need first to clarify
how to interpret the concept of quasi-identifier in relational databases. Observe that,
k-Anonymity works on databases where attributes cannot only be binary, but enumerated
as well, like “job”, or “age”. In contrast to that, the attributes in the relations, on which
Attribute Privacy and Association Privacy work, can only be binary, like “smokes”, or
“isLawyer”. So to facilitate the comparison assume data has the following form: For
each non-binary attribute of the database, sub-attributes are introduced, that list all
possible options for that attribute. To avoid confusion, when talking about attributes
in a relation, those original attributes will be called attribute-groups and the options for
these attribute-groups are called sub-attributes.

Definition 4.2.1 (Attribute-Group, Sub-Attributes). Given a relational database D, pro-
viding values for attributes Y D of individuals X. We call the attributes yD ∈ Y D of
the database attribute-groups. The database D can be transformed into a relation R
over the same set of individuals X and a new set of binary attributes Y R. We do this,
by introducing a set of new attributes γ ⊆ Range(yD) for each yD ∈ Y D, representing
possible values or value ranges of yD. We call these new attributes sub-attributes We
denote the transformation, that maps an attribute-group to a set of sub-attributes as a
function discr. To note that the set of sub-attributes γ is created from attribute-group
yD, we write discr(yD) = γ.
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Relation R is created as a relation over all sub-attributes Y R and individuals X, where

Y R :=
⋃

yD∈Y D

discr(yD) .

For a given yD ∈ Y D, and a yR ∈ discr(yD), we denote D[x, yD] = v ≈ yR to mean, that
individual x has a value v in attribute yD matching yR.

The corresponding relation R ∈ X × Y R then contains an individual-sub-attribute
pair, if that individual contains a corresponding value in database D. Formally, for all
x ∈ X, yD ∈ Y D, and all yR ∈ discr(yD):

R :=
{
(x, yR) : D[x, yD] ≈ yR

}
A general database that has been made compatible with Attribute Privacy and Associ-

ation Privacy this way is shown in Table 4.3.

a b c · · ·
a1 · · · al b1 · · · bm c1 · · · cn · · ·

Table 4.3.: Compatible relationship, where a, b, c represent attribute-groups and ai, bi, ci

sub-attributes.

In the following we will base our discussions on the properties of relations, that were
based on a source database (and thus attributes are sub-attributes, that belong to
attribute-groups), but we do not discuss the properties of the source database itself.

Given a relation R, based on a database D, we need to understand what a set of
quasi-identifier means: In this model a quasi-identifier is a set of attribute-groups. If we
have access to the present sub-attributes of each attribute-group in the quasi-identifier of
a user, we can identify that user. To clarify this we present the following example:

Example 4.2.2. We consider that the Job and Age form a quasi-identifier while the the
cancer type is the sensitive attribute-group. User 1 is uniquely identifiable in this table
since their entry is the only one with the quasi-identifier value γ = {Engineer, 31 − 49}.
From this it can also be inferred that a record cannot have multiple sub-attributes of the

Job Age-Range Cancer-Type
Lawyer Engineer Developer Carpenter ≤ 30 31–49 ≥ 50 Lung Skin Blood

1 • • •
2 • • •
3 • • •
4 • • •

Table 4.4.: An example relational database following Table 4.3

same attribute-group. For example in Table 4.4, an entry cannot be in age-range ≤ 30
and 31–49 at the same time.

k-Anonymity Vs. Association Privacy With this context, considering that some set
of attributes group considered a quasi-identifier we obtain that Association Privacy and
k-Anonymity are mutually exclusive:
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Proposition 4.2.3. If a relationR fulfills k-Anonymity, then it does not fulfill Association
Privacy and vice versa.

In the following proofs k-anon, attr, and assoc will refer to the variable of the
relation fulfilling the respective notion.

Proof. (k-anon ⇒ ¬assoc) Let X be the user set corresponding to relation R. We
choose an arbitrary user x ∈ X, and we denote by γ ⊆ Yx the attributes of x that
correspond to a quasi-identifier value. Since R satisfies k-Anonymity, this record will be
member of an anonymity group of size k. By definition all members of that anonymity
group will share the same values for the quasi-identifier, therefore there exist at least k− 1
users {x2, . . . , xk} such that σ = {x, x2, . . . , xk} ⊆ ψR(γ).

This means that {x} 6= σ ⊆ ψR ◦ φR({x}) and consequently we do not have Association
Privacy.

assoc ⇒ ¬k-anon states the same as the above:

(k-anon ⇒ ¬assoc) ⇔ (¬k-anon ∨ ¬assoc) ⇔ (assoc ⇒ ¬k-anon) .

k-Anonymity Vs. Attribute Privacy Thanks to the previous discussion we can show
that:

Proposition 4.2.4. If a relatio R has Attribute Privacy (attr), it does not necessarily
mean that the relation also fulfills k-Anonymity:

attr ; k-anon

Proof. It is possible for a relation to have both Association Privacy and Attribute Pri-
vacy [33, E.3].

• Assume Attribute Privacy implies k-Anonymity, so any relation that has Attribute
Privacy, also has k-Anonymity (∀R attr ⇒ k-anon).

• Take relation R which has both Attribute Privacy and Association Privacy (attr ∧
assoc).

• Then because R has Attribute Privacy, following the assumption, it also has k-
Anonymity (attr ∧ assoc attr⇒ k-anon),

• but also because it has Association Privacy, it cannot have k-Anonymity (attr ∧
assoc assoc⇒ ¬k-anon )

It follows that attr ; k-anon.

t-Closeness and `-Diversity both are defined over anonymity groups of k-Anonymity,
and thus have the same comparability problem.

However, it is worth it to analyze in which cases we can have Attribute Privacy without
k-Anonymity:

Proposition 4.2.5. If a relation R ∈ X × Y fulfills Attribute Privacy and does not fulfill
2-Anonymity then all non 2-Anonymous individuals have none sensitive attributes.
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Proof. For all users x ∈ X we can divide their attributes in the set of quasi-identifier
value γ1 and the set of sensitive attributes γ2, this two sets of attributes are disjoint and
since their union is the total information about x we have that φR({x}) = γ1 ∪ γ2.

By hypothesis, R does not fulfill 2-Anonymity, therefore it exist an user x such that it
is the only user with the quasi-identifier value γ1, formally, ψR(γ1) = {x}. By applying
that, by hypothesis, R has Attribute Privacy, we have that

γ1 ∪ γ2 = φR({x}) = φR(ψR(γ1)) = γ1 .

Since γ1, γ2 are disjoint this means that γ2 = ∅ finishing the proof.

Until here we have explored the relation between databases fulfilling the notions.
However, usually the real database does not directly fulfill the privacy notion and we
need to use an anonymization mechanism to protect it. For this reason, we would like
to analyze these notions from a more semantic perspective, comparing the results of
mechanism whose outputs satisfy the notions.

4.2.2.1. Comparing the notions over Anonymized data

The following analysis focuses on a given mechanism M, that works on presumed real
data R and achieves a resulting database D which fulfills notion N1 (or on mechanism
M that fulfills semantic notion N1). And determines if the resulting database (or the
mechanism itself) also fulfills (or gives the same protections as) notion N2 on R. If that is
the case we will say N1 weakly implies N2.

In this setting, k-Anonymity and Association Privacy are not mutually exclusive
anymore, since the mechanism could be composed of two mechanisms, which first achieved
k-Anonymity and then Association Privacy, or vice versa. However for the same reasons
as previously discussed, they do not weakly imply each other either.

The interesting question is, in which relation k-Anonymity and Attribute Privacy stand.

Proposition 4.2.6. k-Anonymity, does not weakly imply Attribute Privacy.

Proof. At least two attributes are considered part of the quasi identifier, as explicit
identifiers have been removed, and k-Anonymity only gives guarantees for quasi-identifiers.
Name these attributes a1 and a2. Take a relation R in which at least one record x has
the two attributes, so {(x, a1), (x, a2)} ∈ R. And let no entry have a1 without having a2
too, ∀(x′, a1) ∈ R : (x′, a2) ∈ R. This relation does not have Attribute Privacy, because
{a1, a2} = φR ◦ ψR({a1}).

A mechanism can achieve k-Anonymity, without creating entries that have a quasi
identifier that was not previously in the database. Such a mechanism will add enough
fake entries that have both a1 and a2, and possibly other entries as well, but no entries
that have a1 without having a2.

Thus the resulting database will thus still exhibit attribute leakage that corresponds to
the real attributes of R, and not be attribute private.

To analyze whether Attribute Privacy implies k-Anonymity, the assumptions under
which the notions are achieved become important.
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Proposition 4.2.7. If operating sole under the assumptions of k-Anonymity, and explicitly
going against the assumption of Attribute Privacy, that the absence of a relation entry
does not imply an absence of that property for that person, Attribute Privacy does not
weakly imply k-Anonymity.

Proof. Consider Table 4.8 and relation Attr. This relation fulfills Attribute Privacy, we
show this in Example 4.2.15. Let this relation be the output of some mechanism achieving
Attribute Privacy, where records 2–4 are the real data, and all other records were added
by the mechanism. Further let, attributes a, b the quasi-identifier. Then it is easy to see,
that record 3 is the only record in its anonymity group.

So for further analysis we will focus on k-Anonymity under the union of assumptions of
k-Anonymity and Attribute Privacy. In particular, that the absence of an entry in the
relation does not imply the absence of that attribute for that individual in the real world.
Just that it has not been observed.

Proposition 4.2.8. Under the unified assumptions of k-Anonymity and attribute-privacy,
a given mechanism whose output always achieves Attribute Privacy, also always achieves
k-Anonymity with k = 2.

Proof. Let R ∈ X×Y be a relation of real data and R′ ∈ X ′ ×Y ′ the anonymized relation,
as described above.

Let a subset of attribute-groups be the quasi-identifier.
Considering a record x of R′, without loss of generality, this record has some present

sub-attributes that are part of the quasi-identifier. Otherwise according to the assumptions
that non-observations are not meaningful, that record would not show any persons presence
in that relation. For the same reasoning, that record it has some sensitive sub-attributes.
Else that record would only show the persons presence in the table and this is assumed to
be not needed to be protected.

Should this records quasi-identifier γqid appear in R as well and have some present
sub-attributes γs that are part of the sensitive attribute-groups, then that same quasi-
identifier, also has to appear in R without said sensitive sub-attributes, as otherwise
φR ◦ ψR(γqid) = γqid ∪ γs.

Should that records quasi-identifier appear in R but without any sensitive attributes,
then that would only show the presence of that record in the database, which is assumed
to be non-sensitive. Any new quasi-identifiers in R do not have to be regarded, as they
are not part of the original dataset.

So a mechanism M achieving Attribute Privacy for some relation R ∈ X × Y , also
achieves k-Anonymity, with k ≥ 2.

However consider a mechanism M′ which first executes M and then for a quasi-
identifier γqid in R removes all but two records with this quasi-identifier. M′ would
still achieve Attribute Privacy, as long as the remaining records with the quasi-identifier
γqid are the record that just has γqid and the record with has exactly one additional
sensitive sub-attribute. It is clear, that the resulting relational database would not achieve
k ≥ 3-Anonymity.

Note that this finding does not stand in conflict with the findings about attribute
linkage, as those have been made under the original assumptions of the notions.

Since we just showed that Attribute Privacy weakly implies 2-Anonymity, it is relevant
to point out that there is related work showing implications between t-closeness and
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ε-Differential Privacy [23, 22, 31]. However the results of [22] do not fit neatly in the
hierarchy we are building:

• For the implication of DP to t-closeness: k-Anonymizing the qids of a dataset and
ensuring ε-Differential Privacy for the confidential attributes, achieves stochastic t
closeness (their stochastic extension to t-closeness.)

– “Attaining standard t-closeness from ε-differential privacy is unfeasible because,
being ε-differential privacy a stochastic mechanism, it is not possible to meet
the requirements that t-closeness puts on the empirical distribution of the
confidential attributes”

• For the implication of t-closeness to DP: The authors use the assumptions made
by t-closeness about the prior- and posterior knowledge of the adversary, but more
importantly they show this only for the projection on the sensitive attributes because
“t-closeness offers no additional protection to the quesi identifiers beyond what
k-anonymity does. For example, we may learn that an individual is not in the data
set if there is no equivalence class in the released t-close date whose quasi-identifier
values are compatible with the individual’s”.

– “Attaining exact ε-differential privacy from t-closeness is unfeasible because, for
instance, t-closeness fails to provide any protection if we assume that all the
records except one are known by the intruder.”

This is not to say that these results are not meaningful in general, but rather that we
can not combine them with what we found about the relations between the topological
notions and the state-of-the-art.

Intuitively, as the notion of Attribute Privacy and Association Privacy prescribe strict
deterministic structures over a given published relation, a mechanism achieving either one
of them would not be ε-Differential Privacy, and likewise the output of an ε-Differential
Privacy mechanism is not very likely to always output a relation that is attribute- or
association-private. For completeness, we prove these intuitions for Attribute Privacy.

To attempt to compare Attribute Privacy and ε-Differential Privacy, we first need to
formulate a semantic version of Attribute Privacy:

Definition 4.2.9 (Semantic Attribute Privacy). A Mechanism M fulfils semantic Attribute
Privacy, iff for all input relations R:

M(R) = R′

R′ fulfils Attribute Privacy.

Analyzing the relationship between Semantic Attribute Privacy and ε-Differential
Privacy reveals, that the two notions are orthogonal to each other:

Proposition 4.2.10. Semantic Attribute Privacy does not imply ε-Differential Privacy and
ε-Differential Privacy does not imply Semantic Attribute Privacy.

Proof. We prove this by counter-examples
DP6⇒ Attr Priv:

Consider the randomized response mechanism. For a given response with r option the
returned response will be determined by a matrix of probabilities, with the real response
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one one axis and the returned response on the other [23]. In the case where there are only
two options (like in the relations handed by Attribute Privacy) this reduces to a statement
controlled by a single probability p, where p is the probability that the response is the
truth. The 2 × 2 matrix looks as follows

P =
(

p 1 − p
1 − p p

)
.

On the diagonal are the probabilities for truthful answers where the property was not
observed and where the property was observed. The other two entries are for when the
property was not observed, but it is reported that it was observed, and for when the
property was observed but it is reported that it was not observed. Randomized response
is a mechanism fulfilling DP [23]. Specifically for relations it is ε-Differential Privacy if

exp(ε) ≥ max {p, p− 1}
min {p, p− 1}

.

Now lets say there is some relation given as a m× n table, which does not have Attribute
Privacy. When applying randomized response with probability of returning the true
response being p, there is a pm·n chance that the returned relation will be the original
relation. Since the original relation does not have Attribute Privacy in this case the output
also does not have Attribute Privacy. This leads us to conclude that randomized response
does not have semantic Attribute Privacy.

Thus we have found a mechanism that has ε-Differential Privacy, but not semantic
Attribute Privacy.

Attr Priv 6⇒ DP:
Given a deterministic mechanism M that is ε-Differential Privacy will always be the
constant mechanism [25, p. 4]. However consider the mechanism M which for a given
input-relation removes the free faces from the attribute complex, and does so in a way that
produces the minimal amount of changes. Should this algorithm use some randomness,
via a random input r, it can be made deterministic by always providing a fixed r?. This
deterministic mechanism M(·, r?) has Semantic Attribute Privacy, as it always outputs
relations with Attribute Privacy. M(·, r) is not a constant mechanism: Consider one
input relation T that does not have Attribute Privacy. The output of M(T, r?) will be
some relation T ′ (6= T ) which has Attribute Privacy. Now consider some input relation
S 6= T ′ which has Attribute Privacy and no free faces. Since the mechanism minimizes
the amount of changes needed to remove free faces, M(S, r?) = S.

Since M is deterministic but not constant, M cannot have ε-Differential Privacy.

4.2.3. Attack Resilience Analysis
In this section we compare how the different notions withstand different known attacks.
We follow the attack models introduced by [37] as these attack models have established
themselves as a widely used tool to compare notions in SDC. We analyze the resilience of
the topological notions against linkage and probabilistic attacks.

A linkage attack [37] is an attempt to re-identify individuals in an anonymized dataset by
combining that data with background information. The linking may use quasi-identifiers,
such as zip or postcode, gender, salary, and so on that are present in both sets to establish
identifying connections. Within this group we find tree main subcategories: Table, Record
and Attribute linkage.
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4.2.3.1. Table Linkage

The presence or absence of a target’s record in a database can reveal sensitive information.
For example, the presence of an individual in a medical research dataset regarding diabetes
patients, could be used by an U.S. employer (who would need to pay for medical expenses)
to illegally discriminate against an individual [73]. Table linkage [73] occurs if attacker
can infer presence or absence of target’s record in released table thanks to the contrast
with background information.
ε-Differential Privacy is resilient against table attacks. The advantage of an arbitrary

attacker detecting the presence or absence of a target in the table is bounded by e
ε − 1
eε + 1 [47].

But k-Anonymity, `-Diversity and t-Closeness do not protect against this kind of
attack [87, 37].

Topological notions are established under the assumption in which membership is not
sensitive. Therefore, no further investigation has yet been done about their resilience
against table linkage. We investigate this matter and proof that both association and
Attribute Privacy are vulnerable against table linkage.

Proposition 4.2.11. Association Privacy and Attribute Privacy are vulnerable to table
linkage.

Proof. Assume target individual x∗ has a global quasi-identifier gqid := {a1, . . . ai}. This
is a combination of attributes that is unique to that individual, not only within one
dataset, but within every possible dataset that contains those attributes.

∀R ∈ X × Y with gqid ⊆ Y :
{x ∈ X | Yx ⊇ gqid} ⊆ {x∗} .

Now consider a relational database which contains all of these attributes and their negations
potentially among other attributes. That relation can contain the global identifier and
still fulfil Attribute or Association Privacy. As soon as the global quasi identifier of that
individual appears in that relation, an attacker knows they are a member of that relation.

We prove this via examples. Let gqid := {a1, a2, a3}. First, consider relation Rattr
gqid as

defined in Table 4.5. Its attribute complex is an empty octahedron, shown in Figure 4.1.
It has no free faces, as the maximal faces are triangles, and all of the corresponding edges
are edges of two triangles each. This means this relation has Attribute Privacy. At the
same time the relation contains gqid, and thus is prone to table linkage.

Next, consider relation Rassoc
gqid as defined in Table 4.6. Its association complex is two

single vertices, shown in Figure 4.2. The association complex has no free faces. At the
same time the relation contains gqid, and thus is prone to table linkage.

4.2.3.2. Record Linkage

The goal of an attacker in a record linkage attack is to determine which exact database
record is the target. For this purpose, an attacker who knows that the target record is a
member of the database uses the target’s qid as background knowledge [37].

Knowing a target’s entry in a database can be sensitive in itself, even if that database
does not directly reveal more attributes, for example, when the order of the database
itself is sensitive. But this can also be used as a step of a more involved attack, if the
same database-identifier is used across multiple databases.
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Rattr
gqid a1 ¬a1 a2 ¬a2 a3 ¬a3
1 • • •
2 • • •
3 • • •
4 • • •
5 • • •
6 • • •
7 • • •
8 • • •

Table 4.5.: Relation with Attribute Privacy,
containing gqid

¬a3

a2

a1

¬a1

¬a2

a3

Figure 4.1.: Attribute complex of Rattr
gqid

Rassoc
gqid a1 ¬a1 a2 ¬a2 a3 ¬a3
1 • • •
2 • • •

Table 4.6.: Relation with Association Pri-
vacy, containing gqid

1

2

Figure 4.2.: Association complex of Rassoc
gqid

k-Anonymity addresses this attack [37], by ensuring a minimum size for each group of
records with the same qid.

