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With the purpose of planning and implementing pricing decisions on a tactical level as well as 
production decisions on an operational level, we consider – in an integrated form – the capacitated 
multi-item lot sizing problem with uncertain item demands and price-dependent discrete choice 
demand. The model is embedded into an overarching rolling horizon procedure allowing for 
adaptations to changes in demand and cost parameters. We first formulate the static problem 
version as a nonlinear mathematical program with underlying multinomial logit demand and 
subsequently linearize it to make it viable for mathematical programming solvers. Uncertainty of 
demands is taken into account by Monte Carlo simulation. More specifically, we generate random 
demand scenarios and utilize them as input data for the sample average approximation problem 
version. We further endow the problem setting with possibilities to incorporate pricing policy 
requirements such as restricting the number of price adaptations or defining periods without price 
adaptations. Overall, the developed approach yields a powerful tool for balancing item demands 
via pricing in a way favorable for adhering to available production capacities and thereby striking 
a balance between revenues and costs. Computational results confirm that adapting prices to 
time-dependent demand and cost parameters is exploited effectively to maintain a deliberately 
controlled production environment. Moreover, the integrated pricing and production setting 
allows to study the effect of pricing policy restrictions and demand uncertainties upon attainable 
profits.

1. Introduction

Striking a favorable balance between supply and demand is an essential prerequisite for utilizing available production resources 
efficiently in accordance with market conditions as represented by customer demand characteristics. Traditionally, matching inven-

tories and order requests is accomplished hierarchically in advanced planning and scheduling systems with sales information serving 
as input for lot sizing, inventory management, and production scheduling [1]. This approach is mainly due to the computational 
complexity of optimization problems arising in the two disciplines of product pricing on the tactical level and production planning 
on the operational level, respectively. Nonetheless, there is agreement that intertwining these disciplines yields the opportunity of 
exploiting synergies [2,3]. From an organizational perspective, one possibility fostering the disciplines to coalesce would be to in-

troduce feedback loops between pricing and lot sizing reporting whether previously received information turned out beneficial [4]. 
Disadvantages of this approach originate from its sequential character: First, pricing policy recommendations may be incompatible 
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with available production capacities; vice versa, production quantity proposals may be conflicting with actual product demands. 
Secondly, recommendations from either side are likely to be dismissed as pricing decisions are primarily revenue-driven, whereas 
production decisions are primarily cost-driven. A more objective approach, hence, is found in a simultaneous consideration of both 
the revenue side and the cost side with the goal of serving the entire organization [5,6]. In this paper, for the underlying setting of 
multi-item capacitated lot sizing considered over a tactical planning horizon of several months, we take on this perspective through a 
model-based methodology interrelating operational production decisions with tactical pricing decisions. Hence, interaction between 
supply and demand is facilitated leading to a higher degree of responsiveness with respect to matching sales to production capacities 
over time.

Over the last years, an increase in the interest for operations research settings with integrated discrete choice demand models 
has emerged as shown by works on product assortment [7,8], product line selection and design [9–11], facility location [12,13], 
transportation networks [14,15]. In choice-based optimization, the modeling of demand is integrated into the model, allowing for 
incorporating the effect of demand-related decisions such as pricing. Hence, demand no longer serves as an external input, but can 
be influenced proactively through setting the price decision variables. Apparently, models become more complex in this way. The 
work at hand examines pricing-dependent production planning and, in doing so, pays considerable attention to dealing with demand 
uncertainty and time dynamics. On top of the complexity inherent to the static problem setting of capacitated multi-item lot sizing 
with explicit demand choice modeling, nonlinearity and nonconvexity further complicate matters in terms of impeding computational 
tractability. From an organizational perspective, directly relating revenues and costs has historically suffered from the association 
of both disciplines with different planning horizons: While pricing is located on the tactical to strategic level, production planning 
and scheduling occurs at the operational level. However, with the emergence of variable and dynamic pricing opportunities, both 
planning levels are increasingly interrelated, which suggests to replace static with dynamic pricing schemes. Example 1 illustrates 
the possible advantages of price-based demand control in terms of overall achievable profit, namely 1) avoidance of shortages, 2) 
utilization of regular lot sizing trade-offs, and 3) exploitation of revenue potentials.

Example 1. We consider a single product over two periods with fixed production capacity of 𝐶 = 100 units per period, fixed setup 
costs of 𝐴 = 50 monetary units, fixed unit inventory holding costs of 𝐻 = 0.5, and fixed unit shortage costs of 𝑆 = 3 monetary units. 
Shortage costs serve as a penalty as we assume that units whose demand cannot be met from production or inventory must be sourced 
from external suppliers at a larger cost.

a) Avoidance of shortages and utilization of regular lot sizing trade-offs:

In the base scenario, assume that a constant price of 𝑟 = 1 for both periods leads to demands of 𝑑1 = 110, 𝑑2 = 50 which could 
be, e.g., due to changing seasonality. As a consequence of 𝐶 = 100, a shortage of 𝑑1 −𝐶 = 10 results in the first period, i.e., we 
produce 100 units in the first and 50 units in the second period. This leads to a revenue of 𝑟𝑑1 + 𝑟𝑑2 = 110 + 50 = 160, shortage 
costs of 𝑆(𝑑1 −𝐶) = 30, and setup costs in both periods of 𝐴 +𝐴 = 100. The overall profit is 160 − 30 − 100 = 30. In particular, 
shortages occur in the first period and setups in both periods.

Contrarily, when we apply price control with prices 𝑟1 = 1.25 and 𝑟2 = 1, demand of the first period – depending on the customers’ 
price elasticity – may drop to 𝑑1 = 50 while 𝑑2 = 50 remains. This leads to a revenue of 𝑟1𝑑1 + 𝑟2𝑑2 = 62.5 + 50 = 112.5, setup 
costs only in the first period of 𝐴 = 50, and inventory holding costs for the second period’s units of 𝐻𝑑2 = 25. The overall profit 
is 112.5 −50 −25 = 37.5. In particular, no shortages occur, inventory is utilized, and through price control the capacity becomes 
capable of fully covering both periods’ demand.

b) Exploitation of revenue potentials and utilization of regular lot sizing trade-offs:

In the base scenario, assume that a constant price of 𝑟 = 1 for both time periods leads to demands of 𝑑1 = 𝑑2 = 50 which could 
be, e.g., due to unchanged seasonality. As a consequence of 𝐶 = 100, both demands are produced in the first period. This leads to 
a revenue of 𝑟𝑑1 + 𝑟𝑑2 = 50 + 50 = 100, setup costs only in the first period of 𝐴 = 50, and inventory holding costs for the second 
period’s units of 𝐻𝑑2 = 25. The overall profit is 100 − 50 − 25 = 25. In particular, inventory is utilized.