Record linkage as defined by [37] cannot be applied to ε-Differential Privacy. This is
because, ε-DP is a semantic notion, which means the mechanism is ε-DP and there is not
one published ε-DP table where the attacker could identify the target [27]. Further ε-DP
statistically bounds the influence a single individual can have on the output [27].

For the topological notations we obtain the following result:

Proposition 4.2.12. Neither Association Privacy, nor Attribute Privacy hold against a
record linkage attack.

Proof. We prove this with the same counterexamples as before: Assume the qid of the
target is qid = {a, b, c}, and the attacker knows that the target participated in the study,
that produced the published table.

Let the published relation be Rattr
gqid as defined in Table 4.5. It has Attribute Privacy,

as we have previously shown. Knowing the qid, the adversary can identify the target as
individual 1.

Let the published relation be Rassoc
gqid as defined in Table 4.6. It has Association Privacy,

as we have previously shown. Knowing the qid, the adversary can identify the target as
individual 1.

4.2.3.3. Attribute Linkage

Attribute linkage occurs if the attacker can infer sensitive attributes of their target from
published data, using their background knowledge on the target [37]. Note that topological
notions do not assume a known quasi-identifier by which this happens, like k-Anonymity
does. It is always applicable if the attacker can infer some previous unknown information
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about their target given some some attributes of their target and the targets presence in
the table
k-Anonymity does not protect against attribute linkage. This is because it can happen

that the target is in an anonymity-group, but all members of that group have the
same set of sensitive attributes. For example in a database where the quasi-identifier is
〈age, sex, zip-code〉 and all people that have the same age, sex and zip code as Alice, have
debt, it can be deduced that Alice has debt. While this can be rectified by enforcing
`-Diversity [37], we still need to assume the set of QIDs which may lead to a successful
attack is the background knowledge differs from our assumption

Attribute linkage is covered by ε-Differential Privacy when the data is uncorrelated.
Since ε-Differential Privacy implies attribute-ε-Differential Privacy [51] and attribute-ε-
Differential Privacy means that the significance of an attacker hypothesis inference trying
to know if a certain attribute was or was not in a user record is statistically bounded [51].
When the data is correlated ε-Differential Privacy encounters certain limitations in this
regard, we discuss this in section 4.3.

As for the topological notations:

Proposition 4.2.13. Attribute Privacy does cover attribute linkage.

Intuitively this is because Attacker cannot learn any new attributes about target,
starting from a know set of attributes γ.

Proof. We proceed by reduction ad absurdum. Suppose there is a successful attribute
linkage attack on a given relation R that satisfies Attribute Privacy. This means that
there is at least one target for which the attack succeeds, which means:

1. The attacker has as background knowledge a set of (non-sensitive) attributes
{y1, . . . , yn} =: γ of the target.

2. Is able to identify a group of individuals that have all of these attributes

{x1, . . . , xm} =: σ ,

3. and can infer sensitive attributes {y′
1, . . . , y

′
m′} = γ′ \ γ about the target from the

attributes, that all members of the group share.

And since the attack is successful that means that γ′ \ γ 6= ∅.
In other words, the attacker has applied (φR ◦ψR) to γ and received a γ′ with γ′ \ γ 6= ∅.

This is in conflict with the assertion that the relation has Attribute Privacy.

Proposition 4.2.14. Association Privacy does not protect against attribute linkage.

Proof. We prove this by counterexample. Let S ∈ X×Y be a relation as shown in Table 4.7,
Assume attacker knows Alice is in the relation (is in X)), and knows Alice has attribute
a. It is clear that S has Association Privacy. We prove by exhaustion, that ψS ◦ φS = id:

S a b c
1 • •
2 •

Table 4.7.: Relation S
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((ψS ◦ φS)(∅) = ψS({a, b, c})= ∅
((ψS ◦ φS)({1}) = ψS({a, b}) ={1}
((ψS ◦ φS)({2}) = ψS({c}) ={2}
((ψS ◦ φS)({1, 2}) = ψS(∅) ={1, 2}

Despite S being association private, the attacker is able to infer, that Alice has attribute
b.

4.2.3.4. Attribute linkage with colluding adversaries

The attribute linkage attack model assumes, that information an attacker has, is only
about the target themselves. If however the attacker has more information, for example
about two people in the database because of two colluding adversaries, then a database
which fulfills the notion of Attribute Privacy is vulnerable against attribute linkage.

Example 4.2.15. In this example, the attributes 〈a, b, c〉 represent the quasi-identifier, the
attacker knows their target Bob has attributes a and b and tries to get sensitive attribute
d. In addition to that they have background-knowledge. This comes in the form of relation
BG but also in the knowledge, that both Bob and Alice participated in the study that
produced the published table Attr.

Attr is defined in Table 4.8, and BG is defined in Table 4.9.

Attr a b c d
1 • • •
2 • • •
3 • •
4 • •
5 • •
6 • •
7 • •

Table 4.8.: Pub-
lished
rela-
tion

Figure 4.3.: Attribute complex of Attr

BG a b c
Alice • • •
Bob • •

Charlie •
Dough •
Emily •
Frank • •
Gladys • •

Table 4.9.: Background
Knowledge

Relation Attr has Attribute Privacy.

Proof. In Figure 4.3 it can be seen, that the maximal faces of the attribute complex are

{{a, b, c}, {a, b, d}, {c, d}} .

With this we see that the free faces are {a, d}, {b, d}, {a, c} and {b, c}. Each of those free
faces there is an individual in Attr, that produces only that face respectively (Individuals
5, 7, 4 and 6). With Theorem 3.0.1, we have that Attr has Attribute Privacy.

Now using that YBob ⊂ {a, b}, it can be determined that Bob is in group {1, 2}. Using
the background knowledge, the attacker determines that attribute c is not observable for
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Bob (while it is observable for Alice). Since the attacker knows both participated in the
survey, Alice’s record must be 1 and Bob’s record must be 2. It follows, that Bob does
have sensitive attribute d.

4.2.3.5. Probabilistic Attack

A probabilistic attack would be successful if an attacker would change their prior prob-
abilistic belief on sensitive information of the target posterior of seeing the published
data [37]. In contrast to the previous attack models, the probabilistic attack model does
not focus on the exact record or attribute that are leaked, but rather on the amount that
a probabilistic belief of an attacker would change after seeing the published data. The
goal for a notion under a probabilistic attack model is to bound this amount of change in
beliefs to some small value [37]. A drastic change in the adversaries beliefs after seeing
the data is considered a successful attack.
ε-Differential Privacy is resistant to probabilistic attacks. Per construction released

data based on a database without targets entry is ε-indistinguishable to the released
data based on database with targets entry. So an attacker cannot make any meaningful
(probabilistic) deduction about the target.

A Database that has k-Anonymity and `-Diversity can still be still vulnerable to this
attack. Additional t-Closeness is needed to achieve resilience [37].

Proposition 4.2.16. The topological notions are not resilient to probabilistic attacks.

Attribute Privacy. Consider relation R3 as defined in Table 4.10. This relation has

R3 a b c d
1 • • •
... ... ... ...

92 • • •
93 • • •
94 • •
95 •
96 • •
97 • •
98 •
99 •
100 •

Table 4.10.: Relation R3

Attribute Privacy, but by knowing the target is in the database, the attacker knows the
target has attributes a, b, and c with a probability of 92%.

Association Privacy. Consider relation R4 as defined in Table 4.11. It has Association
Privacy, but knowing the target is in the database, the attacker knows the target is
associates with users 1, 2, and 3 with a probability of 92%.
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R4 a1 … a92 a93 a94 a95 a96 a97 a98 a99 a100
1 • … • • • •
2 • … • • • • •
3 • … • • • •
4 • • •

Table 4.11.: Relation R4

4.2.3.6. Comparing Results

In the above analysis, we have analyzed the resilience of the topological notions against
different attack models, and have compared the results to the results achieved by [37].
We have seen that Attribute Privacy is only resistant against attribute linkage, and
Association Privacy is not resistant against any of the models tested.

It is to note that the ascribed purpose of Association Privacy is to hide connections
between people, not to protect individuals on their own, so it is not surprising that it fails
against all of these attack models. However we have still included it in our analysis, as
these models purpose is to compare a vast array of different notions. Further it is helpful
to confirm the failure as opposed to solely argue that a notion was not designed with an
attack model in mind, so it must fail against that model. Unfortunately, the work that
introduces the topological notions [33] does not provide an attack model that we could
have used for further comparison, and we were not able to find independent models that
consider this use case.

We present an overview of above analysis and prior results in Table 4.12. In this table,
a checkmark (3) denotes if the presented notions withstands against the analyzed attack
model, and a cross (7) denotes if it does not.

Table
Linkage

Record
Linkage

Attribute
Linkage

Probabilistic
Attack

Attribute Privacy 7 7 3 7

Association Privacy 7 7 7 7

k-Anonymity 7 3 7 7

`-Diversity 7 3 3 7

t-Closeness 7 7 3 3

ε-Differential Privacy 3 3 3 3

Table 4.12.: Summary of which notions hold up against which attack model

4.3. Attribute Privacy plus Differential Privacy
Wang et al. [87] proposed the idea of combining topological notions with DP in order
to solve some DP problems such as the vulnerability with respect to correlation-based
attacks. They introduce the notion of “APL-free ε-Differential Privacy”, where APL
stands for Attribute Privacy linkage, and the authors do so too in reference to [33]. They
argue, that correlations between the attributes allow an attacker to execute such APL
attacks.

First, we notice, that “APL-free” is a relaxation of Attribute Privacy. We will formally
prove this observation in subsection 4.3.1. Secondly we are not convinced, that [87]
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show an issue that is present in correlated DP data. Nevertheless, correlations between
attributes can lessen the guarantees of DP and Attribute Privacy could help with that.
So in the following we

1. Show that APL-free is a relaxation of Attribute Privacy.

2. Show how [87] falls into inference privacy fallacy.

3. Analyze whether a combination of Attribute Privacy and DP can prevent an attribute-
correlation-based attack, which would otherwise be possible on data that was only
anonymized with DP.

4.3.1. APL-free is a relaxation of Attribute Privacy
The authors do not directly give a definition for APL-free, rather they give a definition
for APL which they then use in their definition of APL-free ε-Differential Privacy:

Definition 4.3.1 (APL [87]). Given a dataset D, D has “Attribute Privacy leakage” (APL)
if there is an itemset Q ⊂ I of the item universe I such that∣∣∣{S|S ∈ DI ∧Q ⊂ S

}∣∣∣ = 1 ,

where DI is the set of itemsets in D. And by using the itemset Q the adversary can
uniquely identify S in DI and S \Q is the leaked information.

An adversary has the following information in advance:

1. The target’s itemset S is in D.

2. The adversary knows a boundary itemset Q ⊂ S, where Q 6= ∅ and Q can uniquely
identify S in D.

By accessing DP protected dataset Dp, the adversary will find the set of itemsets containing
Q in Dp: G =

{
S ′|S ′ ∈ DI

p ∧Q ⊂ S ′
}

. Then Q is an APL in Dp and the attack is successful
if and only if G = {S}.

Definition 4.3.2 (APL-free ε-Differential Privacy [87]). A randomized algorithm M satisfies
APL-Free ε-Differential Privacy, if M satisfies the following requirements:

1. For any Dp ∈ Range(M), there is no APL in Dp.

2. For any two neighboring datasets D1, D2 and for any possible output Dp ⊆
Range(M),

Pr[M(D1) = Dp]
Pr[M(D2) = Dp] ≤ exp ε .

We see the condition of G != {S} to be arbitrary and unnecessary. To give an intuition,
as to why APL-free is a relaxation of Attribute Privacy, consider the following: Let
G = {S1, S2, . . .} with

⋂
i

Si =: S∗ ) Q. According to the prior definition this would not

be APL, since there exists no single S such that Q = {S}. However S∗ \ Q still leaks
attribute information.

48



4.3. Attribute Privacy plus Differential Privacy

Proposition 4.3.3 (APL-Free is a relaxation of Attribute Privacy). Any given dataset D
that has Attribute Privacy is also APL-Free, but a dataset D′ that is APL-Free is not
necessarily attribute private.

Proof. To show this proposition, we will show that APL-free does not imply Attribute
Privacy, and that Attribute Privacy does imply APL-free.

APL-Free 6⇒ Attribute Privacy: Let R be a relation, on which for any Q ⊂ I∣∣∣{S|S ∈ DI ∧Q ⊂ S
}∣∣∣ 6= 1 ,

however let there be one Q∗ with G∗ :=
{
S|S ∈ DI ∧Q∗ ⊂ S

}
, and S∗ :=

⋂
Si∈G∗

, where

|G∗| > 1 ∧ S∗ ) Q∗ .

Since there is no Q (including Q∗) for which
∣∣∣{S|S ∈ DI ∧Q ⊂ S

}∣∣∣ = 1 the relation is
APL free. However the relation does not have Attribute Privacy: Denote xi the individual
from which Si was produced. Since S∗ 6= Q∗ and

φD ◦ ψD(Q∗) = φD({x1, . . . , xn}) = S∗

we can conclude, that φD ◦ ψD(Q∗) 6= id
Attribute Privacy ⇒ APL-Free: Assume there exists a dataset D which has Attribute

Privacy but is not APL-free (has APL). This means that there exists an itemset Q of
attributes such that there is exactly one individual (x) that has all items of Q (as per
APL definition). This individual has itemset S with Q ⊂ S, and since this is an APL
S \Q 6= ∅, so Q ( S. This means

φD ◦ ψD(Q) = φD({x}) = S 6= Q ⇒ φD ◦ ψD 6= id .

Which stands in contradiction with the assumption that D had Attribute Privacy.

Since we see no reason to use a relaxation of Attribute Privacy, we suggest fully
combining both notions:

Definition 4.3.4 (Attribute Private ε-Differential Privacy). A randomized algorithm M
satisfies Attribute Private ε-Differential Privacy (Attr-DP), if M satisfies the following
requirements:

1. For any D ∈ Range(M), D fulfils Attribute Privacy, as defined in Definition 2.5.1.

2. For any two neighboring datasets D1, D2 and for any possible output S ⊆ Range(M),

Pr[M(D1) ∈ S]
Pr[M(D2) ∈ S] ≤ exp ε .

Recall Table 4.12. By construction, Attr-DP should be resistant against table linkage,
record linkage and probabilistic attacks. However keep in mind, that DP is only vulnerable
against attribute linkage, when attributes are correlated. This notion thus is only useful,
if Attribute Privacy still holds even under correlations.
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4.3.2. Inference privacy fallacy in APL
Now let us get into problems we see when it comes to how [87] addresses correlations.
The problem of correlated data in differential privacy can be split up between correlations
between individuals and correlations between attributes. APL is introduced as a potential
attack vector that arises from attribute-correlated data.

Usually, when the correlation between attributes is discussed as a problem for DP, we
talk about an adversary using prior knowledge about correlations between attributes, to
lessen the privacy budget achieved [95]. As an example: Two attributes that are correlated
100% give the adversary two samples that have different noise applied, thus enabling
differential analysis.

However the correlations used by the APL attack are not based on background knowledge
of the adversary, but rather inferred from the published data. This leads into the inference
privacy fallacy described by [52, p. 3], where “when the unwanted inference depends on
generalizable (statistical) knowledge contained in the public dataset rather than on the
specific datum that a target individual may or may not have contributed to the underlying
confidential database”. In the case given for APL the published data consists of rows
of itemsets and occurrence counts for these itemsets. In this data a correlation is found
between the given input itemset Q and some itemset S ⊃ Q contained in the published
database.

However keep in mind that this data is DP, so if the number of occurrences for the
itemset S is low, the target has plausible deniability for any inference gained from S \ S.
In the example given by [87], the itemset S occurs 23 times in the published dataset Dp

which totals 40 occurrences. Additionally there is no other itemset S ′ ⊃ Q that occurs in
Dp. This is then used together with background knowledge about the targets participation
in the survey and the itemset Q of the target to infer that the target has itemset S. This
correlation between the Q and S is generalizable knowledge and not specific to the target.
If the target had not participated in the survey the number of S occurrences in Dp would
have been very similar the prior number.

4.3.3. Attribute Private DP vs. Correlation-Based Attacks
We just elaborated our issues with the concept with APL in DP data as it was presented
by [87]. But correlated attributes in DP protected data can case issues, if the attacker
knows about them as background knowledge. Here we will elaborate on the risks of
correlated attributes and analyze whether requiring Attribute Privacy can help against
some attack enabled by correlated attributes. As elaborated in [29] event-level privacy is
concerned with hiding the presence or absence of a single event and user-level privacy the
presence or absence of a single user. User-level privacy suffers under correlated users [95]
and event level privacy suffers under correlated attributes [15].

Consider Table 4.13, which shows an example of correlated users. The data under
consideration has the format shown in Table 4.13a. The users 1 and 2 can either be
positively correlated meaning that with a high likelihood x1 ⇔ x2 or negatively correlated,
where with a high likelihood x1 ⇔ ¬x2. Table 4.13b and Table 4.13c respectively show
the probability distributions in both of those correlation cases.

When the data is published using a counting query of f(x1, x2) = x1 +x2 [95] prove, that
a for a weak attacker the distinguishability of the probability distributions is outside the
[e−ε, eε] bounds. They also show that in this particular case, the negative correlation does
not show the same adverse effect. Note that this does not mean that negative correlation
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x
1 x1
2 x1

Correlation

(a) Data format

x1 = 0 x1 = 1
x2 = 0 0.49 0.01
x2 = 1 0.01 0.49

(b) Positively correlated

x1 = 0 x1 = 1
x2 = 1 0.01 0.49
x2 = 0 0.49 0.01

(c) Negatively correlated

Table 4.13.: User-correlated data

can not have a negative effect similar to the one observed with positive correlation in this
case.

Now consider the relation presented in Table 4.14, where attributes a and b are correlated.
This poses a corresponding problem for event-level ε-Differential Privacy. If Attribute
Privacy manages to stay unaffected by these correlations, then a combination of these
notions, like in Definition 4.3.4, will be able to protect against such attribute-correlation
attacks. Note that the correlation problem in DP only occurs under a weak adversary, that
does not have background knowledge of other individuals in the relation. This means that
in a combined notion, the protections of Attribute Privacy would only become relevant,
when facing a weak adversary.

a b · · ·
1 a1 b2
2 a2 b2
...

Correlation

Table 4.14.: Attribute-correlated data

We analyzed if Attribute Privacy manages to stay unaffected by attribute correlations,
under the following case:

• Some Relation Rorig, which does not fulfil Attribute Privacy, has some mechanism
applied resulting in modified relation Rpub that does, and this modified relation then
gets published.

• The adversary has background knowledge of some strong correlation between two
attributes, which leads them to find a Relation Rcorr

pub which is closer to the original
relation.

We then analyzed if Rcorr
pub still has Attribute Privacy. We found that Attribute Privacy is

vulnerable with some correlations, but it is also able still hold up under at least one very
specific correlation.

Proposition 4.3.5. Given an original relation without Attribute Privacy, the corresponding
published relation R, which fulfils Attribute Privacy, with at least two properties a and
b, and a correlation a ⇒ b. An adversary which knows the strong positive correlation
a ⇒ b can construct a relation R+. Aside from the information already contained in the
background knowledge, R+ still has Attribute Privacy.