Contrarily, when we apply price control with prices 𝑟1 = 𝑟2 = 0.75, demand of both – depending on the customers’ price elasticity 
– may rise to 𝑑1 = 𝑑2 = 100. This leads to a revenue of 𝑟1𝑑1 + 𝑟2𝑑2 = 75 +75 = 150, and setup costs in both periods of 𝐴 +𝐴 = 100. 
The overall profit is 150 −100 = 50. In particular, setups occur in both periods, but the difference between additional setup costs 
and original inventory holding costs is outweighed by additional revenues. △

In this paper, we address the integration of pricing and lot sizing as follows: We first formulate the static version of the capacitated 
multi-item lot sizing problem with demand choice as a nonlinear mathematical program. We then derive a linearized version of the 
problem when a discrete number of possible price levels for each product is assumed. Since product pricing in practice typically is not 
entirely arbitrary, this represents a closer approximation of reality than unconstrained prices would do. To obtain a sustainable pricing 
policy over time and to prevent customers from being upset due to frequent erratic price changes, we further enrich the model with 
the possibility of incorporating pricing restrictions depending on the pricing trajectory. As demand predictions become increasingly 
volatile the farther one sees into the future, we take into account uncertainty of demands through sampling of demand scenarios. Since 
demand predictions for the close future exhibit less volatility, embedding pricing and lot sizing into a rolling horizon procedure yields 
a viable way of addressing uncertainty dynamically and adapting decisions upon scenario realizations. The developed methodology 
supports choice-based optimization to be employed in a sequence of decision making steps with the goal of supporting pricing and 
production decisions over an extended period of time. For instance, in this paper, the overseen planning horizon can be thought of 
2

as a year with weekly production decisions and monthly pricing decisions. Fig. 1 summarizes the developed rolling horizon outline: 
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Fig. 1. Rolling horizon outline and related complexity drivers for the integrated pricing and lot sizing problem over time.

Depending on user-selected execution times for making pricing decisions and lot sizing decisions, the respective problem settings are 
tackled with appropriate data on uncertain demands associated to them. In particular, pricing decisions first lead to a disaggregation 
of the overall market demand into single item demands; this is followed by operational lot sizing decisions ensuring to serve these 
single item demands. Further, practical aspects can be fed into the pricing task in the form of a-priori restrictions.

The remainder of the paper is organized as follows: In section 2, we discuss relevant literature from the realms of discrete choice 
demand modeling in mathematical optimization as well as capacitated multi-item lot sizing. In section 3, we introduce the formal 
setting and solution outline for the capacitated multi-item lot sizing problem with demand choice, uncertain customer demands, 
and its embedding in a rolling time horizon. The numerical experiments in section 4 demonstrate the methodology’s applicability in 
practice as seen from several instances covering long planning horizons of one year. Finally, section 5 yields an outlook on future 
research with respect to the specific lot sizing application and to generalization possibilities of the rolling horizon framework for 
choice-based optimization.

2. Literature review

We discuss literature on discrete choice (DC) demand models, their use in general frameworks and specific applications of choice-

based (especially attraction-based) optimization, and lot sizing with integrated pricing. Game-theoretic and revenue management 
works are omitted as these disciplines do not encompass complex choice-based settings with periodical demand realizations. Con-

cerning the treatment of uncertainty via sample average approximation (SAA), we refer to the seminal paper [16] on solving stochastic 
discrete optimization problems using Monte Carlo sampling [17].

2.1. DC demand modeling

A comprehensive survey on demand function modeling is given by [18]. The discussion structures demand models depending 
upon the factors of price, rebate, lead time, space, quality, and advertising. Further, it encompasses a separate consideration of 
single and multi-firm settings, and it is established that the multinomial logit (MNL) model is among the most widely used demand 
models. Likewise, [19] surveys various forms of demand models, how they interact on an individual level, and how they add up to 
aggregate demand. In addition, further aspects are discussed such as demand estimation, forecasting, competitive demand situations, 
and behavioral influences. [20] provides a comprehensive overview on DC demand modeling in the form of a compilation of various 
models’ properties.

Historically, [21] provides the distributional foundation for utility-based decision making and focuses on the random utility 
as the residue of the overall utility and its deterministic component. In [22], McFadden develops the MNL choice model where 
random utility follows an identical and independent extreme value distribution leading to constant choice probability ratios even 
when alternatives are removed (independence of irrelevant alternatives (IIA)). Over the years, MNL has become one of the standard 
approaches for modeling customer choice in case of alternative products as it allows for analytically tractable expressions and an 
accessible interpretation of resulting choice probabilities [20]. McFadden’s work has been the starting point for many further choice 
3

models. In particular, [23] shows that any choice model relying on random utility maximization can be approximated by mixed 
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MNL which derives from MNL through random parameters. To further close the gap between behavioral models and DC theory, [24]

enriches MNL models with realistic facets such as factor disturbances, combining different preference types, or latent variables. We 
note that the basic attraction model (BAM) – of which the MNL choice model is a special case – has been first formulated by [25] on an 
axiomatic basis considering basic consumer behavior assumptions. Finally, [26] provides a generalization of the BAM to alleviate the 
overoptimism and to improve the modeling opportunities of spill and recapture. [27] addresses DC from the perspective of product 
differentiation since quality, packaging, design, color, and style, are seen as major drivers of consumer choice. The combination of 
product differentiation and DC has led to a plethora of applications of integrated pricing and product line selection.

We next discuss how DC is accounted for within optimization problems. To this end, we first examine general approaches as 
they address several features encountered in the paper at hand; we then continue with a discussion of research on applications of 
integrated pricing and optimization where the methodological outline is related to our paper.

2.2. General approaches to choice-based optimization

Even though most research on integrated pricing and optimization addresses specific application domains (cf. subsection 2.3), 
some recent initiatives have promoted the development of a generalizing perspective with respect to several realms also encountered 
in the paper at hand, namely structure of coupled pricing and optimization, use of randomness, and linearization of model compo-

nents: [2] examines the general architecture of integrating disaggregated demand into optimization models. Their discussion entails 
utility theory, its translation to choice models, and practical aspects such as parameter estimation. [3] follows a similar line of research 
and demonstrates how choice-based control of the demand side is technically embedded into mixed-integer linear program (MILPs) 
for operational systems. A general optimization framework is obtained where individual choice is incorporated through a simulative 
approach. This facilitates the embedding of arbitrary error term distributions in the random utility part. Concerning the lineariza-

tion of mixed-integer nonlinear programs (MINLPs) encompassing choice-based demand, [13] distills two generic ideas which are 
employed time and again in applications (assortment optimization, product line selection, location planning) which they classify as 
method-based (resulting from dealing with fractions in formulations) and property-based (resulting from dealing with independence 
of irrelevant alternatives).