Proof. Recall that for Attribute Privacy to hold for a relation R the following has to be
true

φR ◦ ψR is identity operator on F(ΦR) ∪ {∅}
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So for a given set of attributes σ1, ψR will map it to individuals γ, and φR will map the
individuals to their shared attributes σ2. And only if σ2 = σ1 does R fulfil Attribute
Privacy. Let

• σ1 a set of attributes, a ∈ σ1

• γ := ψR(σ1); σ2 := φR(γ)

• γ+ := ψR+(σ1); σ+
2 := φR+(γ+)

• γ∗ all individuals affected by (and whose attributes changed because of) the correla-
tion (that previously had a but not b)

– φR(γ∗) = σ∗
R; a ∈ σ∗

R ∧ b /∈ σ∗
R

– φR+(γ∗) = σ∗
R+ ; a, b ∈ σ∗

R+

Now we analyze different possible values for γ+:

• If γ = γ+ “Set of individuals unchanged”:
– If γ+ ⊆ γ∗ then σ+

2 = σ2 ∪ {b} (All individuals gained b).
– Else: ∃j ∈ γ+ : j /∈ γ∗

∗ This means j either already had b in R or does not have a or b in R+.
∗ In both cases σ+

2 = σ2.

• Else if ∃i ∈ γ+ : i /∈ γ “gain individual”:
– Only possible if b ∈ σ1 (⇒ b ∈ σ2 ∧ b ∈ σ+

2 )
– then γ+ \ γ = γ∗ ⇒ σ+

2 = σ2
⋂

y∈γ∗
Xy (Set of shared attributes can only shrink

with more individuals)

• Else (∃i ∈ γ : i /∈ γ+) “loose individual”
– Not possible with positive correlation

So when σ1 = φR(γ∗) (b /∈ σ1), it can be the case that ψR(σ1) = γ∗ and then φR+ ◦
ψR+(σ1) = σ1 ∪ {b}. And in all other cases φR+ ◦ ψR+(σ1) = σ1. Note that for a different
definition of σ1, where a /∈ σ1, the correlation would affect none of the individuals in γ or
γ+ and thus γ = γ+ and σ2 = σ+

2 would hold.
So while Attribute Privacy is not strictly held, the only attribute information that R+

leaks is a ⇒ b, which was already contained in the background information.

Proposition 4.3.6. Given an original relation without Attribute Privacy, the corresponding
published relation R, which fulfils Attribute Privacy, with at least two properties a and
b, and a correlation a ⇒ ¬b. An adversary which knows the strong negative correlation
a ⇒ ¬b can construct a relation R−. There are cases in which R− does not retain Attribute
Privacy.

Example 4.3.7. Consider relation R and R− as depicted in Table 4.15. Let variables be
as above, additionally

• γ− := ψR−(σ1); σ−
2 := φR(γ−)
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R a b c
1 • •
2 • •
3 • •

(a) Published Relation

R− a b c
1 •
2 • •
3 • •

(b) Inferred Relation

Table 4.15.: Relations showcasing problem with negative correlations in Attribute Privacy

• γ? all individuals affected by the correlation (that previously had a and b, but now
only a)

– φR(γ?) = σ?
R; a, b ∈ σ?

R

– φR−(γ?) = σ?
R− ; a ∈ σ?

R− ∧ b /∈ σ?
R− .

So in this example γ? = {1}. Consider the “loose individual” case, so ∃i ∈ γ : i /∈ γ−.
This can (only) happen when b ∈ σ1 and i ∈ γ?. In this example σ1 = {b}.

With b ∈ σ1 it holds that γ \ γ− = γ?. In this example γ = {1, 2} and γ− = {2}. Note
that the set of individuals unaffected by the correlation γ \γ? is equal to γ−. Now consider
the case in which additionally all individuals in γ− share an attribute x not shared by
the individuals affected by the correlation. In this example, individuals γ−(= {2}) share
attribute c, while individuals γ?(= {1}) do not: x = c.

Then x ∈ σ−
2 ∧ x /∈ σ2. In this example σ−

2 = {b, c} and σ2 = {b}. Thus Attribute
Privacy no longer holds for R−.

So, since there are correlations, for which Attribute Privacy fails, as evidenced by the
preceding example, we will not investigate the combination of Attribute Privacy and DP
further. We would however like to point out, that in the example of [95] the positive
correlation was problematic. So for specific applications in which attributes are correlated,
it might make sense to analyze, if Attribute Privacy is unaffected by the kind of correlation
and if that is the case, use Attribute Private ε-Differential Privacy.
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Typically, in SDC, our focus is on the privacy of individual subjects, specifically their
presence and attributes. This is the context in which k-Anonymity and DP operate, and
where we demonstrated that Association Privacy does not hold up.

However, in many real cases, such us social networks analysis, the private information
we aim to protect may concern more than one individual, for instance, the friendship
relationship between two users. This scenario is modeled through graph data, where
typically a node represents an individual and edges represent relationships or shared
attributes between those individuals. In many cases the protection goal over graph data
is to prevent re-identification attacks, where an adversary can identify a target in the
published graph. There are also scenarios in which the identities of the vertices, and even
their attributes are not sensitive themselves, but the edges between target individuals
are. One such scenario is a transaction network, in which an edge denotes a financial
transaction between two individuals and is considered sensitive.

As mentioned before (section 2.5), the protection goal of Association Privacy is to
protect relationships between people. Therefore, the goal of Association Privacy appears
to align with the protection goals usually seen in SDC notions for graph data. Especially
in scenarios such as the above mentioned transaction network. This motivates us to
analyze its protection and potential usability in the graph protection domain.

In this chapter we take a closer look on Association Privacy in the context of graph
data. We answer two questions: Is a relation that is protected by Association Privacy
vulnerable against a state-of-the-art graph privacy adversary? Could Association Privacy
be used to protect a graph?

As a prerequisite, in section 5.1, we list an existing classification of privacy breaches on
graph data, as well as existing classification of graph data background knowledge. Further,
we establish a taxonomy of existing syntactic notions in this field. To the best of our
knowledge we are the first ones providing a summary of common syntactic graph privacy
notions, with a classification in protection goals and assumed background knowledge.
For completeness, we briefly summarize an existing rigorous taxonomy and analysis of
semantic graph privacy notions [60] in section 5.2.

Then, in section 5.3 we answer the first question, by analyzing whether a graph, based
on an association private relation, is vulnerable against a SotA adversary. To do this
we introduce a canonical method to create a graph from a relation. We then proceed to
perform graph-privacy attacks on those graphs, showing, that Association Privacy does
not, in fact, protect relations against the surveyed kinds of attackers. Using our taxonomy,
we identity the SotA syntactic SDC notion with matching protection goal: k-security [18].
We show that Association Privacy offers weaker protection, than k-security.

Finally, in section 5.4 we negatively answer the question, whether Association Privacy
could be used to protect data that is initially given as graph data.
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5.1. State-of-the-Art in Syntactic Graph Data Privacy
Multiple surveys have been released about private graph data [53, 1, 93]. Unfortunately
these focus on “techniques” or “methods” to achieve some form of graph data privacy, and
do not compare notions. Correspondingly they do not create a taxonomy of notions. Some
of these “techniques” are the mechanisms of existing notions, while other “techniques”
lack a corresponding formal notion altogether. Despite this, the surveys are still helpful
to get an overview of relatively current notions and their challenges.

We identify a collection of notions, whose mechanisms have been discussed by all
three of the surveys. We briefly summarize each of those notions in subsection 5.1.3.
In Appendix A, we summarize and comment on the “method”-classifications that the
surveys did provide, which lead us the the selection of notions we identified.

We aim to create a rough taxonomy for these notions, based on protection goals and
assumed attacker background knowledge. For this purpose we gather existing classifications
of privacy breaches and types of background information for graph data from existing
works.

A common [53, 1, 62] classification of privacy breaches in graph data, and their respective
protection goals is as follows:

1. Identity disclosure, where the adversary’s goal is to identify the identity of the
individual associated with a node

2. Link disclosure, where the sensitive relationships between individuals are disclosed,
and

3. Content disclosure, where the privacy of additional data associated with a node or
edge is breached. This kind of privacy breach is called “content disclosure” by [1,
62], and “attribute disclosure” by [53].

We note, that these categories are not formally defined by these works themselves. Link
disclosure is most similar to the protection goal of Association Privacy. For this reason,
we give a formal definition of link disclosure in subsection 5.3.1. A formal definition of
the other types of disclosure is outside of the scope of this thesis.

Additionally we note, that content disclosure only applies over rich graphs. Rich graphs
are graphs in which edges or vertices are annotated with additional attributes in their
own right [93]. These kinds of graphs are often the data format of social networks, in
which the nodes contain sensitive personal information, and the edges contain sensitive
information about the kind of relationship the two individuals share [93]. Wu et al. note
that for rich graphs, “it is imperative to study the impact on privacy disclosures when
adversaries combine attributes and structural information together in their attacks” [93].

We do not believe that Association Privacy would be applicable to rich graphs, since
it protects sensitive relationships, that are implied by the attributes of the individuals.
Having attributes (in the form of vertex labels), that do not necessarily match the
associations (which are represented as edges) would make it unclear what exact we would
be trying to protect with Association Privacy.

5.1.1. Graph Data Background Knowledge
In the following we briefly summarize existing classifications of attacker background
knowledge for graph data. We use this as a base to differentiate between existing graph
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privacy notions in subsection 5.1.3. We also remark on the equivalent graph background
knowledge, assumed by Association Privacy.

The surveys [1, 53] point out, that in contrast to DP-based notions, the non-DP
notions and mechanisms surveyed rely on the analyst knowing the adversary’s background
knowledge. And [93] notes, that modelling all types of background data for social network
data is is challenging, and that this makes it harder to design anonymization techniques
for such data.

While Association Privacy does not assume a qid like k-Anonymity does, it does assume
that the adversary knows a set of individuals, that all share the same association. In a
graph setting this would be a subgraph of one vertex and its neighbors. This is only one
of many possible types of background knowledge in a graph setting.

In the following we will list the different kinds of background knowledge that have been
listed by [93]:

1. Attributes of vertices

2. Specific link relationships between target individuals

3. Vertex degrees

4. Neighborhoods structural information of target individuals

5. (Embedded) Subgraphs

6. Graph metrics (betweenness, closeness, centrality)

7. Topological similarity/ distance

8. Auxiliary information

• This includes an auxiliary graph whose members overlap with the anonymized
target graph and a set of probability distributions defined on attributes of nodes
and edges.

The attackers discussed by [93] gain their background knowledge, either actively, by
creating new user accounts, or passively by finding unique sub-graphs in the network
pre-publication, in order to identify individuals post-publication. The survey [93] notes
that a randomly generated subgraph formed by O

(√
log n

)
nodes can compromise the

privacy of an arbitrary target with high probability and that most nodes in real social
network data already belong to a small uniquely identifiable subgraph.

5.1.2. Utility Classifications
Survey [93] notes that it is hard to quantify information loss for graph data. They classify
utility in three types: Graph topological Properties (such as degree sequences, shortest
connecting paths and clustering coefficients), graph spectral properties (with the spectrum
being the set of eigenvalues of the graph’s adjacency matrix, which has close relations with
many graph characteristics) and aggregate network queries. Additionally they mention
that the number of modified edges can also be used to quantify loss.
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5.1.3. Existing Notions
In the following we look into existing graph privacy notions, whose mechanisms have been
mentioned (but not defined) in the previously evaluated surveys. The surveys also did
not provide a taxonomy for these notions. To provide some structure, in Figure 5.1 we
put the notions we considered in relation with each other by protection goal and assumed
background knowledge.

Protection Goal

Attacker Knowledge

Identity Disclosure

k-degree Anonymity
k2-degree Anonymity
1-hop Anonymity

degree

k-automorphism
k-symmetry

general
structural
knowledge

k-Candidate Anonymity

Structure Queries
k-isomorphic

Subgraph

Link Disclosure

Figure 5.1.: Categorization of k-Anonymity based notions

5.1.3.1. k-Degree Anonymity

Introduced in [62]. Focuses on identity disclosure.
They denote dG the degree sequence of G, a sorted vector of size equal n = |V | such

that dG(vi) = dG(i) is the degree of node vi of G.

Definition 5.1.1 (k-degree Anonymity). A vector of integers v is k-anonymous if every
distinct value in v appears at least k times.

And a graph G = (V,E) is k-degree anonymous if the degree sequence of G, dG is
k-anonymous

Adversaries have an a priori knowledge of the degree of certain nodes. Their anonymi-
zation problem consists of achieving k-degree anonymity by adding a minimal amount of
edges.

According to [1] it “outperforms the random-based approach by achieving a greater
degree of anonymity and less pertubation on graphs”. Survey [93] notes about this notion,
that the degree sequences of real-world graphs are highly skewed, and it is usually easy
for adversaries to collect the degree information of a target individual.

We saw this notion used in multiple recent papers: “K-Degree Anonymity on Directed
Networks” [16] adapts this notion for directed networks. “Personalized Privacy Preserving
Method for Social Networks Graph K-Anonymization” [70] focuses on identity disclosure,
and contributes a framework in which users are allowed to set their own privacy level
requirements.
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“Plausible Heterogeneous Graph K-Anonymization for Social Networks” [56] addresses
heterogeneous graphs, so graphs with different types of edges and nodes. Their presented
framework uses adversarial learning to address the attack vector of training a predictive
model with the published graph to infer sensitive relationships. A big part of that
framework is to enforce k-degree anonymity.

5.1.3.2. k2-Degree Anonymity

Introduced in [80]. The stated goal is to prevent vertex re-identification, which means it
falls under identify disclosure.

Their notion is specifically designed to prevent friendship-attacks, where the adversary
knows the degree of two vertices that share an edge and tries to identify the first of these
vertices. They refer to [62] (k-degree Anonymity) and related papers. In this context
they state that while the other papers aim to prevent attacks based on vertex degrees
their objective of their paper is to prevent friendship attacks based on vertex degree. A
direct comparison with the attacker of [62] might be difficult because it generally assumes
knowledge of the degree of “certain nodes”, which could include a pair of connected nodes,
however the additional knowledge that two of these nodes share an edge might be crucial.

Definition 5.1.2 (k2-Degree Anonymity). A graph Ḡ is k2-degree anonymous if for every
vertex with an incident edge of degree pair (d1, d2) there exist at least k− 1 other vertices
such that each of the k − 1 vertices also has an incident edge of the same degree pair.

Tai et al. propose, that k2 degree anonymity implies k-degree anonymity.

5.1.3.3. k-Degree Subset Anonymity

Introduced in [19], is a generalization of the degree anonymization problem proposed
by [62]. The idea behind this notion is that in some cases the attacker is only interested
in some subset vertices, and thus it is not necessary to anonymize the entire graph. It
focuses on subset anonymity, where only a subset of the vertices need to be protected.

Definition 5.1.3 (k-Degree-Subset-Anonymity). GIven an input Graph G = (V,E) and an
anonymizing subset X ⊆ V , produce an output graph G′ = (V,E ∪ E ′) such that X is
k-degree-anonymous and |E ′| is minimized.

5.1.3.4. k-Neighborhood

Introduced in [98]. The paper calls its notion k-anonymous, to avoid confusion, we rename
this notion to k − 1-neightborhood-anonymous.

Survey [93] summarizes this notion as follows: “At least k − 1 other vertices in the
graph such that the k induced subgraphs are isomorphic”.

The neighborhood of a vertex u is the induced subgraph of the neighbors of u. This
means the subgraph contains those vertices and all edges them in the original graph.

The privacy of a vertex u of the original graph G is considered leaked if an adversary
can identify a vertex u′ in the published graph G′ that connects to other vertices in G′ in
a way that is similar to the way u connects to other vertices in G.

This means the goal of this notion is to prevent any vertex u ∈ V (G) to be identified
in G′ with high confidence (> 1/k). This means this notion also addresses the identity
disclosure problem.
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Definition 5.1.4 (k-1-neighborhood-anonymous). Given a graph G, for a vertex u ∈
V (G), u is k-1-neighborhood-anonymous in G′ if there are at least (k − 1) other vertices
v1, . . . , vk−1 ∈ V (G) such that

NeighborG′(A(u)),NeighborG′(A(v1)), . . . ,NeighborG′(A(vk−1))

are isomorphic. G′ is k-1-neighborhood anonymous, if every vertex inG is k-1-neighborhood-
anonymous in G′

The paper [98] models social network as vertex-labelled-graph in which the labels
form a hierarchy. The Assumed background knowledge is the neighborhood of some
target individuals (). This these vertices are called the d-neighbors and are the vertices
within distance d to the target vertex in the network. A large d is impractical for
adversary, because social networks have small diameter, so a d > 1 adversary has to collect
information about many vertices. The paper [98] discusses only d = 1, leaves d > 1 for
future work.

5.1.3.5. 1-hop Anonymity

Introduced in [84], 1-hop Anonymity is supposed to protect against a type of degree based
attack attempting re-identification. This means we can classify its protection goal as
identity disclosure. Here, the adversary is assumed to have prior knowledge about the
degrees of nodes within a given radius of the target node (denoted by the number of hops
from the target node).

Definition 5.1.5 (k-Anonymous against i-hop degree-based attacks). The i-hop fingerprint
of a vertex v ∈ V denoted fi is the sequence of degree sets

d(v), {d(u)|u ∈ N(v, 1)}, . . . {d(u)|u ∈ N(v, i)}

And a graph G(V,E) is k-Anonymous against i-hop degree-based attacks, if for each node
v ∈ V there exists at least k − 1 other nodes u1, . . . , uk−1 ∈ V such that

fi(v) = fi(uj) ∀j ∈ [1, k − 1] .

5.1.3.6. k-Candidate Anonymity (vertex)

Introduced in [45], k-Candidate Anonymity addresses structure queries. It ensures that
for a given structure query that matches a candidate, at least k − 1 other candidates
match that same query.

Hay et al. note a candidate set of an individual x ∈ V as cand(x) and define it to
consist of the nodes of the anonymized Graph Ga that could feasibly correspond to x.
Similarly, if the adversary uses a query Q(x) as background information the corresponding
candidate set is called candQ(x). They define a generalization of a graph as a Graph
consisting of supernodes, superedges and an accompanying edge function d(·, ·). The
supernodes V are a partition of nodes of the original vertex set V and the value of d
corresponds to the number of edges in the original graph this superedge contains.

As a guarantee against re-identification they require each partition to have at least size k.
They state that this ensures candQ(x) ≥ k for any adversary Q. As the notion guarantees
against re-identification, it addresses the protection goal of identity disclosure. The authors
assumption throughout the work is that external information sources are accurate, but not
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necessarily complete: They “distinguish between a closed-world adversary, in which absent
facts are false, and an open-world adversary in which absent facts are simply unknown”.
They define three variants of adversary background knowledge:

• Structural queries modeling an adversary with closed-world information about node
degree

• Class of structural queries modeling weaker adversary, who explores the graph
edge-by-edge with open world information

• Knowledge provided by hub-connections (hub node is a node with high degree and
betweenness centrality)

They call their kind of attack “structral reindentification”.

5.1.3.7. k-Automorphism

According to [93] k-Automorphism was developed to mitigate subgraph-based privacy
attack. But has the disadvantage, that in order to make a graph symmetric for anonymi-
zation, adding new vertices and modifying the edges may be required, which will reduce
utility.

From the at the initial paper [99] we find, that k-Automorphism is focussed on the
identity disclosure problem, as opposed to link exposure. They state that with disclosed
identities, some sensitive link information can be derived as well but acknowledge that
the link-disclosure problem is orthogonal to identity-disclosure discussed in the paper.

The definition given for k-Automorphism is as follows:

Definition 5.1.6 (k-automorphic Network). An automorphism of a graph is an automorphic
function f of the vertex set V such that for any edge e = (u, v), f(e) = (f(u), f(v)) is also
in G.

A network G, is called a k-automorphic network if there exist k − 1 automorphic
functions Fa(a = 1, . . . , k − 1) in G, and for each vertex v in G,

(Fa1(v) 6= Fa2(v)(1 ≤ a1 6= a2 ≤ k − 1) .

The paper [99] points out, that without this notion any topological structure of the
network can be used to identify target individuals in the released network. This notion
specifically targets structural attacks. For this reason we classify its background knowledge
as general structural knowledge. We additionally note, that this notion allows for dynamic
releases.

5.1.3.8. k-symmetry

Introduced by [92], k-symmetry targets identity disclosure under structural knowledge
attacks.

The general idea of this notion is to modify the graph, in such a way, that for each
vertex v there are at least k − 1 other vertices which serve as the image of v under some
automorphism. The adversary is assumed to have some (generalized) structural knowledge
about their target v ∈ V .

The automorphism equivalence introduces a vertex partition of vertices u, v for which
there exist an automorphism g ∈ Auth(G) such that ug = v). The paper [92] calls this
vertex partition the automorphism partition of G and denote it by Orb(G).
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Definition 5.1.7 (k-Symmetry Anonymity). Given a graph G and an integer k, if

∀∆ ∈ Orb(G), |∆| ≥ k ,

then G is satisfies the requirement of k-symmetry anonymity.

The paper [92] states “k-symmetry anonymity is a generalization of any other k-
anonymities of graphs based on different structural constraints on vertices. In other words,
if a graph is k-symmetric, it also satisfies any other k-anonymity requirements defined in
terms of other structural constraints on vertices, such as degree, neighborhoods and so on”.
The authors criticise [62, 98] and [45] for assuming some specific structural knowledge and
point to the necessity for a k-anonymity model independent of structural knowledge used.
They also take note of [99] (k-Automorphism) and write that whether k-automorphism is
equivalent to k-symmetry still needs rigorous proof.

5.1.3.9. k-Isomorphic graph

Introduced in [18], k-Isomorphism is an expansion of k-candidate anonymity [93].
The notion, named k-security, models the adversary’s background knowledge as a

subgraph of G up to the entire given graph. One vertex in this neighborhood attack
graph is always marked as the vertex under attack. This pair (Ga, v) is called the NAG
(Neighborhood Attack Graph), concerning a target individual A, where v is the vertex
belonging to A.

The notions goal is to publish a (labelled) graph in such a way that given some NAGs
vertex and link information can not inferred with a higher probability than a set threshold:

Definition 5.1.8 (k-security). Given a Graph G = (V,E) with node-labels, given as I(v),
where every node represents a unique individual. The anonymized Graph Gk of G satisfies
k-security with respect to G, if for any two individuals A and B with corresponding NAGs
GA and GB (known to the adversary) the following conditions hold

• (NodeInfo Security) the adversary cannot determine from Gk and GA that A is linked
to I(v) for any vertex v with a probability higher than 1

k
(Analogue for B)

• (LinkInfo Security) the adversary cannot determine from Gk, GA and GB that A
and B are linked by a path of a certain length with a probability of more than 1

k

The title-giving k-Isomorphism is part of the solution given to the notion’s problem
statement. It consists of given a Graph G, reaching a k-secure graph with respect to G
while minimizing a cost metric given in the paper.

Definition 5.1.9 (k-Isomorphism). A graph G is k-isomorphic if G consists of k disjoint
subgraphs g1, . . . , gk where gi and gj are isomorphic for i 6= j.

Given a Graph G, the solution to the problem statement is to derive a graph Gk with
the same vertex-set such that Gk is k-isomorphic. The paper also discusses dynamic
releases.
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5.1.3.10. k-Obfuscation

Introduced by [11], k-Obfuscation has the goal to anonymize the graph G so that the
identity of its vertices is obfuscated, which means it has the goal of protecting against
identity disclosure. The notion quantifies the privacy-level via entropy.

The adversary is assumed to posses knowledge about some vertex property P of their
target vertex. Examples given for this property include the degree of the vertex, of the
vertex and of its neighbours, the neighborhood subgraph induced by the target vertex
and its neighbors.

The notion works over uncertain graphs. An uncertain graph is defined in relation
to some original graph G = (V,E): The uncertain graph on the vertices of G is a pair
G̃ = (V, p), where p : V2 ! [0, 1] is a function that assigns probabilities to unordered pairs
of vertices (V2). This means every possible edge given the vertex set V has some assigned
probability of existing.

Definition 5.1.10 ((k, ε)-Obfuscation). Let P be a vertex property, k ≥ 1 a desired level of
obfuscation and ε ≥ 0 a tolerance parameter. The uncertain graph G̃ is said to k-obfuscate
a given vertex v ∈ G wrt. p if the entropy of the distribution YP (v) over the vertices of G̃
is ≥ log2(k):

H(YP (v)) ≥ log2(k) .
The uncertain graph G̃ is a (k, ε)-obfuscation wrt. property P if it k-obfuscates at least
(1 − ε)|V | vertices wrt. P .

The tolerance parameter ε is there to compensate for outliers (such as celebrities in
social networks). The goal for anonymization is to lower the bound of entropy of the
distribution it induces over the obfuscated graph vertices.

This work is improved upon by [74]. They propose a general model called uncertain
adjacency matrix (UAM) which captures (k, ε)-obfuscation. Given the original graph G0
the UAM A of G must satisfy

1. Aij = Aji (Symmetry)

2. Aij ∈ [0, 1] and Aii = 0 (no multi-edges or self-loops)

3.
n∑

j=1
Aij = di(G0) i = 1 . . . n (expected degrees of all nodes must be unchanged;

preserving the degree sequence)

Given this context, (k, ε)-obfuscation can be seen as an approach to construct an UAM
while having the additional restriction over the entropy of the vertex property distribution
as described above. Nguyen, Imine, and Rusinowitch state in [74], that in unlabeled
graphs (where node identifiers are numbered in an arbitrary manner) an attacker aims at
re-identifying nodes based on their structural information and that for this line of graphs
node privacy implies link privacy. Additionally they state, that k-anonymity has the same
semantics as k-obfuscation with the corresponding minimum entropy of log2 k.

5.2. State-of-the-Art in Semantic Graph Data Privacy
A recent survey “Private Graph Data Release”[60] introduces a taxonomy for semantic
graph data privacy notions. In the following, we briefly summarize their findings, as
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together with the previous section, this complements our understanding of the graph data
SotA to encompass both the syntactic and semantic notions. We highlight, that in the
graph data context, there exist further semantic privacy notions that are not based on
DP.

The tree-based taxonomy divides research on private graph data release on the first
level in graph release or statistic/ query release. This means it makes the distinction
whether the full graph will be released and thus has to be anonymized, or just some
aspects derived from it. The former also includes synthetic graph releases.

The next level divides both branches each in provable and non-provable methods:
“Provable privacy mechanisms offer mathematical guarantees about the privacy protection
or the utility that they can provide. Non-provable privacy mechanisms do not provide
such strong theoretical guarantees and thus are more empirical in nature”. Here k-
Anonymity-like approaches fall into the non-provable category, while DP-methods fall
into the provable one. Broadly speaking, the survey’s classification of provable methods
aligns with what we would call semantic notions, while the non-provable category not
only contains syntactic notions, but also mechanisms without any formal notion attached.
They further criticize, that the “non-povable methods” make strong assumptions about
the background knowledge of adversaries. They argue, that this is difficult to anticipate,
and thus those methods do not provide strong privacy guarantees. Given this context, we
had high hopes for the privacy guarantees of Association Privacy compared to syntactic
notions, because it allows background knowledge of multiple individuals that are associated
with each other. However, as we will show later, Association Privacy has weaker privacy
guarantees than comparable syntactic notions.

The survey [60] is putting a heavy focus on these provable mechanisms, which mostly
are extensions on differential privacy for graph data. Their reasoning for this is “DP’s
widespread use and acceptance in the research community”. Like [53, 1, 93] this survey
considers algorithms, however unlike the prior, it does give various formal definitions for
the notions surveyed.

They discuss the advantages of statistic or query release of graph data over releasing
the full graph:

• The information about the graph provided to the analyst is explicitly defined.

• In general, less noise needed because only specified queries need to be protected.
With synthetic graphs, the class of all possible queries is much greater.

Whereas the advantage of (synthetic) graph release they point out is that (synthetic)
graph releases are independent of graph queries, and can be used to answer subsequent
questions with no or low risk of privacy leakage. On generative synthetic DP graphs they
note “one way to synthesize a provably private graph is to ensure the parameters of such
generative models are estimated in a way that is differentially private”. This means, that
like in the relational data case, for the equivalent of microdata releases, semantic notions
likely come with high utility penalties, compared to syntactic notions.

Of the DP notions discussed, we took note of edge-DP, since it is supposed to protect
the relationship between two entities, which is close in goals with Association Privacy. In
contrast, node-DP protects the existence of an entity and its relationships with others.

Definition 5.2.1 (Edge neighboring [60]). Given a graph G = (V,E), a graph G′ =
(V ′, E ′) is an edge neighboring graph of G, if it differs from G by exactly one edge, i.e.,
|V ⊕ V ′| + |E ⊕ E ′| = 1, where x⊕ y is the symmetric difference between sets x and y,
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x⊕ y = (x ∪ y) \ (x ∩ y). It is k-edge neighboring, if it differs from G by at most k-edges:
|V ⊕ V ′| + |E ⊕ E ′| ≤ k.

Definition 5.2.2 (Node neighboring [60]). Given a graph G = (V,E), a graph G′ = (V ′, E ′)
is a node neighboring graph of G, if it differs from G by exactly one node, i.e., |V ⊕V ′| = 1
and E ⊕ E ′ = {(u, v) | u = V ⊕ V ′ or v = V ⊕ V ′}.

With this definition of neighborhood, k-edge DP and node DP are defined analogously
to DP for relational databases.

The survey [60] also addresses some of the shortcomings of DP, and reference alternative
notions and mechanisms. Most notably, the assumption that all records are generally
independent, which implies the assumption that exactly one record encapsulates the
participation of a given individual. They point out that this is a serious limitation, because
real world data in general, but especially graph-data, often exhibit strong correlations
between records.

They also survey notions which address (some of) the limitations:

• Dependent Differential Privacy, which introduces the concept of dependence coeffi-
cient that quantifies the level of correlation between two records.

• Pufferfish Privacy, which is a framework, in which each probability distribution (over
which the privacy notion is defined) corresponds to an attacker’s probabilistic beliefs
and background knowledge.

• Inferential Privacy models correlated data as a Markov Chain and adds noise
proportionally to the correlation.

• Adversarial privacy, which is weaker than DP but gives higher utility.

• Zero-Knowledge Privacy for average degree query and edit-distance queries.

So overall, while SDC on graph data is more fragmented and heterogeneous than its
relational data equivalent, we see an analogous trade-off between syntactic notions, that
make assumptions about the structure of the adversaries background, and thus provide
weaker privacy guarantees, and semantic notions, that make no such assumptions, but
likely come with high utility penalties. This motivates us to, in the next step, analyze
whether Association Privacy gives better privacy guarantees than existing syntactic graph
privacy notions.

5.3. Analysis of Association Privacy against Graph
Adversary

Association Privacy has the goal of protecting the relationships between people in a relation.
In this section we analyze if this protection goal holds up against graph-adversaries. For
this analysis we want to represent these relationships between people as edges in a graph.

For this representation we propose the following canonical transformation from a relation
to a graph:
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Definition 5.3.1 (Relation to Graph Transformation). Let R ∈ X × Y be a relation over
n individuals X, and m attributes Y , given in matrix format. We define an intermediary
graph Gi = (V i, Ei) via the following (n+m) × (n+m) adjacency matrix:

Ai :=
(

0m,m R>

R 0n,n

)

where 0i,i is the matrix of dimension i×i with 0 for all entries. This graph contains vertices
representing individuals, and vertices representing attributes It has an edge between a
vertex representing an individual and a vertex representing an attribute, if that individual
has that attribute in relation R. Let Vx be the set of vertices representing individuals, and
Vy be the set of vertices representing attributes. We construct the final graph G = (Vx, E)
by creating an edge between two vertices, if the individuals shared an attribute:

(i, j) ∈ E if ∃k ∈ Vy with (i, k) ∈ Ei ∧ (j, k) ∈ Ei .

The intuition behind this transformation is, that since association is assumed when
individuals share an attribute, we create an intermediary graph, where individuals are
connected to their attributes, and then a final graph, in which individuals share an edge,
if they were connected to the same attribute.

Example 5.3.2 (Transforming Relation to Graph). Consider the anonymized Relation S ′

as given in [33, p. 10], shown in Table 5.1, where • shows the entry added to prevent an
adversary from making a specific inference.

S ′ a b c
Bob • •

Mary • •
Frank •
Julie • •

Table 5.1.: Relation S’ with Association Privacy

We convert this relation into the intermediary and final graph representations (Fig-
ure 5.2), by first converting it into an adjacency matrix (Table 5.2), creating the interme-
diary graph, shown in Figure 5.2a, and subsequently “dissolving” vertices representing
attributes, resulting in the final graph shown in Figure 5.2b.

AS′ a b c Bob Mary Frank Julie
a • •
b • •
c • • •

Bob • •
Mary • •
Frank •
Julie • •

Table 5.2.: Adjacency matrix corresponding to S’
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Julie

Frank

Mary

a

b

c

Bob

(a) Intermediary graph representing relation S′

with individuals and attributes as vertices,
and edges representing that pair being in
the relation

Mary

Bob

Frank

Julie

(b) Final graph representing S′ with individu-
als as vertices, and edges as associations
between those individuals

Figure 5.2.: Graphs Representing Relation S ′

5.3.1. Link Disclosure
A definition for link privacy given by [96], is cited by surveys [93, 1]. This definition
assumes, that in link privacy the goal is to hide existing links, not the absence of them.

Definition 5.3.3 (Link Privacy (Breach) [96]). Given a graph G with adjacency matrix
A = (aij)n×n and the corresponding released graph G̃ with adjacency matrix Ã = (ãij)n×n,
use P (aij = 1) to denote adversaries prior belief about the event of aij = 1 and P (aij = 1|G̃)
to denote their posterior belief about aij = 1. The released graph G̃ breaches link privacy,
if

P (aij = 1|G̃) > P (aij = 1) .

It is of note that unlike the attribute-linkage attack-model for relational data, this
definition does not assume that an attacker has only information about the target
individual, but also about other individuals and their connections to each other. This is
highlighted by k-Anonymity notions, where the attacker has information about connected
nodes, or even an entire subgraph.

One issue with this definition is that assumes that some potential targets identity is
already known, since knowing link aij is not valuable information to an attacker, if they
do not know who i or j are.

It is not clear if [96] assume pseudo-anonymized or “idendity-labeled” graphs, however
their datasets they use lead us to assume, that they work with node-labeled data.

This is not to say a breach in link privacy requires identity disclosure. There are
examples in which there are multiple candidate nodes for a given target and all of these
candidates are connected to the same neighbor-nodes. So link privacy can be breached
without identity disclosure.

For completeness both cases could be analyzed separately: Link privacy given identity-
labeled but otherwise anonymized graphs and link privacy given unlabelled anonymized
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graphs. However, since identity-labeled graphs only increase an adversary’s advantage, we
will not consider them, when we already have a negative result without the identity-labels.

We will start our analysis from the strongest adversary: The adversary which has the
entire original graph except for one edge as background knowledge. We define two levels
of link disclosure, that can occur when link privacy is breached. These act as refinements
of Definition 5.3.3.

Definition 5.3.4 (Probabilistic Link Disclosure). Given a graph G = (V,E) and an
anonymized version of that graph G ′ = (V ′, E ′). Let G∗ = (V,E∗) be the background
knowledge of an adversary with E∗ = E \ ê for an ê ∈ E. Assume the adversary knows
the identities in V , however V ′ does not include identity labels.

Probabilistic link disclosure occurs, iff the attackers confidence for the existence of ê is
grater than 1/2:

P (ê|G′) ∈ (1/2, 1] .

This definition is compatible with

Definition 5.3.5 (Link Disclosure without plausible deniability). With the same parameters
as in the above Definition if probabilistic link disclosure occurs, we say the target does
not have plausible deniability, iff

∃e : Pr[e∈G] = 1 ∧ Pr[target is node 6=i] = 0 .

We want to address one of Association Privacy’s assumptions and how this factors
into the analysis: Observational Monotonicity. Recall that this assumption meant that if
an attribute cannot be observed for an individual, the individual might still have that
attribute. If we interpret this in the graph context as “for any given node any non-existent
edge to any other node could potentially exist; it just has not been observed”, we end
up with a graph in which every possible edge exists, and loose all ground for a privacy
analysis. This also would be a very powerful, and not very realistic assumption, since
clearly a published graph reveals some amount of information. Instead we point out
that observational monotonicity applies to information available to the analyst. Together
with the completeness assumption we have an analyst, who captures all observable
information. From the completeness assumption follows, that an adversary does not have
more information as background knowledge, than the analyst who publishes the data.
Which is a fact we can exploit in our analysis.

An example that [33, p. 8] gives for observational monotonicity is an individual for
which we do not observe that they have cancer but for whom we might yet observe to
have cancer. An adversary that knows their target has cancer will not take this individual
into consideration, as the adversary knows that their target not only has cancer but also
that it can be observed, and thus the analyst must have observed it too. Likewise an
adversary that knows cancer cannot be observed for their target, can take this individual
in consideration and will discard individuals for which cancer can be observed.

In the following example we will take a look at what happens when the data published
is equal to the ground truth, because the relation already fulfilled the notion. While this
an unlikely scenario in the real world, it still gives insight of the protections given by the
notion.

Examples 5.3.6 (Association Pricacy does not Prevent Link disclosure). Consider relation
R5.3.6 ( Table 5.3). The fact that R5.3.6 has Association Privacy can be proven by its
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association complex, pictured in Figure 5.3. Observe that all maximal faces are edges/lines,
and each sub-face (node) is shared between at least two such edges. Thus the association
complex of R5.3.6 has no free faces, and the relation has Association Privacy.

Figure 5.3.: Association Complex of R5.3.6

Translating the relation in a graph G as previously described results in the graph shown
in Figure 5.4a. Say an adversary has subgraph background knowledge GBG, as shown
in Figure 5.4b. The edge unknown to the attacker has been marked red in Figure 5.4a.

R5.3.6 a54 a53 a51 a40 a43 a42 a41 a32 a10
0 • •
1 • • •
2 • •
3 • • •
4 • • • • •
5 • • •

Table 5.3.: Relation R5.3.6 with Association Privacy

With this background knowledge link-disclosure without plausible deniability occurs:
The attacker can make the following inferences:

• Frank has to be d4, since Frank degree ≥ 4 (the background knowledge is accurate
but incomplete) and d4 is the only node with a degree ≥ 4.

• Next Bob, John and Julie have at least degree 3: they occupy some permutation of
d1, d3 and d5, since those are the remaining nodes with degree ≥ 3.

• Since the last two remaining nodes, d2 and d0 have the same degree and there are
no further restricting indicators Alice and Mary have to be some permutation of d2
and d0.

Even though it is not clear if Alice is node d0 or node d2, the Adversary can still make
the inference that Alice shares an edge with Frank and thus link disclosure has occurred.

Even with reduced background knowledge, the adversary is still able to make this
inference. Consider the background knowledge G′

BG shown in Figure 5.5a. The adversary
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d0

d1

d5

d4

d3

d2

(a) R5.3.6 As a Graph

Alice

Bob

John

Frank

Julie

Mary

(b) Background knowledge of attacker

Figure 5.4.: Graphs for Examples 5.3.6

can infer that Frank has to be d4 since it is the only node with a sufficient degree. Next,
since Bob shares a link with Frank and Alice shares a link with Bob, Alice and Bob have
to be one of (d0, d1), (d1, d5), (d5, d3) or (d3, d2). In all of those cases, the adversary can
infer that Alice and Frank share an edge.