2.3. Applications of integrated pricing and optimization

Existing research on applications of integrated pricing and optimization illustrates that many of the aspects arising in the paper 
at hand – such as, e.g., problem integration, fractional and nonlinear model formulations, model reformulations, rolling horizon 
procedures – have practically played a major role in the field of choice-based optimization. By far the most prominent application 
area is product line selection (PLS). As an early work, [28] assumes given choice preferences and develops an integer program (IP) 
as well as heuristics. [29] traces the computational complexity of PLS with integrated pricing to nonconcave profits, which is also 
characteristic for choice-based optimization in general. Consequently, they advocate for the use of approximation procedures. In case 
of probabilistic choice, [30] displays the typical fractional character of IP formulations encountered in choice-based PLS. The afore-

mentioned complexity drivers (customer choice, concavity, computational complexity) are tackled by [9,10] for the case of attraction 
choice models (including MNL) via reformulations of MINLPs as models with concave objective and linear constraints allowing for 
improved computational tractability. More recent contributions in PLS elaborate on specific extensions such as market segmentation 
[31] or compromise alternatives [11]. A problem related to choice-based PLS is integrated assortment and pricing, where retailers 
must establish product offerings and prices. [7] considers demand to be learned dynamically via Bayesian updating, i.e., demand 
is explored online in a time-dynamic setting with similarities to the rolling horizon outline. However, the setting is then tackled by 
stochastic dynamic programming. [8] finds that choice-based assortment nowadays must be placed within a multichannel setting en-

compassing digital and on-site customer choices. The problem is approached by a MILP formulation as well as a heuristic procedure. 
Another application area of choice-based optimization falls into the category of managing transportation systems and networks. In 
[32], nonlinear models are yielded for urban transportation incorporating demands depending on prices, transport supply levels, road 
infrastructure, and speed. The research stream [14,33,34] addresses problem blendings (operator profit maximization with traveler 
cost minimization), two-phase approaches to cope with computational complexity, and multiple commuter classes, respectively. [15]

devises a MINLP formulation and tailored solution algorithm for a carsharing network with demands depending on offered services. 
Service network design with attraction choice is discussed by [35] where choice encompasses several realistic influences such as 
distance, congestion, and price. For the resulting nonlinear model, reformulations are derived as well as decomposition and heuristic 
approaches. In the realms of airline management, [36] integrates scheduling, fleeting, and pricing subject to an itinerary-specific 
supply-demand model. However, the resulting nonlinear model runs into computational difficulties when going to instances beyond 
the ones presented. [37] blends flight scheduling, itinerary pricing, and aircraft fleeting so as to optimize profit. MNL demand leads to 
an MINLP with linear constraints and concave objective allowing for computational experimentation. Finally, we mention the rather 
strategic discipline of competitive location where choice-based model formulations are found for the maximum capture problem 
[38,39], classical facility location [40], preventive health care networks [41], and school location [42].

2.4. Capacitated multi-item lot sizing

Since we discuss works related to integrated pricing and lot sizing, we first refer to [43,44] for reviews on dynamic capacitated 
4

multi-item lot sizing. Assuming linear demand, [45] devises an MILP formulation and establishes convexity results. Coordination 
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through pricing, supplier selection, and lot sizing along a serial supply chain is explored by [46] resulting in a MINLP. Due to the 
computational complexity, also a heuristic approach based on power-of-two policies is developed. A multi-objective MINLP is devised 
by [47] to coordinate pricing, lot sizing, and supplier selection. Due to the different objectives (profit for pricing, delivery correctness 
for lot sizing, defective avoidance for supplier selection), multi-objective algorithms (such as NSGA-II and SPEA2) for determining 
Pareto solutions are employed. The multi-channel setting of integrated pricing and lot sizing with pricing each channel individually 
and each channel having its own attraction-based demand model is scrutinized by [48]. The problem is formulated as a nonconvex 
MINLP which is subsequently transformed into a convex problem by exploiting demand properties. This formulation is then tackled 
by outer approximation. [49] discusses capacitated dynamic joint lot-sizing and pricing with uncertain linear demand. The problem is 
formulated as a multi-stage stochastic program and solved by decomposition consisting of first-stage pricing, second-stage lot sizing, 
and third-stage delayed pricing. [50] extends the discussion by accounting for new products to be factored in. The analysis is based on 
the integration of a demand diffusion model and results in an analysis of different pricing strategies which are dependent on a specific 
price change rate parameter. The discussion yields an analysis of specific strategies such as constant, dynamic, and sequential pricing 
and lot sizing. Even though not directly related to discrete choice demand models, [51] considers iso-elastic demand functions in 
joint lot-sizing and dynamic pricing such that complementarity and substitution between products can be considered in metaheuristic 
and matheuristic approaches.

Overall, we conclude that several works consider parts of the paper’s aspects independently from each other. However, a substantial 
research gap is identified for the combination and integration of choice-based lot sizing with demand uncertainty in a time-dynamic 
setting.

3. Models and algorithms

Upon providing required terminology and notation for the integrated dynamic pricing and lot sizing with attraction-based demand 
choice and demand uncertainty in subsection 3.1, we introduce the associated MINLP formulation in the deterministic setting and 
transform it to a MILP version in subsection 3.2. Further, we account for practical pricing scheme restrictions in subsection 3.3. In 
subsection 3.4, we incorporate demand uncertainty as part of a stochastic solution outline. Finally, the rolling horizon procedure in 
subsection 3.5 arranges the sequential and repetitive retrieval of pricing schemes and production plans over time.

3.1. Setting, terminology and notation

We consider the integrated pricing and lot sizing problem for the capacitated multi-item case with demand uncertainty. It consists 
on the one hand of determining for all products in the set of products 𝑃 their selling price for each period of the planning horizon 𝑇 ; 
on the other hand, we have to determine the production quantities in each period of 𝑇 such that customer demands are served either 
directly from production or by stored units from stock. In addition, there are competing products available on the market which are 
subsumed in the set 𝑃𝑒𝑥𝑡 of external products. Hence, the set of product alternatives available to the customers’ discretion is 𝑃 ∪𝑃𝑒𝑥𝑡. 
While the overall market demand is received as part of the external input data, individual product demands are assumed to follow 
an attraction choice model, i.e., demand for a product is proportional to its relative attraction in comparison to the total attraction of 
all products. Attraction models allow for demand representation in terms of product market shares, and thereby admit a probabilistic 
approach to demand. In fact, attraction models represent a frequently used class of demand models in economics, marketing, and 
operations management [18]. Hence, when attraction is measured by utility, the market share of product 𝑝 is defined as 𝑈𝑝∑

𝑝′∈𝑃∪𝑃𝑒𝑥𝑡 𝑈𝑝′
. 

With a price of 𝑟𝑝 monetary units for product 𝑝 ∈ 𝑃 ∪ 𝑃𝑒𝑥𝑡, utility is assumed to follow the MNL model with 𝑈𝑝 ∶= 𝑈𝑝(𝑟𝑝) = 𝑒𝛼𝑝+𝛽𝑝𝑟𝑝
with price-independent sensitivity parameter 𝛼𝑝 ∈ℝ and price sensitivity parameter 𝛽𝑝 < 0. Therefore, we subsequently assume that 
the assumptions of the MNL model, in particular IIA, are fulfilled. Clearly, if this assumption is known to be violated in a practical 
setting, other choice models such as nested logit or multinomial probit must be initiated instead. Nonetheless, as we will ultimately 
use utility values as model input data, the core of the following analysis remains valid also for other discrete choice models.

In the discretized version of the problem, we assume that the price 𝑟𝑝 comes from a pre-specified set 𝐿𝑝 of possible prices, i.e., 
𝑟𝑝 ∈ 𝐿𝑝. Due to the rolling horizon procedure which proceeds period-wise until the overall planning horizon 𝑇 is covered, we also 
introduce the set 𝑇 ⊆ 𝑇 of consecutive periods considered in the current planning step. As our models employ pricing on a tactical 
time horizon 𝑇 , data for the operational lot sizing problem is incorporated into the integrated model through demand forecasts over 
𝑇 as well. As a result of tactical pricing and operational lot sizing, 𝑇 typically covers a large number of production periods such 
that the influence of the end-of-horizon effect in the rolling horizon procedure (as known from pure lot sizing [52]) is negligible in 
the integrated setting. This is also confirmed by manual experimentation. The notation used for the integrated pricing and lot sizing 
problem (IPCLSP) and its variants is summarized in Table 1. We further introduce the following terminology:

selected price The selected price 𝑟𝑝𝑡 is the amount of monetary units obtained for selling product 𝑝 ∈ 𝑃 in period 𝑡 ∈ 𝑇 . For the 
output of the final model IPCLSP in subsubsection 3.2.3, it holds that 𝑟𝑝𝑡 ∶=

∑
𝑙∈𝐿𝑝 𝑅𝑝𝑙𝑧𝑝𝑡𝑙 .

pricing scheme A pricing scheme 𝑟 subsumes the selected prices for all products 𝑝 ∈ 𝑃 in all periods 𝑡 ∈ 𝑇 in a matrix, i.e., we have 
𝑟 ∶= (𝑟𝑝𝑡)𝑝∈𝑃 ,𝑡∈𝑇 and 𝑟 contains all pricing information over planning horizon 𝑇 .

pricing snapshot The pricing snapshot 𝑟𝑡 is composed of the selected prices for all products 𝑝 ∈ 𝑃 in a specific period 𝑡 ∈ 𝑇 , i.e., 
5

we have 𝑟𝑡 ∶= (𝑟𝑝𝑡)𝑝∈𝑃 and 𝑟𝑡 contains all pricing information for period 𝑡.
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Table 1

Notation for model IPCLSP and its variants.

sets and indices

𝑡 time period index

𝑇 set of all time periods

𝑇 set of specific time periods currently considered

𝑝 product index

𝑃 set of own products

𝑃𝑒𝑥𝑡 set of external products

𝑙 price level index

𝐿𝑝 set of price levels for product 𝑝 ∈ 𝑃
𝜉 demand scenario index

Ξ set of demand scenarios

parameters

𝑅𝑝𝑙 price for product 𝑝 ∈ 𝑃 at level 𝑙 ∈𝐿𝑝
𝐷𝑡 overall demand in period 𝑡 ∈ 𝑇
𝛽𝑝 price sensitivity parameter of discrete choice model for product 𝑝 ∈ 𝑃
𝛼𝑝 price-independent sensitivity parameter of discrete choice model for product 𝑝 ∈ 𝑃
𝑈𝑝 utility of product 𝑝 ∈ 𝑃 ∪ 𝑃𝑒𝑥𝑡
𝑈𝑝𝑙 utility of product 𝑝 ∈ 𝑃 if price level 𝑙 ∈𝐿𝑝 is selected

𝐻𝑝𝑡 unit inventory holding cost for product 𝑝 ∈ 𝑃 in period 𝑡 ∈ 𝑇
𝑆𝑝𝑡 unit shortage cost for product 𝑝 ∈ 𝑃 in period 𝑡 ∈ 𝑇
𝐴𝑝𝑡 production setup cost for product 𝑝 ∈ 𝑃 in period 𝑡 ∈ 𝑇
𝐶𝑡 total production capacity in period 𝑡 ∈ 𝑇
𝑖𝑝 minimum ending inventory for product 𝑝 ∈ 𝑃
𝑛𝑚𝑎𝑥 maximum allowable number of price changes per product over time horizon 𝑇

𝑛<𝑇
𝑝

number of price changes for product 𝑝 that have occurred until period 𝑡 ∈ 𝑇
𝑃 𝑟(𝜉) probability for demand scenario 𝜉 ∈ Ξ

decision variables

𝑟𝑝𝑡 selected price for product 𝑝 ∈ 𝑃 in period 𝑡 ∈ 𝑇
𝑑𝑝𝑡 demand resulting from selected price for product 𝑝 ∈ 𝑃 in period 𝑡 ∈ 𝑇
𝑥𝑝𝑡 production quantity of product 𝑝 ∈ 𝑃 in period 𝑡 ∈ 𝑇
𝑦𝑝𝑡 production indicator for product 𝑝 ∈ 𝑃 in period 𝑡 ∈ 𝑇
𝑖𝑝𝑡 inventory of product 𝑝 ∈ 𝑃 at the end of period 𝑡 ∈ 𝑇
𝑠𝑝𝑡 shortage of product 𝑝 ∈ 𝑃 in period 𝑡 ∈ 𝑇
𝛿𝑝𝑡 market share of product 𝑝 ∈ 𝑃 in period 𝑡 ∈ 𝑇
𝛾𝑡 inverse of total utilities over all products 𝑝 ∈ 𝑃 ∪ 𝑃𝑒𝑥𝑡 in period 𝑡 ∈ 𝑇
𝑧𝑝𝑡𝑙 selection indicator for price level 𝑙 ∈𝐿𝑝 of product 𝑝 ∈ 𝑃 in period 𝑡 ∈ 𝑇
𝜙𝑝𝑡𝑙 inverse of total utilities over all products 𝑝 ∈ 𝑃 ∪ 𝑃𝑒𝑥𝑡 in period 𝑡 ∈ 𝑇

in case that 𝑧𝑝𝑡𝑙 = 1, zero otherwise

Δ𝑝𝑡𝑙 price change indicator for product 𝑝 ∈ 𝑃 in period 𝑡 ∈ 𝑇 involving price level 𝑙 ∈𝐿𝑝

demand The (market) demand 𝐷𝑡 gives the total number of requested units over all products 𝑝 ∈ 𝑃 in period 𝑡 ∈ 𝑇 ; 𝐷𝑡 is an 
exogenous model input subject to uncertainty concerning the market potential in period 𝑡 ∈ 𝑇 .

product demand The product demand 𝑑𝑝𝑡 gives the number of requested units for product 𝑝 ∈ 𝑃 in period 𝑡 ∈ 𝑇 . It depends on the 
prices 𝑟𝑝′𝑡 selected for all products 𝑝′ ∈ 𝑃 and the utility of all external products 𝑝′ ∈ 𝑃𝑒𝑥𝑡. For the output of the final model 
IPCLSP in subsubsection 3.2.3, it holds that 𝑑𝑝𝑡 ∶=𝐷𝑡

∑
𝑙∈𝐿𝑝 𝑈𝑝𝑙𝜙𝑝𝑡𝑙 .

production schedule A production schedule 𝑥 subsumes the production quantities for all products 𝑝 ∈ 𝑃 in all periods 𝑡 ∈ 𝑇 in a 
matrix, i.e., we have 𝑥 ∶= (𝑥𝑝𝑡)𝑝∈𝑃 ,𝑡∈𝑇 and 𝑥 contains all production quantity information over planning horizon 𝑇 .

production snapshot The production snapshot 𝑥𝑡 is composed of the production quantities for all products 𝑝 ∈ 𝑃 in a specific period 
𝑡 ∈ 𝑇 , i.e., we have 𝑥𝑡 ∶= (𝑥𝑝𝑡)𝑝∈𝑃 and 𝑥𝑡 contains all production quantity information for period 𝑡.