If we reduce the background information further to G′′
BG (shown in Figure 5.5b) proba-

bilistic link-disclosure occurs: There are more possibilities for Franks node as its degree
does not constrain it anymore to just node d4. The following systematization demonstrates
the link disclosure.

• Frank is node d4: Edge Alice-Frank is leaked, see above
– Bob (connected to Frank) is d0 →Alice (connected to Bob) is d1: Alice shares

an edge with Frank 3

– Bob is d1
∗ Alice is d0: Edge Alice-Frank 3

∗ Alice is d5: Edge Alice-Frank 3

– Bob is d5 →Alice is d1 or d3: Edge Alice-Frank 33

– Bob is d3 →Alice is d5 or d2: Edge Alice-Frank 33

– Bob is d2 →Alice is d2: Edge Alice-Frank 3

• Frank is d1
– Bob is d0 →Alice is d4 3

– Bob is d4
∗ Alice is d0 3

∗ Alice is d2 7

∗ Alice is d3 7

∗ Alice is d5 3
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– Bob is d5
∗ Alice is d4 and shares an edge with Frank 3

∗ Alice is d3 and does not share and edge with Frank 7

• Frank is d3
– Bob is d2 Alice is d4 3

– Bob is d4 →Alice is…d0 7, d17, d23, d53

– Bob is d5 →Alice is…d17, d4 3

• Frank is d5
– Bob is d1 →Alice is…d07,d43

– Bob is d3 →Alice is…d2 7, d43

– Bob is d4 →Alice is…d0 7, d13, d27, d33

So in 20 out of 30 possible worlds Alice and Frank share an edge. Thus link disclosure
has occurred even though the Adversary only had background knowledge about four of
the nine existing links.

The example can go even further: If the the links John-Frank, and Julie-Frank are
removed from the background knowledge, all nodes in the background knowledge have
degree 2 or less and thus could be any node in the published graph when going from
degree alone. Bot a foothold is be that Alice-Bob-Frank is a path of length 3, and if this
path is a circuit, the edge Alice-Frank exists.

Counting all possible such paths reveals there are 17 paths that are not a circuit and
23 paths that are circuits. So the adversary can conclude that the edge Alice-Frank exists
even though they only knew about two links.

Only when removing the second to last link is is not possible anymore to decode any
other link information. This is because for every possible Alice-Frank link the same link
is equally as likely to be a Bob-Frank link instead and vice versa.

The prior examples were concerned with the case in which the data considered is already
fulfilling the notion. For a more realistic setting however we have to consider the case
in which the published dataset is result of some anonymization mechanism for a dataset
which did not initially fulfil the notion. We will however assume that the minimal amount
of changes have been made.

Proposition 5.3.7. Given a Relation R with Association Privacy, the corresponding graph
is vulnerable to link disclosure.

Proof. We prove this by counterexample: Let R5.3.7 as defined in Table 5.4 be the output
of a mechanism, that ensures Association Privacy (by adding fake properties) with the
fewest changes to the to the original relation. Figure 5.6 shows the corresponding graph
G5.3.7 (Figure 5.6a) and the adversary’s background knowledge GBG (Figure 5.6b). The
adversary knows that for every edge, there is some likelihood, that it is “fake”, meaning it
was introduced by the mechanism, as opposed to it being a part of the original dataset.
However the adversary can use the knowledge that the amount of changes is minimal.
Additionally they know that their background knowledge resembles a subset of the
publisher’s observations. Figure 5.7 shows the association complex of this relation. We
observe that it has Association Privacy, since it has no free faces.
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Alice

Bob

John

Frank

Julie Mary

(a) G′
BG contains five of nine edges

Alice

Bob

John

Frank

Julie

(b) G′′
BG contains four of nine edges

Alice

Bob

Frank

(c) G′′
BG contains two of nine edges

Figure 5.5.: Reduced background knowledge of adversary

R5.3.7 a54 a53 a51 a40 a43 a42 a41 a32 a10 a50
0 • • •
1 • • •
2 • •
3 • • •
4 • • • • •
5 • • • •

Table 5.4.: Output relation R5.3.7 with Association Privacy
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d5

d4

d3

d1

d0

d2

(a) Graph G5.3.7 corresponding to relation
R5.3.7

Alice
Bob

John

Frank

Julie
Mary

(b) Corresponding background knowledge
graph GBG of adversary

Figure 5.6.: Graphs associated with relation R5.3.7

Figure 5.7.: Association Complex of R5.3.7
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Starting with the nodes with the highest degree we want to check if they could feasibly
be fake. Staring with a50: When removing either or both occurrences of this property, the
relation retains Association Privacy. Observe that in the association complex(Figure 5.7)
the two affected faces d0 and d5 still are child-faces of two or more maximal faces. This
means that the occurrences of this property have to be real, otherwise the assumption
of minimal changes would be violated. The same can be said about the occurrences of
properties a51, a52, a53, a54, a40, a41, a43, a10 It is however not the case for a42. This
can also be observed via the association complex: Removing the face a42 leaves face d2
to be child of only one maximal face (a32). This is the only attribute/ face for which this
is the case.

This means that the edges connected to d5 must be true, and all edges connected to
d4 — except for (d4,d2) — must be true as well. Edge (d4,d2) is potentially fake. This
results in the conclusion that in the real data d5 and d4 each must have degree at least 4,
and thus John and Frank must occupy some permutation of d4 and d5. We analyze both
possible assignments separately:

• Case 1: John is d5 and Frank is d4. Alice shares a true edge with John (background
knowledge), so Alice has to be either d0, d1, or d3. In each of those cases Alice
shares a true edge (deduced by minimal changes assumption) with Frank (d4)

• Case 2: John is d4 and Frank is d5. Again, knowing that Alice and John share an
edge can be used to find potential nodes for Alice.

– Nodes d0, d1, and d3 are have a high likelihood to be Alice’s node as we deduced
all the respective edges to d4 (John) are not fake. In all of these sub-cases Alice
shares an edge with Frank (d5).

– If edge (d4,d2) is a real edge, Alice could also be node d2. In this sub-case
Alice would not share an edge with Frank. However we labeled this edge as
potentially fake, so this sub-case is less likely than the previously discussed
cases.

This probabilistic edge disclosure occurs and the only plausible deniability remaining
for Alice and Frank relies on an edge suspected to be fake.

5.3.1.1. Comparison with other Existing notions

We now proceed to contrast these findings about Association Privacy not protecting
against link disclosure with an existing graph privacy notion, carrying a similar protection
goal.

We argue, that Association Privacy offers worse privacy protection, than the existing
graph privacy notion k-security as defined by [18] (which we summarize in subsubsec-
tion 5.1.3.9).

One of the protection goals of k-security is protecting edges. Their “LinkInfo Security”
condition stipulated that given two subgraphs GA, GB of the original data as background
knowledge and the published Graph Gk the adversary cannot determine from Gk, GA and
GB that A and B are linked by a path of a certain length with a probability of more than
1
k

[18].
We believe, that k-security prevents link disclosure as we defined it. However proving

this is outside of the scope of this thesis. Instead, to show that that Association Privacy
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offers weaker protection than k-security, we will show in an example, that it is also
vulnerable against the adversary proposed by [18].

Example 5.3.8 (Association Privacy is also vulnerable to k-Security adversary). Assume
the same published relation and graph as in Examples 5.3.6, name the graph (Figure 5.4a)
Gk. Recall that this relation fulfills Association Privacy. Let GA and GB be as shown
in Figure 5.8. Like in Examples 5.3.6 the adversary can infer that A has to be node d4
since that is the only node with sufficient degree. And since every other node is connected
to d4, the adversary can also infer, that B has to be connected to A with probability 1.

A

(a) GA

B

(b) GB

Figure 5.8.: Background knowledge of k-security adversary

5.3.2. Identity Disclosure
In the previous section we have shown, that Association Privacy does not protect against
link disclosure. Which means it fails to deliver on its protection goal of protecting the
associations between people. As we noted earlier, there are three main protection goals
in graph data privacy: link disclosure, identity disclosure and attribute disclosure. For
completeness we present here our intuition, as to why Association Privacy also does not
protect against identity disclosure.

We base this intuition on a graph introduced by [1, Fig. 6] which was shown to be
vulnerable against identity disclosure. The attack relies on the uniqueness of an attack-
subgraph, consisting of four nodes h1, . . . , h4 and their connections to the rest of the
graph (marked via dashed edges). We present a modified version of this graph Gidvul

in Figure 5.10. The only modification to the original graph is an additional edge between
the nodes 1 and 11 1.

This added edge does not interfere with the attack, as the attack-subgraph is still
unique in the relation. The added edge does not replicate the subgraph, nor does it
connect directly to nodes connected with the attack-subgraph. We created a relation
Ridvul which we show via its simplicial complex in Figure 5.9. This relation has Association

1It is possible to construct a relation with assocition privacy which corresponds to the original graph.
However the relation we were able to find could only be shown to be association private via proof by
exhaustion. We chose to instead modify the graph, because for this modified graph we were able to
find a corresponding relation that can be shown to be association private directly via its association
complex.
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Privacy, which can be verified by its association complexes lack of free faces. The relations
corresponding graph is the vulnerable graph Gidvul.

This leads to the intuition, that Association Privacy is also vulnerable against identity
disclosure.

Figure 5.9.: Association complex of a relation Ridvul

1

2

11

3 5
h4

4

6

7

h3

8

9

10

h1

h2

Figure 5.10.: Graph Gidvul, vulnerable against identity disclosure via subgraph-attack
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5.3.3. Degree Disclosure
The surveys discussed in section 5.1 agree that the risk beside identity- and link disclosure,
is disclosure of some sensitive labels associated with nodes or edges. This is called “content
disclosure” by [1, 62], and “attribute disclosure” by [53].

Here we care here about attributes of the node in an unlabelled graphs, such as degree.
Not about the attributes associated with a node via labels.

Example 5.3.9. Use relation R of [33, p. 22] as a base and transposes the relation-table,
swapping attributes and individuals, the resulting relation R′ ( Table 5.5) has Association
Privacy (since R had Attribute Privacy).

The fact that R′ as Association Privacy can also be proven by its association complex.
Pictured in Figure 5.11 observe that all maximal faces are triangular, and each sub-face
(edge) is shared between exactly two such triangles. Thus the association complex of R′

has no free faces, and the relation has Association Privacy.

(a) An angle of the Association Complex of R′
(b) Another angle of the Association Complex

of R′

Figure 5.11.: Association Complex of R′

Translating the relation in a graph G as previously described results in the graph shown
in Figure 5.12a. Say an adversary has subgraph background knowledge GBG , as shown
in Figure 5.12b. The following proofs that the attacker can infer the degree of the target,
by enumerating all possible isomorphisms between a subgraph of G and GBG.

The adversary knows the matching node for Alice in the graph must have at least degree
4 since they are in possession of a subgraph. So they can deduce that Alice has to be
either node 1,2 or 3 (those are the only nodes with degree 4). Since Alice and Nodes 1,2
or 3 respectively have an edge to all other Nodes, without loss of generality the Adversary
can assume Alice is Node 1. For the remaining nodes no deduction based on degree can
be made since all remaining nodes in the background knowledge have degree ≤ 3 and all
remaining nodes in the released graph have degree of 3 or 4. The remaining nodes of the
released graph form the two rings of three ((2, 3, 4) and (2,3,5)), sharing the edge (2,3).
So the attacker can deduce that Bob is connected with at least two of Julie, Frank and
Mary, providing the information that Bob has at least degree 3.
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R′ a b c d e f
1 • • • •
2 • • • •
3 • • • •
4 • • •
5 • • •

Table 5.5.: Relation R’ with Association Privacy

1

3

4

2

5

(a) R′ As a Graph

Bob

Alice

Mary

Julie Frank

(b) Background knowledge of attacker

Figure 5.12.: Graphs Revealing Attribute disclosure for Association Privacy
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5.4. Association Privacy for Graph Data
In the preceding section we have shown that despite aiming to protect the connections
between people, when held up against graph privacy attacks, Association Privacy does not
withstand. The next idea might be to analyze which privacy can we achieve, if we take an
existing graph, transform it into a relation (that has this graph as a corresponding graph),
apply a mechanism achieving one of the topological privacy notions and transform it back
into a graph. Unfortunately, there is a problem with this premise: Multiple relations can
have the same corresponding graph. Further, relations exist that fulfil either, both or
none of Attribute Privacy and Association Privacy respectively, and still all generate the
same graph. The triangle graph (Figure 5.13) is a graph for which such relations exist.

1 2

3

Figure 5.13.: Triangle Graph

Example 5.4.1. Given the triangle graph as G, all relations shown in Table 5.6 would
result in G, if transformed to a graph. Relation Rat,as fulfills both Attribute Privacy
and Association Privacy, R×,× fulfills neither. Rat,× fulfills Attribute Privacy, but not
Association Privacy, and R×,as only fulfills Association Privacy.

Rat,as a b c
1 • •
2 • •
3 • •

R×,× a b c
1 •
2 • •
3 • • •

Rat,× a
1 •
2 •
3 •

R×,as a b c d e f
1 • • •
2 • • •
3 • • •

Table 5.6.: Relations with both, either, or none of Association Privacy and Attribute
Privacy

This means, for a given graph G a transformation into a relation (that has G as its cor-
responding graph) can result in a relation RG, that already satisfies the desired topological
notion, and a mechanism might output RG unmodified, resulting in the original graph G.
However, for the same (now released) graph G a different corresponding relation R′

G can be
found, that violates the desired topological notion. This ambiguity in translating a graph
into a corresponding relation makes the topological notions fundamentally unsuitable to
directly protect data initially given as graph data.
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In this chapter, we introduce a mechanism we developed to achieve Attribute Privacy.
We first explain the intuition behind our approach, then we list the steps involved on
a high level. There we also touch on some potential issues, we considered during the
design process. Next we introduce the full mechanism, as a set of pseudocode algorithms,
and prove in multiple steps, that the overall mechanism always produces relations with
Attribute Privacy.

To the best of our knowledge, there does not currently exist any proposed mechanism
in the literature that allows to fulfill the topological notions. Correspondingly, no utility
analysis exists for these notions. Note that utility in SDC can only be measured for
mechanisms achieving the notion, it is not an intrinsic property of any notion.

Example 6.0.1 (Utility is not notion-dependent). The Laplace mechanism [27] is a known
DP mechanism. The void mechanism that for all databases outputs the constant number
1 also is DP. While both mechanism satisfy DP, the latter does not provide any utility
since all information is lost, while in the former the probability of a query error bigger
than α is bounded by e−εα [27].

We have seen in section 4.2, that Attribute Privacy does provide stronger privacy
guarantees than k-anonymity in certain aspects, namely the (lack of an) assumption
about the structure of the adversaries background-knowledge, and attribute linkage
attacks. So to answer the overarching question on whether attribute-privacy can provide a
better privacy-utility-tradeoff than the state-of-the-art, we must still achieve the following
intermediary goal: Compare the utility of a mechanism achieving Attribute Privacy with
the utility of ε-Differential Privacy. We will do this in chapter 7. However, to do this we
first need to develop a mechanism, which is what we present in this chapter.

6.1. Mechanism Design and Motivation
In this section we present the high level idea of our mechanism, and motivate the choices
we made.

To design a mechanism, we use the property presented in Lemma 2.6.2: A relation
whose attribute complex has no free faces has Attribute Privacy. So if we ensure an
absence of free faces in the attribute complex, we can guarantee Attribute Privacy. This
is the core idea on which we base our mechanism on. We chose this approach because it
lines up with the ideas of the topological notions themselves: If the privacy leakage is
represented in properties of a topological space, we should ensure that this topological
space does not have those properties.

On the highest level, our approach consists of three steps

• Given a relation, construct the corresponding attribute complex.

• Transform this attribute complex into a simplicial complex without free faces.
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• Construct a relation from that new simplicial complex.

However this concept cannot be directly realized as we encounter the following challenge:
While a relation always has the same attribute complex, two relations can have the same
attribute complex. This means that we cannot simply map from the “clean” attribute
complex to a clean relation. So instead we modify the approach to the following:

I Given a relation R ∈ X × Y , construct the attribute complex ΦR.

II Create ΦR′ by removing all free faces of ΦR, keeping track of the set of removed
faces removed

III Create R′ by modifying R in such a way, that no individual creates one of the faces
marked for removal: ∀γ ∈ removed : @x with γ ⊆ Yx.

Step I is trivially completed, by applying the definition of the attribute complex
(Definition 2.4.2). Next we discuss the motivations and realizations of steps II and III.

6.1.1. Remove Free faces
In this subsection we establish, how we realized step II and why we chose to realize it this
way.

One possibility to removing free faces in step II, would be to introduce additional
simplices, that ensure, that the free faces are no longer free. However, we found two
major downsides to this approach: First, inserting new simplices might create new free
faces. These new free faces would need to be addressed by further new simplices. Such a
strategy might not terminate. To find a strategy that avoids this problem would pose a
great challenge. And more importantly, the new simplices might represent a combination
of attributes that is unrealistic (for example combining two mutually exclusive attributes)
and an attacker could use that to their advantage. For this reason, we chose the approach
of removing free faces via elementary collapse (Definition 2.3.9) instead.

We found a large body of work about elementary collapse, however the existing research
involving elementary collapse was exclusively focused on the goal of simplifying a simplicial
complex, in the sense of reducing the number of simplices as far as possible, while keeping
topological properties, that are not relevant for our goal, such us the complex homology.
[7, 66, 30, 35, 12, 49, 81, 64]. As a concrete example, Paolini [76] present an algorithm
that given a simplicial complex tries to find the sequence of elemental collapses that
produce the smallest possible simplicial complex. This means if the given simplex is
collapsible (Definition 2.3.9) it would find the sequence of elementary collapses, that
reduce it to a single vertex, otherwise it finds the simplicial complex without free faces
that has the fewest simplices. We would also like to point to random discrete Morse
theory [7], where an algorithm iteratively performs elementary collapses on free faces of
a simplicial complex, and once it arrives at a simplicial complex without free faces it
removes a non-free face which is saved as a critical face. This continues until the simplicial
complex is fully reduced to a single vertex. The number of critical faces in each dimension
give an upper bound to some topological properties of the simplicial complex, and thus
an algorithms goal is to encounter as few of these critical faces as possible.

We have the opposite goal of performing as few collapses as possible, since every collapse
introduces discontinuities (Definition 2.6.4) when translated back to the relation. Think of
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a simplicial complex that is reduced to a single vertex. The corresponding clean relation
can only have observations of a single attribute (corresponding to that vertex).

In the terminology of random discrete morse theory our goal would be to encounter a
critical face as early as possible (at which point we would stop). This means we cannot rely
on existing algorithms for removing free cases, since those would guarantee our worst-case.

We would also like to point out that many problem spaces involving simplicial complexes,
even seemingly simple ones, turn out to be quite complex problems to solve. For example
the problem of determining if a d-dimensional simplicial complex can be collapsed to a
k-dimensional simplicial complex (using a series of elemental collapses) is NP-complete
for d ≥ k + 2 (with exception of the case d = 2, k = 0) [76].

Due to the complexity of identifying an optimal approach for step II and the limited
references available in the literature, we developed an initial, straightforward approach for
this step, considering the scope of the project:

1. Given a simplicial complex Φ, identify a free face f ∈ free(Φ) and its encompassing
maximal face m ∈ max(Φ), f ( m. If no free face exists, return Φ.

2. Perform an elementary collapse: Φ′ := Φ − f −m.

3. Repeat with Φ′, until no free face exists in Φ′.

This approach will give us a first intuition of the viability of topological notions in
practice.

6.1.2. Construct a matching Relation
Here we discuss how we achieve step III, in which we construct relation R′ from the
original relation R, and the set of removed free faces removed such that ΦR′ is the
attribute complex.