3.2. Mathematical programming models

To tackle pricing and lot sizing in an integrated fashion with available mathematical programming solvers, we successively derive 
a linear model formulation to resolve the problem-inherent issue of nonlinearity and to account for practical price setting limitations.

3.2.1. Nonlinear model formulation with continuous price variables

We provide a first MINLP for the integrated lot sizing and pricing problem. In the following model, the prices 𝑟𝑝𝑡 are continuous 
decision variables. Moreover, we have a price-dependent utility function 𝑈𝑝(𝑟𝑝𝑡) for products 𝑝 ∈ 𝑃 , and no uncertainty is considered 
yet. Concerning pricing, the model decides about prices 𝑟𝑝𝑡; demands 𝑑𝑝𝑡, product market shares 𝛿𝑝𝑡, and the inverse 𝛾𝑡 of total utilities 
over all products serve as dependent decision variables. Concerning lot sizing, the model decides about production quantities 𝑥𝑝𝑡 and 
production indicators 𝑦𝑝𝑡; inventory levels 𝑖𝑝𝑡 and shortages 𝑠𝑝𝑡 serve as dependent decision variables.

max
∑∑

𝑟 𝑑 −
∑∑

(𝐻 𝑖 +𝐴 𝑦 + 𝑆 𝑠 ) (1)
6

𝑝∈𝑃 𝑡∈𝑇
𝑝𝑡 𝑝𝑡

𝑝∈𝑃 𝑡∈𝑇
𝑝𝑡 𝑝𝑡 𝑝𝑡 𝑝𝑡 𝑝𝑡 𝑝𝑡
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s.t.
∑
𝑝∈𝑃𝑒𝑥𝑡

𝑈𝑝𝛾𝑡 +
∑
𝑝∈𝑃

𝛿𝑝𝑡 = 1 𝑡 ∈ 𝑇 (2)

𝑑𝑝𝑡 = 𝛿𝑝𝑡𝐷𝑡 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 (3)

𝛿𝑝𝑡 = 𝑈𝑝(𝑟𝑝𝑡)𝛾𝑡 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 (4)

𝑖𝑝,𝑡−1 + 𝑥𝑝𝑡 + 𝑠𝑝𝑡 − 𝑑𝑝𝑡 = 𝑖𝑝𝑡 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 (5)

𝑖𝑝,max{𝑡 | 𝑡∈𝑇 } ≥ 𝑖𝑝 𝑝 ∈ 𝑃 (6)∑
𝑝∈𝑃

𝑥𝑝𝑡 ≤ 𝐶𝑡 𝑡 ∈ 𝑇 (7)

𝑥𝑝𝑡 ≤ 𝑀𝑦𝑝𝑡 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 (8)

𝑟𝑝𝑡, 𝑑𝑝𝑡, 𝑥𝑝𝑡, 𝑖𝑝𝑡, 𝑠𝑝𝑡 ≥ 0 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 (9)

𝑦𝑝𝑡 ∈ {0,1} 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 (10)

𝛿𝑝𝑡 ∈ [0,1] 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 (11)

𝛾𝑡 ≥ 0 𝑡 ∈ 𝑇 (12)

The objective (1) gives the profit as the difference between revenues from sales and inventory holding costs, production setup 
costs, and shortage costs. Observe that the revenue is a nonlinear function since both 𝑟𝑝𝑡 and 𝑑𝑝𝑡 are decision variables where the 
latter is additionally dependent on 𝛿𝑝𝑡 which in turn depends on 𝛾𝑡 as discussed below. Moreover, we allow for shortages (inducing 
shortage costs) in order to facilitate external sourcing of product units whose demands cannot be met by production or inventories 
as could be the case under random overall market demand (cf. subsection 3.4). Constraint (2) states that all market shares, i.e., those 
of external and own products, must add up to 1. We note that – fitting to the use of utility-related attraction-based demand choice 
– variable 𝛾𝑡 amounts to the inverse of the sum of all product utilities such that constraints (3)-(4) define the market share based 
on attraction choice. Constraints (5)-(8) are related to lot sizing and account for inventory balance, minimum ending inventories, 
production capacity, and linkage between production quantities and indicators, respectively. Variable domains are prescribed by 
constraints (9)-(12). While there are several ways of resolving shortages (e.g., backlogging, lost sales, shortages), we incorporate 
them exemplary through shortages.

We observe that due to 𝛿𝑝𝑡 =𝑈𝑝(𝑟𝑝𝑡)𝛾𝑡 ⇔𝑈𝑝(𝑟𝑝𝑡) =
𝛿𝑝𝑡

𝛾𝑡
and the equivalences

𝑈𝑝(𝑟𝑝𝑡) = 𝑒𝛼𝑝+𝛽𝑝𝑟𝑝𝑡 ⇔
𝛿𝑝𝑡

𝛾𝑡
= 𝑒𝛼𝑝+𝛽𝑝𝑟𝑝𝑡 ⇔ 𝑟𝑝𝑡 =

1
𝛽𝑝
(ln 𝛿𝑝𝑡

𝛾𝑡
− 𝛼𝑝),

the first term of the objective function

max
∑
𝑝∈𝑃

∑
𝑡∈𝑇

𝑟𝑝𝑡𝑑𝑝𝑡 =max
∑
𝑝∈𝑃

∑
𝑡∈𝑇

𝑟𝑝𝑡𝛿𝑝𝑡𝐷𝑡 =max
∑
𝑝∈𝑃

∑
𝑡∈𝑇

1
𝛽𝑝

(ln
𝛿𝑝𝑡

𝛾𝑡
− 𝛼𝑝)𝛿𝑝𝑡𝐷𝑡

is a nonlinear function in the variables 𝛿𝑝𝑡 and 𝛾𝑡.

3.2.2. Nonlinear model formulation with discrete price variables

As a byproduct of the practical requirement that prices shall not be arbitrary, but rather come from a preselected range of options, 
the issue of nonlinearity is alleviated as follows: We impose the restriction that only specific price levels 𝑙 ∈ 𝐿𝑝 with associated 
prices 𝑅𝑝𝑙 can be charged for product 𝑝 ∈ 𝑃 . As a consequence, we are able to eliminate the 𝛿𝑝𝑡-variables due to the relation 𝛿𝑝𝑡 =∑
𝑙∈𝐿𝑝 𝑈𝑝𝑙𝑧𝑝𝑡𝑙𝛾𝑡 where 𝑈𝑝𝑙 is the utility for product 𝑝 when priced at level 𝑙. This will be helpful for obtaining a linearized model 

version. The utility values for the specific price levels can be precomputed as 𝑈𝑝𝑙 = 𝑒𝛼𝑝+𝛽𝑝𝑅𝑝𝑙 , i.e., we can get rid of the MNL function 
as an internal part of the model. Concerning pricing, the model decides about the price level selection indicators 𝑧𝑝𝑡𝑙 ; the inverse 𝛾𝑡
of total utilities over all products serves as dependent decision variable. The lot sizing decision variables remain unchanged.

With this, the first term of the objective function can be written as

max
∑
𝑝∈𝑃

∑
𝑡∈𝑇

𝑟𝑝𝑡𝑑𝑝𝑡 =max
∑
𝑝∈𝑃

∑
𝑡∈𝑇

𝑟𝑝𝑡𝛿𝑝𝑡𝐷𝑡 =max
∑
𝑝∈𝑃

∑
𝑡∈𝑇

∑
𝑙∈𝐿𝑝

𝑅𝑝𝑙𝑈𝑝𝑙𝑧𝑝𝑡𝑙𝛾𝑡𝐷𝑡,

leading to

max
∑
𝑝∈𝑃

∑
𝑡∈𝑇

∑
𝑙∈𝐿𝑝

𝑅𝑝𝑙𝑈𝑝𝑙𝑧𝑝𝑡𝑙𝛾𝑡𝐷𝑡 −
∑
𝑝∈𝑃

∑
𝑡∈𝑇

(𝐻𝑝𝑡𝑖𝑝𝑡 +𝐴𝑝𝑡𝑦𝑝𝑡 +𝑆𝑝𝑡𝑠𝑝𝑡) (13)

s.t.
∑
𝑝∈𝑃𝑒𝑥𝑡

𝑈𝑝𝛾𝑡 +
∑
𝑝∈𝑃

∑
𝑙∈𝐿𝑝

𝑈𝑝𝑙𝑧𝑝𝑡𝑙𝛾𝑡 = 1 𝑡 ∈ 𝑇 (14)

∑
𝑧 = 1 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 (15)
7

𝑙∈𝐿𝑝
𝑝𝑡𝑙
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𝑖𝑝,𝑡−1 + 𝑥𝑝𝑡 + 𝑠𝑝𝑡 −𝐷𝑡

∑
𝑙∈𝐿𝑝

𝑈𝑝𝑙𝑧𝑝𝑡𝑙𝛾𝑡 = 𝑖𝑝𝑡 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 (16)

𝑖𝑝,max{𝑡 | 𝑡∈𝑇 } ≥ 𝑖𝑝 𝑝 ∈ 𝑃 (17)∑
𝑝∈𝑃

𝑥𝑝𝑡 ≤ 𝐶𝑡 𝑡 ∈ 𝑇 (18)

𝑥𝑝𝑡 ≤ 𝑀𝑦𝑝𝑡 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 (19)

𝑥𝑝𝑡, 𝑖𝑝𝑡, 𝑠𝑝𝑡 ≥ 0 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 (20)

𝑦𝑝𝑡 ∈ {0,1} 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 (21)

𝛾𝑡 ≥ 0 𝑡 ∈ 𝑇 (22)

𝑧𝑝𝑡𝑙 ∈ {0,1} 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 , 𝑙 ∈𝐿𝑝 (23)

Thus, objective (13) represents the discretized version of the former objective (1); constraint (14) combines the former constraints 
(2) and (4) for the purpose of discretization; constraint (15) prescribes that for each product and period exactly one price level is 
selected.

3.2.3. Linear model formulation with discrete price variables

Finally, to arrive at a linearized formulation, we introduce an auxiliary variable 𝜙𝑝𝑡𝑙 for substituting the bilinear term 𝜙𝑝𝑡𝑙 = 𝑧𝑝𝑡𝑙𝛾𝑡
which leads – together with the three constraints 𝜙𝑝𝑡𝑙 ≤𝑀𝑧𝑝𝑡𝑙 (ensuring that 𝜙𝑝𝑡𝑙 = 0 if 𝑧𝑝𝑡𝑙 = 0), 𝜙𝑝𝑡𝑙 ≤ 𝛾𝑡 and 𝜙𝑝𝑡𝑙 ≥ 𝛾𝑡 +𝑀(𝑧𝑝𝑡𝑙 − 1)
(ensuring that 𝜙𝑝𝑡𝑙 = 𝛾𝑡 if 𝑧𝑝𝑡𝑙 = 1) – to the following MILP IPCLSP(𝑇 ) for the integrated pricing and capacitated lot sizing problem 
over period set 𝑇 . Concerning pricing, the model decides about the price level selection indicators 𝑧𝑝𝑡𝑙 ; the inverse 𝛾𝑡 of total utilities 
over all products serves as dependent decision variable; the inverse 𝜙𝑝𝑡𝑙 of total utilities over all products in its conditioned form on 
𝑧𝑝𝑡𝑙 = 1 serves as auxiliary variable. The lot sizing decision variables remain unchanged.

max
∑
𝑝∈𝑃

∑
𝑡∈𝑇

∑
𝑙∈𝐿𝑝

𝑅𝑝𝑙𝑈𝑝𝑙𝜙𝑝𝑡𝑙𝐷𝑡 −
∑
𝑝∈𝑃

∑
𝑡∈𝑇

(𝐻𝑝𝑡𝑖𝑝𝑡 +𝐴𝑝𝑡𝑦𝑝𝑡 +𝑆𝑝𝑡𝑠𝑝𝑡) (24)

s.t.
∑
𝑝∈𝑃𝑒𝑥𝑡

𝑈𝑝𝛾𝑡 +
∑
𝑝∈𝑃

∑
𝑙∈𝐿𝑝

𝑈𝑝𝑙𝜙𝑝𝑡𝑙 = 1 𝑡 ∈ 𝑇 (25)

𝜙𝑝𝑡𝑙 −𝑀𝑧𝑝𝑡𝑙 ≤ 0 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 , 𝑙 ∈𝐿𝑝 (26)

𝜙𝑝𝑡𝑙 ≤ 𝛾𝑡 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 , 𝑙 ∈𝐿𝑝 (27)

𝜙𝑝𝑡𝑙 −𝑀(𝑧𝑝𝑡𝑙 − 1) ≥ 𝛾𝑡 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 , 𝑙 ∈𝐿𝑝 (28)∑
𝑙∈𝐿𝑝

𝑧𝑝𝑡𝑙 = 1 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 (29)

𝑖𝑝,𝑡−1 + 𝑥𝑝𝑡 + 𝑠𝑝𝑡 −𝐷𝑡

∑
𝑙∈𝐿𝑝

𝑈𝑝𝑙𝜙𝑝𝑡𝑙 = 𝑖𝑝𝑡 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 (30)

𝑖𝑝,max{𝑡 | 𝑡∈𝑇 } ≥ 𝑖𝑝 𝑝 ∈ 𝑃 (31)∑
𝑝∈𝑃

𝑥𝑝𝑡 ≤ 𝐶𝑡 𝑡 ∈ 𝑇 (32)