To do this we perform the following steps:

1. Initialize variables that will be used throughout the algorithm.
• Save the facets of ΦR′ as constraints := max(ΦR′). This variable stores the

facets that we need to make sure that they are created by individuals in the
final relation. Otherwise the attribute complex of the final relation would miss
some facets and thus be different from ΦR′ . Once we know that the attributes
of some individuals will not be changed anymore, we can remove the facets
that these individuals produce from constraints. We call these simplices
constraints, because they limit the way in which we are allowed to modify an
individual’s attributes.

• Save individuals to process X∗ := X, and initialize individuals to process later
later := ∅. In step 2 we need to iterate over individuals X∗, and check if they
produce any of the removed faces. We then need to “process” these individuals,
by modifying their attributes in such a way that they no longer produce the
undesired faces. The first time step 2 is executed we want to iterate over all
individuals in the relation X, however step 2 might be executed multiple times,
and later executions will not iterate over all individuals. For this reason we keep
track which individuals we process in a given execution of step 2 via variable
X∗. For some individuals the processing in step 2 might not be possible the first
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time step 2 is executed. These individuals will be marked for later processing,
by being inserted in the later set.

• Initialize R′ as R′ := R. At the end of the algorithm, R′ will contain the
attribute private relation.

• Initialize X+ := ∅. This set represents fake individuals that were introduced by
the algorithm.

2. For every face f in the set of removed free faces: ∀f ∈ removed
a) Iterate over all individuals x ∈ X∗ that have all of the attributes from the free

face: ∀x ∈ {x ∈ X∗ | Yx ⊆ f}
• We want to make sure, that Yx * f . We can achieve this by picking an

attribute a ∈ f and removing it R′ := R′ \ {(x, a)}.
• However, it might happen that we choose a “bad” a, see Example 6.1.1
• So, we first get all of the constraints that this individual produces

(constraintsx := {c ∈ constraints | c ⊆ Yx} .

• With this we get the set of attributes that we are not allowed to change for
this individual:

fixedx :=
⋃

γ∈constraintsx

γ .

• Then we check if f \ fixedx 6= ∅
– If this is the case we choose a ∈ f \ fixedx and remove it:

R′ := R′ \ {(x, a)} .

– Otherwise we flag x for later processing and move on without changing
the attributes of x: later := later ∪ {x}

3. If we notice that no individuals could be processed (later = X∗), we loosen the
constraints, by introducing a fake individual which produces one of the constraints
σ ∈ constraints

a) Create a new fake individual xf and add all vertices of σ as attributes of xf to
the relation:

(R′ := R′ ⋃
f∈constraints

{(xf , a) : a ∈ σ} .

b) Add xf to the set of fake individuals X+

4. We already know some facets which will be contained in the attribute complex of the
new relation. Namely these are the facets created by individuals that are already
fully processed, and the facets created by fake individuals in X+, since neither of
these will be further altered. We remove these from the constraints.

• done := X \ later

• fulfilled :=
{
f ∈ max(ΦR′) | ∃x ∈ (done ∪X+) with Yx ⊆ f

}
• constraints := constraints \ fulfilled
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5. If later = ∅ we continue to the next step. Otherwise
• Set X∗ := later, later := ∅ (recall that constraints also has been

shrunk) and repeat step 2.

6. If there are no remaining unfulfilled facets (constraints = ∅) we are done and re-
turn R′ an attribute private relation over individuals X and attributes Y . Otherwise
we need to add individuals that have the corresponding attributes (See Exam-
ple 6.1.2):

a) For every facet f in constraints create a new fake individual xf and add all
vertices of f as attributes of xf to the relation:

R′ := R′ ⋃
f∈constraints

{(xf , a) : a ∈ f} .

b) Add the set of fake individuals from the previous step to X+, and set X ′ :=
X ∪ X+. Return R′ an attribute private relation over individuals X ′ and
attributes Y .

When we are constructing a relation from a prior relation, a set of free faces to be
removed, and a target attribute complex, we need to pay special attention to the maximal
faces of the target relation. We will demonstrate this in the following examples.

Example 6.1.1. Consider relation R, as defined in Table 6.1a. Figure 6.1 shows the
attribute complex ΦR (Figure 6.1a) of R, and the attribute complex ΦR′ with no free faces
(Figure 6.1a). Now suppose that by the first part of our algorithm the free face {A,B}
and its parent maximal face {A,B,C} have been collapsed, resulting in the attribute
complex ΦR′ , which has no remaining free faces. We want to construct R′ from R in such
a way that ΦR′ is the attribute complex of R′, optimizing for fewer changes.

It is clear that individual 1, with attributes Y1 = {A,B,C} needs to be modified, to
prevent the creation of simplex {A,B}. Likewise we need to modify individual 2 with
attributes Y2 = {A,B}. So possible removals could be

R′
1 := R \ {(1, A), (2, A)}

R′
2 := R \ {(1, B), (2, B)}

R′
3 := R \ {(1, A), (2, B)}

R′
4 := R \ {(1, B), (2, A)}

However both R′
1 and R′

3 would fail to produce the required edge {A,C} seen in ΦR′ . In
contrast, both R′

2 and R′
4 are valid candidates and have ΦR′ as their attribute complex.

(a) ΦR = ΦS (b) ΦR′ = ΦS′

Figure 6.1.: Attribute complex ΦR created from relation R and it’s counterpart ΦR′ where
free faces have been removed.
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R A B C D E
1 • • •
2 • •
3 • •
4 • •
5 • •
6 • •
7 • •

(a) Relation R

S A B C D E
1 • • •
2 • •
4 • •
5 • •
6 • •
7 • •

(b) Relation S

Table 6.1.: Relations R and S which have the same attribute complex with exactly one
edge as a free face

Example 6.1.2. Now consider relation S, as defined in Table 6.1b and its attribute complex
ΦS visualized in Figure 6.1a. Like before we want to reflect the removal of free face {A,B}
in the relation and have to modify the attributes of individuals 1 and 2 for this.

However, observe that removing attribute A from individual 1 will cause the maximal
face {A,C} ∈ max(ΦR′) to not appear in the corresponding attribute complex. Likewise
removing attribute B from individual 1 will cause the maximal face {B,C} ∈ max(ΦR′)
to be missing, since no other individual produces it.

A simple way of rectifying this is to introduce a new individual either producing {A,C}
[or {B,C}] and removing either A [or B respectively] from individual 1. In general, when
we process individuals, we will mark problematic individuals (such as individual 1 in this
example) for later processing. Then we see which of the facets max(ΦR′) are already
produced by individuals we have processed. In some cases this is already enough, but in
some cases, like in this one, we end up having to introduce fake individuals which produce
the facets required by the cleaned attribute complex.

6.2. Formalizing the Mechanism
Now, that we have established the higher level idea of our mechanism, in this section, we
formalize our approach as pseudocode in a series of algorithms. We also provide proofs,
that show our mechanism achieves Attribute Privacy.

In Algorithm 1, we define the function RemoveFreeFaces (and a helper function
GetFirstFreeFace), which represents step II of our mechanism. The lines before the
first function definition define the steps that are executed if this algorithm is executed
by itself. In Algorithm 2, we define the function RemoveFreeFaceFromRelation, which
realizes step III. And in Algorithm 3 we define a helper function for the prior function,
called AddFakeIndividualToRelation. Executing Algorithm 2 as a whole represents the
entire mechanism, and given a relation R, it creates a relation R′ with Attribute Privacy.

Lemma 6.2.1. Function RemoveFreeFaces from Algorithm 1 produces a simplicial complex
with no free faces.

Proof. By contradiction: Assume ∃f ∈ free(Φ′). This means ∃m,∈ max(Φ′) with f ( m
and @m′ ∈ max(Φ′) with f ( m′ ∧m′ 6= m. So without loss of generality

f,m GetFirstFreeFace(Φ’) .
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Algorithm 1: Remove free faces from simplicial complex
Data: Simplicial Complex Φ
Result: Simplicial Complex Φ′ ⊆ Φ, set of removed faces removed

1 Φ′,removed := RemoveFreeFaces(Φ)
2 Function RemoveFreeFaces(Φ) /* Iteratively removes free faces */
3 removed := {}
4 Φ′ := Φ
5 f,m := GetFirstFreeFace(Φ))
6 while f 6= ∅ do
7 Φ′ := Φ′ − f −m
8 removed := removed ∪ {f}
9 f,m := GetFirstFreeFace(Φ))

10 return Φ′,removed
11 Function GetFirstFreeFace(Φ′)
12 forall m ∈ max(Φ′) do
13 forall f ( m do
14 if @m′ ∈ max(Φ′) with f ( m′ ∧m′ 6= m then
15 return f,m

16 return ∅, ∅

It follows that the while condition on line 6 will continue to hold true and thus f and m
are removed from Φ′, which contradicts f ∈ free(Φ′).

Proposition 6.2.2. Given a relation R, and the output of RemoveFreeFaces(ΦR) =:
Φ′,removed from Algorithm 1,

R′ := RemoveFreeFaceFromRelation(R,Φ′,removed)

produces a relation R′ such that Φ′ is the attribute complex of R′:

Φ′ = ΦR′ .

Proof. To prove, that ΦR′ = Φ′ we will first prove, that ΦR′ ⊆ Φ′ and then that ΦR′ ⊇ Φ′.
“ΦR′ ⊇ Φ′”: The set constraints is initially filled with the maximal simplices of Φ′

(line 5). In line 24 the set fulfilled is defined with exactly the maximal simplices of Φ′,
that are produced by individuals in the set done. Once an individual is in done, their
attributes are not further modified by the algorithm. This means these individuals still
produce these simplices in the final relation. The same goes for fake individuals (x ∈ X+),
which were added to produce simplices of Φ′. In line 25 these fulfilled simplices are
removed from constraints. And finally in the loop at line 31 individuals producing
the remaining attributes are added to the relation. Thus individuals in R′ produce all
simplices in max(Φ′), and ΦR′ ⊇ Φ′

“ΦR′ ⊆ Φ′”: R′ produces no superfluous simplices.
Aside from invocations of AddFakeIndividualToRelation, RemoveFreeFaceFromRela-
tion only removes attributes from R. And AddFakeIndividualToRelation only ever
gets invoked with simplices σ ∈ constraints ⊆ Φ′, and adds an individual producing
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Algorithm 2: Remove free faces from relation
Data: Relation R ∈ X × Y
Result: Relation R′ ∈ X ′ × Y

1 ΦR := {γ ⊆ Y | ∀y ∈ γ∃x ∈ X : (x, y) ∈ R} /* Using definition */
2 Φ′,removed := RemoveFreeFaces(ΦR)
3 R′ := RemoveFreeFaceFromRelation(R,Φ′,removed)
4 Function RemoveFreeFaceFromRelation(R,Φ′,removed)
5 constraints := max ΦR)
6 X∗ := X /* Individuals to still process */
7 R′ := R /* The new relation */
8 X+ := ∅ /* Fake individuals that were added */
9 repeat

10 later := ∅
11 forall f ∈ removed do
12 forall x ∈ {x ∈ X∗ | Yx ⊆ f} do
13 constraintsx := {c ∈ constraints | c ⊆ Yx}
14 fixedx :=

⋃
γ∈constraintsx

γ

15 if f \ fixedx 6= ∅ then
/* Vary the choice of a over multiple iterations when

drawn from the same set */
16 a ∈ f \ fixedx

17 R′ := R′ \ {(x, a)}
18 else
19 later := later ∪ {x};

20 if later = X∗ then /* No individuals were changed */
21 σ ∈ constraints
22 R′, X+ :=AddFakeIndividualToRelation(R′, σ,X+)

23 done := X \ later
24 fulfilled :=

{
f ∈ max(Φ′) | ∃x ∈ (done ∪X+) with Yx ⊆ f

}
25 constraints := constraints \ fulfilled
26 X∗ := later
27 until later 6= ∅
28 if constraints = ∅ then
29 return R′

30 else
31 forall σ ∈ constraints do
32 R′, X+ :=AddFakeIndividualToRelation(R′, σ,X+)

33 X ′ := X ∪X+

34 return R′
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Algorithm 3: Add fake individual to relation
1 Function AddFakeIndividualToRelation(R′, σ,X+)

/* Adds fake individual, producing simplex σ */
2 xf /∈ (X ∪X+) /* New fake individual */

/* Adding the fake individual to the set of fake individuals */
X+ := X+ ∪ {xf}
/* Giving xf attributes so it produces simplex σ */

3 R′ := R′ ∪ {(xf , a) : a ∈ σ}
4 return R′, X+

exactly that simplex. This means no new (maximal) simplices, not already in Φ′, are
created:

∀σ ∈ ΦR′ : σ ∈ ΦR ∨ σ ∈ Φ′ .

Expressed differently:
ΦR′ ⊆ (Φ′ ∪ ΦR) .

We know that Φ′ ⊆ ΦR (Algorithm 1 only removes simplices). So in order to show that
ΦR′ ⊆ Φ′ it remains to show that ΦR′ contains no simplices in ΦR − Φ′:

ΦR′ ∩ (ΦR − Φ′) = ∅ .

Assume ∃σ ∈ ΦR′ with σ ∈ (ΦR − Φ′). This means σ is either a free face itself that was
removed σ ∈ removed, or the maximal face that was removed alongside one of its free
faces ∃σf ( σ, σf ∈ removed.

• Case 1 σ ∈ removed. Then any individual producing σ will be modified such that
they no longer produce σ (line 17).

– Any individual producing σ will either be modified in this way immediately or
added to the later set

– Individuals in the later set will be modified in this way in later iterations,
when constraints is smaller.

– Any individual in later will be eventually processed, this is ensured by the
loop condition untillater = ∅ at line 27.

– The check later = X∗ at line 20 prevents an infinite loop, by adding a fake
individual that fulfills (and thus removes) one of the constraints.

– Eventually either later = ∅ and the loop ends, or constraints = ∅.
– The latter case causes one last loop in which ∀x : fixedx = ∅ (line 14), and

thus no individual gets added to later.

• Case 2 σ /∈ removed, but ∃σf ( σ, σf ∈ removed.
– Any individual producing σf will be modified such that they no longer produce
σf (see case 1).

– There cannot be any individual producing σ because any such individual would
also produce σf by nature of set inclusion.
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In both cases no individual produces σ, contradicting the assumption.
With this we have shown that ΦR′ ⊇ Φ′ and ΦR′ ⊆ Φ′. Thus we have proven that

ΦR′ = Φ′.

Theorem 6.2.3. Given a relation R ∈ X × Y , Algorithm 2 produces a relation R′ ∈
X ′ × Y (X ′ ⊇ X) with Attribute Privacy.

Proof. In the first step of the algorithm the attribute complex ΦR of R is input it
RemoveFreeFaces. This creates a simplicial complex Φ′ ⊆ ΦR that has no free faces, and
the free faces that were removed in the process:

Φ′,removed := RemoveFreeFaces(ΦR)
free(Φ′) = ∅ (Lemma 6.2.1) .

Next the algorithm creates R′, by invoking RemoveFreeFaceFromRelation with the
outputs of the last function. This produces a relation R′ such that Φ′ is the attribute
complex of R′:

R′ := RemoveFreeFaceFromRelation(R,Φ′,removed)
ΦR′ = Φ′ (Proposition 6.2.2) .

So R′ has an attribute complex without free faces. This means R′ has Attribute Privacy
(Lemma 2.6.2).

6.3. Mechanism Limitations
During development of our mechanism, we utilized uniformly randomly generated datasets
of the size 10 × 20. However when we switched to analyze real data we came across two
major issues:

First, we noticed, that the time needed to execute the step of finding and removing free
faces from ΦR increased to an intractable amount, once the number of attributes reaches
around 14 (the exact number varies, depending on the underlying data). We estimate that

GetFirstFreeFace ∈ O(max(|Φi|) · 2i · max(|Φi|)) ,

where i is the dimension of the largest simplex:

i = max
σ∈max(ΦR)

(|σ|) .

This is because of the three nested loops, in which we first iterate over all maximal faces
m ∈ max(ΦR), then over all possible sub-faces of m1 and finally over all maximal faces
besides m. This could potentially be improved, by finding a better way of locating free
faces.

Next we noticed, that for many real-world inputs, the attribute complex ΦR collapsed
to a single vertex, which has no data utility. In the following we discuss possibilities of
avoiding this total collapse of utility.

Just because a simplicial complex is collapsible, does not mean every sequence of
elementary collapses will reduce it to a single vertex [63]. Lofano and Newman [63] define,

1Which equates to the powerset of m (except for the empty set and m itself).
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that a sequence of elementary collapses on a complex Σ gets stuck at a complex Σ′, if the
collapsing sequence reduces Σ to Σ′, and Σ′ has no free faces. Further, they show, that a
collapsing sequence can get stuck at a simplicial complex (that has no free faces) despite
the fact, that the original simplicial complex was collapsible [63]. For us, getting stuck
as early as possible would be ideal behavior. Lofano and Newman prove the following
Theorem:

Theorem 6.3.1 (Existence of collapsing sequence [63, Theorem 1.1]). For n ≥ 8 and
d /∈ {1, n− 3, n− 2, n− 1}, there exists a collapsing sequence of the simplex on n vertices
which gets stuck at a d-dimensional complex on n vertices. Moreover, for n ≤ 7 and
d arbitrary or n arbitrary and d ∈ {1, n− 3, n− 2, n− 1} it is not possible to find a
collapsing sequence of the simplex on n vertices which gets stuck at dimension d.

This means if attribute complex ΦR is collapsible and the the biggest simplex in ΦR has
7 or fewer vertices, then every sequence of elementary collapses will arrive at the 0-simplex.
As a consequence, relations whose attribute complex has at most 6-simplices are at great
risk of achieving zero utility. We additionally note, that when we translate a general
database with i attribute-groups into a relation with j ≥ i sub-attributes, the attribute
complex will only have simplices with at most i vertices, since per construction no single
individuals will have two sub-attributes of the same attribute-group. For example if the
database has four attribute-groups (age, weight, …) and we created a relation where each
of those has three sub-attributes (age < 17, 17 ≤ age < 32, 32 ≤ age) the biggest simplex
still can only have 4 vertices.

Thus in order to avoid collapse to a 0-simplex, we need to create relations with attributes
from at least 8 attribute-groups. This stands in contrast with the prior observation of
this section, that we struggle computationally, when we try to apply the algorithm to
relations with more than 14 (sub-)attributes.

Additionally Theorem 6.3.1 gives us a floor for utility loss when the attribute complex is
collapsible: Even with (n+ 1)-simplices with n ≥ 8, no collapsing sequence will get stuck
at a dimension d ≥ n− 3. In other words: Every such (n+ 1)-simplex will be reduced to
a simplicial complex of at most dimension n− 4.

Additionally [50] provide an empirical analysis of the probability of a random series
of elemental collapses getting stuck on a d-dimensional simplex. The results show an
exponential increase in probability of getting stuck. However these probabilities start
extremely low and only reach 1.3% for d = 20.

6.3.1. Discarded Approaches
We explored possible mitigations, and possible replacement algorithms, to solve the
aforementioned issues, however we ended up discarding these approaches, here we lay out
these approaches, and the reason, why we did not end up using them.

Given the issue of random elementary collapses not getting stuck easily described above,
we considered the following modification to Algorithm 1: In a given round

• Get the list of all free faces f ∈ free(Φ′) (and their corresponding maximal faces
m ∈ max(Φ′)).

• “Preview” properties of Φf = Φ′ − f −m.
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• Calculate heuristic that values a larger number of maximal faces and a lower number
of free faces:

h := |free(Φf )| − |max(Φf )| .