𝑥𝑝𝑡 ≤ 𝑀𝑦𝑝𝑡 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 (33)

𝑥𝑝𝑡, 𝑖𝑝𝑡, 𝑠𝑝𝑡 ≥ 0 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 (34)

𝑦𝑝𝑡 ∈ {0,1} 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 (35)

𝛾𝑡 ≥ 0 𝑡 ∈ 𝑇 (36)

𝑧𝑝𝑡𝑙 ∈ {0,1} 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 , 𝑙 ∈𝐿𝑝 (37)

𝜙𝑝𝑡𝑙 ≥ 0 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 , 𝑙 ∈𝐿𝑝 (38)

Using the auxiliary variables 𝜙𝑝𝑡𝑙 , objective (24) represents the linearized version of the former objective (13); constraint (25) rep-

resents the linearized version of the former constraint (14); constraints (26) to (28) are a linear representation of the bilinear term 
𝜙𝑝𝑡𝑙 = 𝑧𝑝𝑡𝑙𝛾𝑡.

3.3. Pricing restrictions in practice

Since it is undesirable from a practical perspective to have price changes too frequently, we restrict their occurrences. To this end, 
8

we introduce the following decision variables indicating a change in the selected price level:
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Table 2

Setting of Δ𝑝𝑡 depending on 𝑧𝑝𝑡𝑙 and 𝑧𝑝,𝑡−1,𝑙 .
𝑧𝑝𝑡𝑙 𝑧𝑝,𝑡−1,𝑙 Δ𝑝𝑡𝑙

1 0 1

0 1 1

1 1 0

0 0 0

Δ𝑝𝑡𝑙 =

{
1, if 𝑧𝑝𝑡𝑙 ≠ 𝑧𝑝,𝑡−1,𝑙
0, else

𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 , 𝑡 > 1, 𝑙 ∈𝐿𝑝

For the different combinations of 𝑧𝑝𝑡𝑙 and 𝑧𝑝,𝑡−1,𝑙 , the setting of Δ𝑝𝑡 must be asserted according to Table 2.

Observe that each line can be viewed as an implication with the antecedent depending on 𝑧𝑝𝑡𝑙 , 𝑧𝑝,𝑡−1,𝑙 and the consequent depend-

ing on Δ𝑝𝑡𝑙 . With 𝑧 = 1 ⇔ 𝐳 and 𝑧 = 0 ⇔ ¬𝐳, we transform the implications to disjunctive normal form using the material conditional 
(𝐳⇒ 𝚫 ⇔ ¬𝐳 ∨𝚫) and De Morgan’s second rule (¬(𝐳 ∧𝚫) ⇔ ¬𝐳 ∨ ¬𝚫). This means the following for the first line of Table 2:

𝐳𝑝𝑡𝑙 ∧ ¬𝐳𝑝,𝑡−1,𝑙 ⇒ 𝚫𝑝𝑡𝑙 ⇔ ¬(𝐳𝑝𝑡𝑙 ∧ ¬𝐳𝑝,𝑡−1,𝑙) ∨𝚫𝑝𝑡𝑙
⇔ ¬𝐳𝑝𝑡𝑙 ∨ 𝐳𝑝,𝑡−1,𝑙 ∨𝚫𝑝𝑡𝑙 ⇔ 1 − 𝑧𝑝𝑡𝑙 + 𝑧𝑝,𝑡−1,𝑙 +Δ𝑝𝑡𝑙 ≥ 1
⇔ Δ𝑝𝑡𝑙 ≥ 𝑧𝑝𝑡𝑙 − 𝑧𝑝,𝑡−1,𝑙

In the same manner, it follows for the second, third, and fourth line of Table 2 that

Δ𝑝𝑡𝑙 ≥ −𝑧𝑝𝑡𝑙 + 𝑧𝑝,𝑡−1,𝑙 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 , 𝑡 > 1, 𝑙 ∈𝐿𝑝
Δ𝑝𝑡𝑙 ≤ 2 − 𝑧𝑝𝑡𝑙 − 𝑧𝑝,𝑡−1,𝑙 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 , 𝑡 > 1, 𝑙 ∈𝐿𝑝
Δ𝑝𝑡𝑙 ≤ 𝑧𝑝𝑡𝑙 + 𝑧𝑝,𝑡−1,𝑙 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 , 𝑡 > 1, 𝑙 ∈𝐿𝑝

Since mathematical programs are formulated in a conjunctive manner, all four constraints have to hold simultaneously. Finally, 
with 𝐼 denoting the index set for the disjoint intervals 𝑇𝑖 of time periods with 𝑖 = 1, 2, … , |𝐼| (for instance, each 𝑇𝑖 can be a set of 
periods covering a tactical horizon such as one to three months) where

𝑇 = 𝑇1 ∪ 𝑇2 ∪ … ∪ 𝑇|𝐼|
= {1,… , 𝑖1} ∪ {𝑖1 + 1,… , 𝑖2} ∪ … ∪ {𝑖|𝐼|−1 + 1,… , 𝑖|𝐼|},

we can impose for each product 𝑝 ∈ 𝑃 in each interval 𝑇𝑖 that at most 𝑛𝑚𝑎𝑥 price changes are allowed from the very beginning until 
the end of interval 𝑇𝑖 through the constraint∑

𝑡∈𝑇𝑖

∑
𝑙∈𝐿𝑝

Δ𝑝𝑡𝑙 ≤ 2(𝑛𝑚𝑎𝑥 − 𝑛
<𝑇𝑖
𝑝 ) 𝑝 ∈ 𝑃 , 𝑖 ∈ 𝐼 (39)

where 𝑛<𝑇𝑖𝑝 gives the number of changes already registered for product 𝑝 ∈ 𝑃 until the beginning of interval 𝑇𝑖 . Note that the factor 
on the right hand side of the constraint is 2 since a price change implies that one price level is deactivated while another one is 
activated.

Finally, it is a frequent practical requirement that a certain number 𝑛𝑓𝑖𝑥 of periods must elapse after a price level change until 
the next price level change is allowed to take place. With

=𝑛𝑓𝑖𝑥 =
{
{𝑡, 𝑡+ 1,… , 𝑡+ 𝑛𝑓𝑖𝑥 − 1} | 𝑡 ∈ 𝑇 , 𝑡+ 𝑛𝑓𝑖𝑥 − 1 ≤ |𝑇 |}

as the set of all intervals of exactly 𝑛𝑓𝑖𝑥 consecutive time periods, we can add the constraints∑
𝑡∈𝑇=𝑛𝑓𝑖𝑥

∑
𝑙∈𝐿𝑝

Δ𝑝𝑡𝑙 ≤ 2 𝑝 ∈ 𝑃 ,𝑇=𝑛𝑓𝑖𝑥 ∈ =𝑛𝑓𝑖𝑥 (40)

∑
𝑡∈𝑇=𝑛𝑓𝑖𝑥

𝑙𝑎𝑠𝑡𝑝≤𝑡≤𝑙𝑎𝑠𝑡𝑝+𝑛𝑓𝑖𝑥

∑
𝑙∈𝐿𝑝

Δ𝑝𝑡𝑙 = 0 𝑝 ∈ 𝑃 (41)

which imply that once a price change (activation or deactivation) occurs with respect to price level 𝑙 in time period 𝑡, no further 
price change (deactivation or activation) can occur with respect to 𝑙 in the 𝑛𝑓𝑖𝑥-period interval starting in time period 𝑡. Likewise, a 
change is prohibited until at least 𝑛𝑓𝑖𝑥 periods have elapsed since the last period when the price of product 𝑝 ∈ 𝑃 was changed.