• Choose the best Φf according to this heuristic (lower is better) and continue the
next round with that simplicial complex

Φ′ := Φf∗

Unfortunately this alteration leads to even worse (compute/ time) performance. For this
reason we did not pursue this alteration further.

Erdmann gives a toy example in [33, p. 30], in which he transforms a specific hypothetical
relation C without Attribute Privacy, into a relation F with Attribute Privacy. The
approach creates new attributes based on the logical or of existing attributes. Specifically,
the old attributes are observations of individuals picking a combination of two ice-cream
flavors like strawberry-vanilla, and the new attributes are the individual flavors, like
strawberry or vanilla. Erdmann states that the central idea of the shown approach is
removing free faces, and points out, that

• an issue with logical ors is that it is easy to construct an attribute that is always
true, which would be of no use.

• It is unclear if the new attributes are grounded in what is actually observable. In
such a case in which the new attributes would not be observable “one is forced to
deal with relation C as given”.

We think these drawbacks make this approach unfit to adapt into a general mechanism.
Another observation made by [33] is, that each logical-or combination of attributes

describes a topological hole2 in the attribute complex. However, the problematic cases
we encountered were problematic because the attribute complex ΦR is collapsible. A
collapsible simplicial complex has no topological holes [4]. This means that in cases in
which the attribute complex is collapsible, such as we encountered, this approach would
not be able to change the relation at all.

6.4. Concrete Implementation
In addition to pseudocode, we also provide a concrete implementation of our algo-
rithm, which we make available at https://gitlab.kit.edu/urpyg/thesis-topology-
of-privacy in the Scripts subfolder. We implemented

• the generation of relations from general databases

• creation of the faces of the attribute complex

• exhaustive check if a relation fulfils Attribute Privacy

• RemoveFreeFaceFromRelation (Algorithm 2)

• AddFakeIndividualToRelation (Algorithm 3)
2We omit giving a formal definition of a topological hole, but refer readers to [44, Chapter 2] for an

introduction into homology groups, the formal representation of topological holes.
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6.4. Concrete Implementation

in python, using numpy [43] and pandas [83, 68]. This allowed us efficient access to the
datasets and to parallelize many of the operations in Algorithm 2. We implemented Algo-
rithm 1 as a polymake [39, 5] ruleset. We chose polymake for this because it provides an
efficient implementation of simplicial complex, including retrieval of maximal faces and
deletion of a face in a simplicial complex.
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In the previous chapter we defined an algorithm that can ensure Attribute Privacy on a
given relation. In this chapter we measure the utility provided by that algorithm over
two base datasets and two utility metrics. First we introduce the base databases, how
we prepare them for the experiments. Then we introduce the metrics, by which we
will measure utility After this we introduce our result, in which we applied Attribute
Privacy using our mechanism to the test databases, and measured utility using the utility
metrics. We contrast these measurements against the corresponding utility measurements
on ε-Differential Privacy. Finally we provide additional interpretation of the results.

7.1. Databases and experiments design
In this subsection we present the databases selected for the study and the experiment
design. We first preset the two databases we base our experiments on, by elaborating
their attributes and the possible values they can have. After this we discuss how we
transformed the databases into relations, and present the final resulting relations we will
use for our analysis by their attributes. Next we introduce the utility metrics that we will
be using. We will also briefly remark on the implementation of ε-Differential Privacy we
decided on using.

To test the utility of our mechanism we selected two tabular databases “Cardiovascu-
lar” [85] and “adult” [6]. We will refer to these databases as cardio, and adult respectively.
Both are broadly used in the literature and fulfill most of the requisites and assumptions
required for Attribute Privacy:

• Relational Completeness: The databases do not contain any missing entries that
could be otherwise observed.

• Observational Monotonicity: Since the databases are not relations, we cannot directly
apply what it would mean for an attribute to be absent. However we will address
this, when creating relations from the databases.

• Observational Accuracy: The databases provide accurate observations.

• A single record always represents one person.

• Direct identifiers have been removed.

The “Cardiovascular” [85] database, obtained from Kaggle, consists of 70000 records of
patient data. It includes 12 attributes, categorized into three feature-types and a target:
Objective features represent Factual information. Examination are results of a medical
examination. Subjective features are information given by the patient.

The attribute describing the presence or absence of cardiovascular disease has been
marked by [85] as the target attribute, which an analyst might aim to predict. The
attributes and their feature-types, as well as their data-types, and the short names used
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when referring to them are shown in Table 7.1. Two attributes listed in this table have an
enumerable type. This means they have a set of possible values, represented by numbers.
Representations (for both attributes) are 1: normal, 2: above normal, 3: well above
normal.

Attribute Name Short-Name Feature-Type Data-Type
Age age

Objective Feature

int (days)
Height height int (cm)
Weight weight float (kg)
Gender gender categorical
Systolic blood pressure ap_hi

Examination Feature
intDiastolic blood pressure ap_lo

Cholesterol cholesterol enumerated: 1,2,3Glucose gluc
Smoking smoke

Subjective Feature binaryAlcohol intake alco
Physical activity active
Presence or absence
of cardiovascular disease cardio Target Variable

Table 7.1.: Attributes of cardiovascular dataset

The second dataset is the “adult” [6] dataset, obtained from the UCI Machine Learning
Repository. It contains data extracted from the 1994 Census database and has 14 feature
attributes and one target attribute for 32561 individuals. The attributes and their and
their data-types are shown in Table 7.2. This database contains multiple attributes with
a categorical type, we list the possible values for the categories below. Of these categories
work-class, occupation and native-country have some missing values according to
the data curator.

workclass Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov,
Without-pay, Never-worked.

education Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc,
9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool.

marital-status Married-civ-spouse, Divorced, Never-married, Separated, Widowed,
Married-spouse-absent, Married-AF-spouse.

occupation Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-
specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-
moving, Priv-house-serv, Protective-serv, Armed-Forces.

relationship Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.

race White, Black, Asian-Pac-Islander, Amer-Indian-Eskimo, Other.

native-country United-States, Cambodia, England, Puerto-Rico, Canada, Germany,
Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran,
Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland,
France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary,
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Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinidad&To-
bago, Peru, Hong, Holland-Netherlands.

Attribute Name Role Type
age

Feature

int (years)
workclass categorical
fnlwgt int
education categorical
education-num int
marital-status

categoricaloccupation
relationship
race
sex binary
capital-gain

intcapital-loss
hours-per-week
native-country categorical
income Target binary

Table 7.2.: Attributes of adult dataset

7.1.1. Database pre-processing
We need to translate these databases into relations, to enable us enforcement of Attribute
Privacy. Binary attributes can directly be translated into attributes in the relation, if they
represent an observable attribute whose absence is not significant. We have one instance,
in which the original database has a binary attribute, which we cannot simply translate
into a single attribute in the relation: The attribute sex in the adult dataset. This is
because in a relation with only one attribute for sex, f.e. sex_male the absence of that
attribute would be interpreted as the presence of a not-represented attribute sex_female,
which would make that absence significant. So instead we interpret it as a categorical
with possible values {Male,Female}.

We interpret attributes that are not binary as attribute-groups. For each categorical
attribute-group, we introduce sub-attributes, each representing one of the possible cate-
gories. The same goes for enumerable attribute-groups. For attribute-groups with numeric
data-types, we introduce buckets for ranges of possible values of these attribute-groups.
For these buckets we had to decide on the number of buckets per attribute b, and where
to set the boundaries of the buckets.

We decided on three buckets per attribute-group, b = 3, since, as mentioned above,
a high number of sub-attributes causes performance issues. However we have kept this
value variable in our database-to-relation conversion function. For the buckets borders,
one approach would be to get the lowest and highest recorded value of the attribute, and
then equally divide the resulting interval in b parts. We call this equal split. For example
age in adult has values ranging from 17 to 90, so using three buckets with an equal split
we would get buckets (17, 41]), (41, 66]) and (66, 90].
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Another approach, which we will call balanced split, is to try to find buckets such that
each bucket has approximately the same number of individuals. In the prior example
of dividing age into equal buckets, the buckets (17, 41]), (41, 66]) and (66, 90] contained
19926, 11477 and 1158 individuals each respectively. If we instead base the bucket limits
on the value distribution of individuals1 we get the age buckets (16.0, 31.0], (31.0, 44.0]
and (44.0, 90.0]. These contain 11460, 10740 and 10361 individuals respectively. A nice
separation like this is not possible though, if a single value occurs too often. For example
in adult 92% of individuals have capital-gain = 0. To detect and deal with those cases
we do the following:

• Get the normalized spectrum of each possible value.

• If the most frequent value v∗ appears in more than 100
b

% of individuals, introduce a
sub-attribute just for this most-frequent value.

• If v∗ is on either end of the value range, create b − 1 balanced buckets for the
remaining possible values.

• If v∗ is somewhere in the middle create bb− 1
n

c balanced buckets respectively for
values below and above v∗.

Note, that this assumes there exits at most one such ultra-frequent value. This has been
true in practice, but one could extend the presented approach to also handle cases with
two or more such values.

In the following we will be referring to the following relations.

cardioEqual Relation generated from the cardio dataset, using b = 3 buckets and equal
splits.

cardioBalanced Relation generated from the cardio dataset, using b = 3 buckets and
balanced splits.

adultEqual Relation generated from the adult dataset, using b = 3 buckets and equal
splits.

adultBalanced Relation generated from the adult dataset, using b = 3 buckets and
balanced splits.

Note, that for time we did not test all of these relation to the same extent, and focused
on the balanced relations.

With three buckets, the relation representing cardio has 272 sub-attributes, and the
relations for adult has 122 sub-attributes. The high sub-attribute count for adult is
because the database has many categorical attributes with each a lot of possible values.
Some of these values appear extremely seldom. Because of the time complexity limitations
discussed in section 6.3, we will not be able to apply Attribute Privacy to the entire
relations generated this way. So, instead of applying Attribute Privacy to the full relations,
we will create sub-relations, by selecting a sets of attributes, and then apply Attribute
Privacy to those sub-relations.

1Choose the i-th bucket such that all individuals in the i-th b-quantile will fall into it for i ∈ [1..b]
2The relation based on equal splits has one attribute fewer, because an equal split of the ap_hi results

in the intervals (−166, 5240] < (5240, 10630] < (10630, 16020] however no individual has an ap_hi
value in the interval (5240, 10630], which effectively removes this attribute from the relaiton.
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Definition 7.1.1 (Selection-based sub-relation). Given a relation R ∈ X×Y and a selection
of attributes S ⊆ Y ,

RS := {(x, y) ∈ R | y ∈ S}

is a sub-relation of R based on the selection S. We will also annotate this as

RS := select(R,S) .

We will then ensure Attribute Privacy on these sub-relations separately. Because
Attribute Privacy does not generally compose sequentially (Recall Proposition 4.1.5
and Proposition 4.1.6), we will treat each of those sub-relation as a separate experiment
run. Correspondingly, we will also test ε-Differential Privacy on these sub-relations.

When choosing which sub-attributes to include we need to avoid the following pitfall:
Given a set of all sub-attributes σsub := {as1, . . . asn} created from the same attribute-
group, if we include all except for one sub attributes (σsub∗=σsub\{as∗} ∈ S ∧ s∗ /∈ S), we
break the assumption of observational monotonicity. This is because the absence of all of
the included sub-attributes would be significant in the sense that they would imply the
presence of the excluded sub-attribute. We illustrate this idea with an informal example:
Imagine a source database has a property for height, and we created a relation that has
the buckets short, average and tall. If we select a sub-relation that only has attributes
short and average, an individual that was neither short nor average could be assumed to
be tall. This would mean that the absence of observing short and average was significant,
breaking observational monotonicity.

We aimed to include as many attributes as possible, while still being able to perform
the algorithm in a reasonable timeframe. We had to weigh

• including attributes from many attribute-groups (because as elaborated in section 6.3,
including attributes from 7 or fewer attribute-groups can cause collapse to a single
vertex),

• including multiple sub-attributes from the same attribute-group, since a real world
analyst would be interested in the comparison,

• and not including too many attributes because this would too long to compute

against each other.
For the relations cardioEqual, cardioBalanced, and adultBalanced3, we created three

sub-relations each.
In Table 7.3 we show the selection sets based on cardioEqual. The first row names

the corresponding super-attribute from cardio. The subsequent rows each represent one
selection set, for example the second row represents

Sce1 := {age_(10785, 15103], age_(15103, 19408], age_(19408, 23713],
height_(55, 120], height_(120, 185], height_(185, 250],
gluc_1, gluc_2, gluc_3,

3We did not analyze sub relations based on adultEqual for considerations of scope, and because we
have reasons to believe, that relations based on equal split would provide worse utility, than the
corresponding balanced split relations. The idea is, that with an equal split some attributes will have
very few instances, which are likely removed and effectively lead the attribute complex to have even
fewer vertices.

99



7. Utility

smoke, alco, active, cardio}

In Table 7.4, we define the selections based on cardioBalanced, and in Table 7.5 we
define the selections based on adultBalanced. We define the sub-relations accordingly, for
i ∈ {1, 2, 3}:

Rcei := select(cardioEqual,Scei)
Rcbi := select(cardioBalanced,Scbi)
Rabi := select(adultBalanced,Sabi) .

These are the nine relations that we will base our main experiments on.
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age height weight cholesterol gluc smoke alco active cardio ap_lo ap_hi gender
Sce1 (10785, 15103] (15103, 19408] (19408, 23713] (55, 120] (120, 185] (185, 250] 1 2 3 smoke alco active cardio
Sce2 (10785, 15103] (15103, 19408] (19408, 23713] (120, 185] (10, 73] 1 2 3 1 2 3 smoke alco active cardio 1 2
Sce3 (10785, 15103] (15103, 19408] (19408, 23713] (55, 120] (120, 185] (185, 250] (10, 73] (73, 137] 137, 200] 1 2 3 (−81, 3620] (3620, 7310] (7310, 11000] (−166, 5240] (10630, 16020] 1 2

Table 7.3.: Sub-relation selections based on cardioEqual

age height weight cholesterol gluc smoke alco active cardio ap_lo ap_hi gender
Scb1 (10797, 18367] (18367, 20950] (20950, 23713] (54, 160] (160, 168] (168, 250] 1 2 3 smoke alco active cardio
Scb2 (10797, 18367] (18367, 20950] (20950, 23713] (160, 168] (9, 67] 1 2 3 1 2 3 smoke alco active cardio 1 2
Scb3 (10797, 18367] (18367, 20950] (20950, 23713] (54, 160] (160, 168] (168, 250] (9, 67] (67, 78] 78, 200] 1 2 3 (−70, 80] 80 (80, 11000] (−150, 120] 120 (120, 16020] 1 2

Table 7.4.: Sub-relation selections based on cardioBalanced

age workclass fnlwgt education-num Race 50K
Sab1 (16, 31] (31, 44] (44, 90] Private Self-emp-inc Self-emp-not-inc Federal-gov State-gov Local-gov Without-pay Never-worked ? (12284, 141067] (141067, 210474] (210474, 1484705]
Sab2 (16, 31] (31, 44] (44, 90] Private Self-emp-inc Self-emp-not-inc Federal-gov State-gov Local-gov Without-pay Never-worked ? (12284, 141067] (141067, 210474] (210474, 1484705] (0, 9] (9, 10] (10, 16]
Sab3 (16, 31] (31, 44] (44, 90] Private Self-emp-inc Self-emp-not-inc Federal-gov State-gov Local-gov Without-pay Never-worked ? (12284, 141067] (141067, 210474] (210474, 1484705] Black White > 50K ≤ 50K

Table 7.5.: Sub-relation selections on adultBalanced
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7.1.2. Utility Metrics
We design utility-measurement experiments based on the fixed generalized use cases of
histogram publication and micro-aggregation. We have chosen these use cases because
they align with common uses cases outlined in [32, 17]. The metrics we use for these use
cases are classified as general purpose data metric by [37].

• To evaluate the utility in the histogram publication use case, we use counting queries,
as these are commonly used in this case [17]. For these counting queries we will
calculate the relative error

err = Q(D) −Q(D̃)
max{Q(D), s} ,

where D and D̃ respectively are the original and anonymized database, Q a query
and s the sanity bound [17, 94], set to 0.1% of the total number individuals in the
dataset.

– A counting query is a query on the database, counting how often a certain
attribute appears. For example “how often does smoke appear in cardio?”

– We will perform these counting queries for the relations generated from the
databases, for both Attribute Privacy and ε-Differential Privacy. This way we
can also analyze categorical, numerical and continuous attributes. For example
the counting query on the attribute age_(31, 44] on adultBalanced represents
how many people are aged between 31 and 44 years old (right inclusive).

– We acknowledge, that the boundaries of the buckets in the balanced variants
of the relations have not been picked in an differentially private way. However
doing so was omitted for reasons of scope, and we believe that the results we
received would not have changed noticeably. Instead, we interpret the relations
with their inherent bucket boundaries as the input databases to DP.

• For the microdata use case in which the analyst is interested in correlations inherent
in the data, we want to measure the distance between the probability distributions
of the original and anonymized dataset. To do so we will use distance based on
the the Jensen–Shannon Divergence [61, 36], implemented by the SciPy [86] pyhon
library. It is defined as

JS(p, q) :=
√
D(p‖m) +D(q‖m)

2
where p and q are the two probability vectors, between which the distance is measured.

– In our case these are the per-attribute probabilities, that an individual has a
given attribute, so the count of that attribute divided by the total number of
records. m is the point-wise mean of p and q, and D is the Kullback-Leibler
divergence, which we will not define here but refer to [55].

– We have seen other metrics and divergences used in this context, however we
were not able to find a survey comparing the merits and drawbacks of these
distances as a utility measure in SDC.

– We note that [14] states that the commonly used divergences are all special
cases of the f -divergence.
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7.1.3. Implementation of Differential Privacy
Currently NIST recommends [20] two software libraries for differential privacy:

differential-privacy developed by Google [91], providing libraries in C++ ,Go, and
Java, as well as a command-line-interface for differentially private SQL queries. They
provide an implementation of the Laplace mechanism [27], Gaussian mechanism [27],
as well as several thresholding mechanisms [41, 54]. Additionally they provide
utilities for standard statistical operations such as sum, mean, variance, and more,
which they base on the Laplace mechanism.

differential-privacy-library (Diffprivlib) developed by IBM [46], providing a python
library. This library provides implementations of several mechanisms, including
the Laplace mechanism [28], Gaussian mechanism [27], geometric mechanism [40]
and others. The full list of implemented mechanisms can be found in [46, Table
1]. Additionally the library provides differentially private statistical tools mean,
variance and standard deviation, using the Laplace mechanism, as well as histogram
functions using a truncated version of the geometric mechanism.

We chose to use the Laplace mechanism implementation developed by IBM. We chose the
IBM library since it integrates well with our preexisting numpy and pandas tooling. And
we chose the Laplace mechanism because of its wide usage.

7.2. Results
In this section we present and analyze the results of our utility experiments:

The main goal of this section is to understand the utility implications of our mechanism.
Additionally, to verify our implementation of Algorithm 2 is correct, we implemented Al-
gorithm 4, which verifies that a relation has Attribute Privacy, by exhaustively proving
that for a given relation R, the operator φR ◦ ψR the identity.

Algorithm 4: Determine has Attribute Privacy
Data: Relation R ∈ X × Y
Result: Boolean indicating Attribute Privacy

1 forall γ ∈ P(Y ) do /* powerset */
2 psi_of_gamma := ∅ /* Will contain ψR(γ) */
3 forall x ∈ X do
4 if Yx ⊆ γ then
5 psi_of_gamma := psi_of_gamma ∪ {x}

6 phi_after_psi_of_gamma = Y /* Will contain φR ◦ ψR(γ) */
7 forall x ∈psi_of_gamma do
8 phi_after_psi_of_gamma := phi_after_psi_of_gamma ∩ Yx

9 if phi_after_psi_of_gamma 6= γ then
10 return False

11 return True

Plots and charts appearing in this section have been generated using the matplotlib [48,
82] python library.
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7.2.1. Zero-Utility
In section 6.3, we showed, that attribute complexes with seven or less attribute-groups
necessarily collapse to a single vertex, if the attribute complex is collapsible.. This collapse
leads to zero-utility. It is not obvious how likely it is for a real world relation with less
than seven attribute groups to be collapsible. We conduct an experiment to test, how
common it is for a relation with few attributes to collapse to a single vertex. To do this
we start with the relation cardioEqual, which is based on cardio with three buckets and
equal splits. We then created all 17875 possible sub-relations with between two and four
attributes, and tested, if applying Attribute Privacy would result in a relation where the
attribute complex collapsed to a single vertex. We actually noticed, that 11378 (63.65% of
all relations) already had Attribute Privacy at the start of the algorithm, so these would
not be touched later. Of the remaining 6497 relations, 6067 (93.38%) were reduced to a
single vertex.

Likewise on the relation adultEqual we performed the same test on 454689 of the
sub-relations with between two and four attributes. Out of these 368811 relations (81.11%
of all tested) had Attribute Privacy prior to any modifications. Of the 85878 remaining
relations 79185 (92.21%) were reduced to a single vertex.

This demonstrates, that in practice, when selecting a low amount of sub-attributes
the likelihood of obtaining a relation with a collapsible attribute complex is very high.
Because of the low number of attribute-groups that simplicial complex is guaranteed to
collapse to a single vertex.

Because of longer compute times for relations with more attributes, we unfortunately
cannot perform a similar experiment for relations with more attributes. We would however
like to note that with some arbitrary selections of more attributes we found both types of
relations: Relations that did collapse to a single vertex, and relations that do not.

Examples 7.2.1. Using cardio with three equally split buckets, Consider the sub-relation
RS1 with the following 11 attributes

S1 := {age_(10785, 15103], age_(15103, 19408], age_(19408, 23713],
gender_2, gender_1,
height_(55, 120], height_(120, 185], height_(185, 250],
weight_(10, 73], weight_(73, 137],
gluc_1} .

Those attributes come from the 5 attribute-groups age, gender, height, weight, and
gluc. Relation RS1 has a collapsible attribute complex, which necessarily will collapse.

In contrast, consider the sub-relation RS2 from these 11 attributes

S2 := {age_(10785, 15103], age_(15103, 19408], age_(19408, 23713],
gender_2, gender_1,
height_(55, 120], height_(120, 185], height_(185, 250],
weight_(10, 73], weight_(73, 137], weight_(137, 200]} .

The only difference in the two selections is the choice in the last sub-attribute. However
despite the small change, the attribute complex of this relation is not collapsible.
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7.2.2. Counting Queries
We ensured Attribute Privacy on the sub-relations laid out in subsection 7.1.1 and
calculated the mean relative error using all possible counting queries on these relations.
We present this result in Table 7.6. There we also note the total number of attributes in
each sub-relation, as well as from how many attribute groups they were generated. We
note in column Number of Untouched the number of attributes for which the corresponding
counting query yielded a relative error of 0%. Finally, we note the opposite (how many
attributes were completely removed, resulting in a relative error of 100%) in Number of
Removed.

Input-
Relation Attributes Attribute-

Groups
Mean

Relative Error
Number of
Untouched

Number of
Removed

Rce1 13 7 61.17% 1 6
Rce2 16 9 60.40% 0 7
Rce3 19 7 81.43% 1 15
Rcb1 13 7 45.94% 1 2
Rcb2 16 9 29.51% 0 0
Rcb3 20 7 15.56% 0 0
Rab1 15 3 04.31% 9 0
Rab2 18 4 01.89% 12 0
Rab3 19 5 19.19% 3 2

Table 7.6.: Results of relative error using counting query on relatons that have Attribute
Privacy

Next, we calculated the mean relative error for all ε-differentially private counting
queries, with

ε ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.25, 1.50, 1.75, 2.00} .

We did so, using the Laplace mechanism implemented by IBM’s Diffprivlib, on the same
sub-relations. For each ε-DP datapoint (specific relation and ε) we calculated the mean
relative error for all possible counting queries 100 times, and took the mean of that result.

We present the results, contrasted with the results of Attribute Privacy in Figure 7.1.
We observe, that for the relations based on cardio, Attribute Privacy delivers much
worse utility. For the relations based on adult, we observe that Attribute Privacy still
delivers worse in most cases, but is closer in relative error. For Rab2 Attribute Privacy has
a better error rate than the 0.1-differentially private counting queries. However, even for
this relation ε-Differential Privacy gives better error rates with ε ≥ 0.2.

7.2.3. Microdata
For this use case we wanted to measure the distance between the probability vectors with
the per-attribute probabilities for the original and private data.

For Attribute Privacy we, like before, ensured Attribute Privacy on the sub-relations
laid out in subsection 7.1.1. We denote the attribute variant of a given sub-relation R∗

· .
We then calculated the probability vectors for both the original and the private relations.
We denote these per-attribute probability vectors as v(·). We show these distributions in
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comparison with each other in Figure 7.2 and Figure 7.3. The distances we calculated
are shown in Figure 7.4 as horizontal lines, together with the corresponding ε-Differential
Privacy results.
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Figure 7.2.: Comparision of probability vecotrs of sub-Relations of cardioEqual, cardioBal-
anced, against probability vectors of their corresponding attribute-private
relations

For the ε-differentially private probability vector, we need to perform two sequential
queries for every attribute in the relation: Let R ∈ X × Y be the relation in question and
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Figure 7.3.: Comparision of probability vecotrs of sub-Relations of adultBalanced, against
probability vectors of their corresponding attribute-private relations
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7.2. Results

n = |Y | the number of attributes. For every attribute a ∈ Y we calculate

va =
Q
(
a, ε

2n

)
Q
(
n, ε

2n

) ,
where Q(a, ε/2n) is the ε/2n-differentially private counting query for attribute a, and
Q(n, ε/2n) is theε/2n-differentially private counting query for the number of attributes. By
sequential composition we get the ε-differentially private probability vector

vdp(R) = (va1 , . . . van)> .

We measure the distance to the corresponding (non-private) probability vector v(R). We
performed this experiment this with multiple values for ε4 and the relations laid out
in subsection 7.1.1. We repeated this 100 times for each combination of ε and R and
averaged the results. In Figure 7.4 we present the final results. Additionally we present
the vectors for ε = 0.2 and R = Rab2 as a representative example of how both vectors
visually compare in Figure 7.5.

We note, that the ε-differentially private results could potentially be improved by using
a geometric mechanism [40], instead of performing multiple queries with the laplace mech-
anism. This (using a geometric mechanism) is also what is done by IBM’s Diffprivlib [46,
Table 3] when it comes to calculating histogram functions.

Comparing the attribute-private and ε-differentially private results for relations based
on cardio (Figure 7.4a), we see that the attribute-private results are a lot worse than
even the results for 0.1-DP, the smallest tested ε value. In fact, the attribute private
results are so much worse, than the corresponding ε-differentially private results, that the
differences between different ε values (which range in values between approximately 0.026
for smaller ε values and 0.001 for larger ε values) are contained in the very bottom of
the plot. The worst ε-differentially private result in this figure is Rce3 for ε = 0.1 with a
Jensen-Shannon distance of approximately 0.026. The corresponding (same input relation)
attribute private distance is

JS(v(Rce3), v(R∗
ce3)) ≈ 0.7699 .

The best result for attribute private data in this test suite is

JS(v(Rcb3), v(R∗
cb3)) ≈ 0.0593 ,

the corresponding DP result is under 0.010 for ε = 0.1 and under 0.005 for ε = 0.2.
The results for the adult based relation are notably different. Here the ε-DP curve for

Rab1 intersects the line for the attribute private result at around ε = 1.25. For Rab2, the
attribute private result is better, than all of the tested corresponding ε-DP values. The
selection for Rab3 differs only in the selection of a few attribute, however the results for
this relation are drastically different to the other two:

JS(v(Rab3), v(R∗
ab3)) ≈ 0.0820

is almost double than the corresponding 0.1-DP distance.
4ε ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.25, 1.50, 1.75, 2.00}
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7. Utility

7.2.4. Interpretation
In this section we interpret the results gathered in the last two sections.

Under both metrics we have observed, that in most test relations Attribute Privacy
provides worse utility than ε-Differential Privacy. For sub-relations based on cardio the
utility metrics for Attribute Privacy were multiple times worse than their DP counterparts
for all tested ε. For the relations based on adult Attribute Privacy generally gave utility
results that were closer to the ones given by ε-Differential Privacy. However this was
not reliably true for all tested sub-relations. We theorize, that this is caused by certain
patterns appearing by chance in the data, which will lead to the collapse of many faces in
the attribute complex. One such instance is when simplices with 7 or less vertexes appear
in the attribute complex which wil necessarily be removed following Theorem 6.3.1. We
observe in Table 7.6, that in over half the tested relations multiple attributes were entirely
removed.

We conclude, that for a general real world application the utility provided by our
mechanism Attribute Privacy is too unreliable, especially since in many cases the utility
metrics are multiple times worse than the corresponding 0.1-DP values. Because of
Theorem 6.3.1 we believe, that any other mechanism based on the removal of free faces
will encounter the same issues we did.

When it comes to execution time Attribute Privacy performs much worse than ε-
Differential Privacy. For Rab3 the total time needed to achieve an attribute private relation
was approximately 422.21577 seconds, of this time the CPU execution time was 407.79311
seconds. In contrast, calculating the differentially private histogram over the same relation
with ε = 0.5 took 0.00406 seconds (0.00400 seconds CPU time). The same calculation
took approximately the same time for different values for ε. We did not perform precise
time measurements for all of the tested relations, but in general the relations we tested
took multiple minutes for Attribute Privacy, and a few milliseconds for DP queries.

We attempted to create an attribute private relation of cardioBalanced, however after
2436448 seconds (more than 28 days) we still were not done yet with the step that
removes free faces from the relation. Calculating the differential private histogram over
the same relation with ε = 0.5 took 0.00525 seconds (and approximately the same tile
for other values of ε). Since any algorithm implementing Attribute Privacy will have to
solve a complex optimization problem we do not believe computation time even close to
ε-Differential Privacy could be achieved by an Attribute Privacy algorithm.
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8. Conclusion
From our analysis of Association Privacy in the context of graph data privacy, in chap-
ter 5, we draw the conclusion, that despite Association Privacy’s goal of protecting the
relationships between people, it is vulnerable against a graph privacy attacker, and the
existing syntactic notion of k-security [18], provides stronger protections. Therefore, we
discourage the further use of this notion as a privacy metric in the field of graph-data
privacy.

When we compared the privacy guarantees of the topological notions with the relational-
data state-of-the-art in chapter 4, we found that the topological notions have an advantage
over k-Anonymity, when it comes to the assumptions, as they do not assume a known
quasi-identifier, like k-Anonymity does. Further, we found that Attribute Privacy pro-
tects against attribute-linkage attacks, against which plain k-Anonymity is vulnerable.
Additionally, we found that Attribute Privacy does compose in parallel. However, At-
tribute Privacy is vulnerable against the other tested attacks, including record linkage,
which is prevented by k-Anonymity. Association Privacy is vulnerable against all tested
attacks. k-Anonymity with `-Diversity does protect against attribute-linkage as well, and
t-closeness adds protection against probabilistic attacks. These are multiple advantages,
k-Anonymity with extensions have over Attribute Privacy, and diminishes the advantage,
attribute-privacy has over the syntactic SotA to the advantage in assumptions and
composition.

We conclude, for this question, that in terms of privacy guarantees, Association Privacy
does not provide any privacy advantages over any of the SotA. Attribute Privacy may
be chosen over k-Anonymity and extensions, if the need to forego assumptions about
quasi-identifier, outweighs the need for protection against record linkage, and probabilistic
attacks. We further conclude, that Attribute Privacy is inferior in attack resilience to
DP, therefore the only reason to use Attribute Privacy over DP is if it is able to provide
superior utility.

However, our utility analysis shows that Attribute Privacy does not provide better
utility than DP. In the process of designing a mechanism for Attribute Privacy (chapter 6),
we found, that any approach based on collapsing free faces (like ours does) needs to
solve a complex optimization problem, which limits the maximal number of attributes
because of computational complexity. At the same time, we showed that a low number of
attributes guarantees a high utility loss. Additionally, we argued that potential alternative
approaches would have similar flaws. In our utility analysis of our mechanism (chapter 7),
we found, that the mechanism for Attribute Privacy provides much worse utility, than
the Laplace mechanism for ε-DP, even for very small values of ε. From our previous
observations, we conclude, that any generalized mechanism for Attribute Privacy would
likely provide similarly poor utility.

Regarding the possible combination of Attribute Privacy and DP to mitigate correlation
attacks, we found that Attribute Privacy is vulnerable when input data shows certain
correlations. From this we draw, that we cannot combine Attribute Privacy with DP, in
order to protect DP against such correlation-based attacks.
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8. Conclusion

Finally, we conclude that while the topological privacy notions showed some initial
promise, with their lack of assumptions about quasi-identifiers, further analysis revealed
multiple flaws inherent to the notions. In our analysis, we failed to find merit in the
protections promised by Association Privacy. There might be some niche applications
for Attribute Privacy, but it is not suited as a generalized replacement for the existing
relational SotA, as it does not provide a better privacy-utility tradeoff.
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A. Syntactic Graph Data Privacy
Surveys Summarized

In the following we summarize, contrast and comment on the classifications of graph data
privacy “methods” given by surveys [93, 1, 53]. In Table A.1 we show the overlap between
the given classifications, and notions whose mechanisms were listed in the corresponding
categories.

Classifications of [93]:

• k-anonymity via edge modification: Involves modifying edges so that each node is
indistinguishable with at least k− 1 other nodes in terms of some structural patterns.

• Edge-randomization techniques are resilient to structural attacks according to [93].
– These methods involve randomly adding or deleting k edges, or randomly

switching existing edges
– A potential flaw of these methods: Real world data is usually highly correlated

in a low dimensional space while randomly added noise is distributed equally
over all dimensions [93].

– Feature Preserving Randomization: Consideration of directly generating syn-
thetic graphs given a set of features.

– Spectrum Preserving Randomization.
– Markov Chain based Feature Preserving Randomization.
– None of these methods come with a formal notion which they fulfill, which

makes them inadequate for this comparison, despite their potential benefits.

• Generalization-based generalization (Including clustering)
– Problem of generalization: Released network only contains summary of struc-

tural information about the original graph, so users have to generate some
random sample instances of released graph and thus uncertainty might arise in
later analysis since the samples came from numerous possible worlds [93].

The classification [1] provides is in perturbation and non-perturbation methods, where
in non-perturbation methods vertices and edges might be suppressed and generalized but
never altered, whereas the perturbation methods additionally inject noise to the output.
However, we skip the random graph editing models, since these do not define a notion.
The survey also adds a category for DP-based mechanisms. We will not address these
here either, as we address them in section 5.2. Their remaining classification is structured
as follows:

• Non-Perturbation Privacy Preservation Methods
– Random Graph Editing Models
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A. Syntactic Graph Data Privacy Surveys Summarized

– k-Anonymization Approaches
∗ Degree anonymization
∗ Neighborhood anonymization
∗ Structure-free anonymity techniques

– Clustering Based
– Probabilistic Privacy Preservation Models

The survey [1] observes some points that are also good to point out in this context:

• Arbitrary modification of edges or vertices is does not necessarily create privacy for
all users, and random perturbation mechanisms cannot attain a significant degree of
anonymity without diluting graph features.

• Eigenvalues of the adjacency matrix and of the Laplacian matrix should be preserved
to maintain utility.

• “Randomization techniques are unique as they are not focused on addessing special
adversarial attack”

• They also quote [59], who show that randomization techniques may achieve mean-
ingful levels of anonymization while preserving graph characteristics.

For the k-anonymity notions Abawajy, Ninggal, and Herawan note that they have the
goal to mitigate vertex re-identification and that their main difference is in the (assumed)
prior knowledge of the attacker. However for the structure-free (k-)anonymity techniques
they note that these models exploit the inherent symmetry in graphs. The clustering
based k-anonymity approaches aim to partition the edges and vertices into a minimum of
super clusters, while maintaining structural information, however the survey writes that
finding a globally optimal partition is difficult, and that for a legitimate analysis, a graph
has to be sampled from all likely clusters, which leads to sampling errors.

For DP they mention, that it would lead to unacceptably low data quality in certain
data analysis situations. They also note that one of the methods they showcase is not
publishing the graph (but rather only estimates of degree distributions), and that in some
case the structural properties are of great interest, so that publishing the anonymized
graph would be preferable.

Review [53] also has a tree based taxonomy, on the first level being graph-modification
techniques and differential privacy. The reasoning for this distinction is that according
to [53] DP only works on queries. This conflicts with [60] who also mentions DP graph
publishing methods. We also point out that this is not a taxonomy of protections given,
but rather of in which ways the graph is modified. The review does not contain any
comparison of notions.

Within graph modification techniques the distinctions [53] makes are between the
following categories:

• Edge and Vertex modification techniques
– Random perturbation

∗ “In this method, privacy is not guaranteed but a probabilistic-identification
model.” Which means that this is no notion we could compare guarantees
with.
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∗ They note about one of the methods that, it creates “randomizaiton tech-
niques that preserve the features of the graph effectively without giving
them a lot of privacy”, however “privacy” is not qualified or quantified.

∗ Similarly they note about a “proposed entropy-based quantification” based
on posterior belief probabilities “the latest research of randomization meth-
ods has shown that they reach a significant anonymization degree and
retain much of the original graph characteristics”; again without any formal
quantification.

– Constrained perturbation — this includes k-Anonymity methods (notions)
∗ The authors mention that the privacy guarantee depends on the opponents

knowledge (specified via quasi identifier and vertex degree).
∗ One of the mentioned papers [97]“Proposed the inferring sensitive relation-

ship problem from the anonymized structure as link identification.” which
is close to our approach of using Association Privacy to protect the inferred
sensitive relationships.

∗ All of the methods mentioned in this category “have certain drawbacks that
lead to information loss and there is no technique that assures privacy in
all aspects of node security, edge security”.

• Generalization and Clustering
– “this method is not suitable for analyzing the local structures of the graph but

a good method for aggressive queries answering”
– The survey states, that “generalization methods have a strong degree of privacy

although they complicate the study of local measures and metrics”, but again
does not give a definition of what degree of privacy means here, or comparison
with other
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A
.

Syntactic
G

raph
D

ata
Privacy

Surveys
Sum

m
arized

Class. of [93] Classifications of [1] Classifications of [53] Notion

k-Anonymity
via
Edge
Modification

Non-
Pertubation
Privacy
Preservation

k-Anonymity

Degree
anonymization Edge/ Vertex

modification
techniques

Constrained
Perturbation

k-degree-anonymity/
k-anonymous
degree sequence [62]
k2-degree anonymity [80]
k-degree-subset-anonymity [19]

Neighborhood
anonymization

k-neighborhood anonymous [98]
1-hop anonymity [84]
k-candidate anonymity [45]

Structure-free
anonymity

k-automorphic graph [99]
k-symmetry [92]
k-isomorphic graph [18]

Edge
Randomization

Probabilistic Privacy
Preservation Models

Random
perturbation/
Obfuscation

k-obfuscation [11]

Generalization-
based Clustering-Based Generalization/ Clustering k-anonymity clustered [45]

Table A.1.: Classifications of graph privacy “methods” given by surveys [93, 1, 53]
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