We collect pricing restrictions in a restriction set . For instance, the discussed pricing restrictions can be stored as  ∶=
{𝑛𝑚𝑎𝑥, 𝑇1, 𝑇2, … , 𝑇|𝐼|} or as  ∶= {𝑛𝑓𝑖𝑥} holding all information required for constraints (39)-(41). The discussed restrictions are 
chosen exemplary, and the user is free to define ;  = ∅ indicates the setting without any pricing restrictions.

Different business environments are obtained from the chosen settings of 𝑛𝑚𝑎𝑥 and/or 𝑛𝑓𝑖𝑥 according to the company’s business 
model. For instance, for a B2C business where dynamic pricing is a standard approach, large values for 𝑛𝑚𝑎𝑥 and small values for 𝑛𝑓𝑖𝑥
are typical; conversely, for a B2B business where dynamic pricing is only beginning to be implemented, values for 𝑛𝑚𝑎𝑥 and/or 𝑛𝑓𝑖𝑥
9

have to be selected specifically to reflect the available degrees of freedom in price setting.
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3.4. Stochastic solution approach

We employ a stochastic solution approach based on a two-stage stochastic program to account for uncertainties in the overall 
demand values 𝐷𝑡 arising over all periods 𝑡 ∈ 𝑇 . This solution approach, which tackles the snapshot problem posed at the current 
time, will be embedded into a rolling horizon procedure in subsection 3.5. Thereby, it will be possible to adjust prices and lot sizes 
dynamically as prescribed by the user-selected control parameters of the rolling horizon procedure discussed in subsection 3.5. In 
order to provide pricing information on a rather binding basis (as typical for B2B businesses), the snapshot problem reflects the 
situation where we have to decide about the pricing scheme in advance (design stage) in order to communicate prices for the periods 
in 𝑇 prescribed by decision variables 𝑧𝑝𝑡𝑙 , 𝜙𝑝𝑡, 𝛾𝑡. Lot sizing actions, contrarily, are obtained from the scenario-dependent lot sizing 
decisions (recourse stage) prescribed by decision variables 𝑥𝜉

𝑝𝑡
, 𝑦𝜉
𝑝𝑡
, 𝑖𝜉
𝑝𝑡
, 𝑠𝜉
𝑝𝑡

for demand scenario 𝜉 ∈ Ξ. Hence, the lot sizing decisions 
allow for a scenario-dependent evaluation of the costs associated to the scenario-independent pricing decisions. In terminology of 
two-stage stochastic programming, first-stage decisions on pricing exhibit validity in the form of invariance for every scenario 𝜉 ∈ Ξ, 
whereas second-stage decisions on lot sizing allow for commencement of the production process as prescribed for any actually 
observed scenario 𝜉 ∈ Ξ once it will have been observed. This stochastic solution approach is then repeated for the purpose of 
replanning as part of the rolling horizon scheme discussed in subsection 3.5. We remark that in this rolling horizon scheme, there is 
no need to replan lot sizing decisions as long as the realized demand scenario 𝜉∗ fulfills 𝜉∗ ∈ Ξ since the solution to the integrated 
pricing and lot sizing problem implicitly encompasses action prescriptions on lot sizing for all 𝜉 ∈ Ξ, i.e., also for 𝜉∗ ∈ Ξ. Problem 
IPCLSP(𝑇 ) considered for period set 𝑇 under uncertainty with a set of demand scenarios Ξ is subsequently denoted by IPCLSP(𝑇 , Ξ).

IPCLSP(𝑇 ,Ξ) ∶
max Π(𝑇 ,Ξ) ∶=

∑
𝜉∈Ξ

𝑃𝑟𝜉
(∑
𝑝∈𝑃

∑
𝑡∈𝑇

∑
𝑙∈𝐿𝑝

𝑅𝑝𝑙𝑈𝑝𝑙𝜙𝑝𝑡𝑙𝐷
𝜉

𝑡

−
∑
𝑝∈𝑃

∑
𝑡∈𝑇

(𝐻𝑝𝑡𝑖
𝜉

𝑝𝑡
+𝐴𝑝𝑡𝑦

𝜉

𝑝𝑡
+ 𝑆𝑝𝑡𝑠

𝜉

𝑝𝑡
)
)

s.t.
∑
𝑝∈𝑃𝑒𝑥𝑡

𝑈𝑝𝛾𝑡 +
∑
𝑝∈𝑃

∑
𝑙∈𝐿𝑝

𝑈𝑝𝑙𝜙𝑝𝑡𝑙 =1 𝑡 ∈ 𝑇

𝜙𝑝𝑡𝑙 ≤𝑀𝑧𝑝𝑡𝑙 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 , 𝑙 ∈𝐿𝑝

𝜙𝑝𝑡𝑙 ≤𝛾𝑡 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 , 𝑙 ∈𝐿𝑝

𝜙𝑝𝑡𝑙 ≥𝛾𝑡 +𝑀(𝑧𝑝𝑡𝑙 − 1)𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 , 𝑙 ∈𝐿𝑝∑
𝑙∈𝐿𝑝

𝑧𝑝𝑡𝑙 =1 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇

𝑖
𝜉

𝑝,𝑡−1 + 𝑥
𝜉

𝑝𝑡
+ 𝑠𝜉

𝑝𝑡
−𝐷𝜉

𝑡

∑
𝑙∈𝐿𝑝

𝑈𝑝𝑙𝜙𝑝𝑡𝑙 =𝑖
𝜉

𝑝𝑡
𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 , 𝜉 ∈ Ξ

𝑖
𝜉

𝑝,max{𝑡 | 𝑡∈𝑇 } ≥𝑖𝜉𝑝 𝑝 ∈ 𝑃 , 𝜉 ∈ Ξ∑
𝑝∈𝑃

𝑥
𝜉

𝑝𝑡
≤𝐶𝑡 𝑡 ∈ 𝑇 , 𝜉 ∈ Ξ

𝑥
𝜉

𝑝𝑡
≤𝑀𝑦

𝜉

𝑝𝑡
𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 , 𝜉 ∈ Ξ

𝑥
𝜉

𝑝𝑡
, 𝑖
𝜉

𝑝𝑡
, 𝑠
𝜉

𝑝𝑡
≥0 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 , 𝜉 ∈ Ξ

𝑦
𝜉

𝑝𝑡
∈{0,1} 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 , 𝜉 ∈ Ξ

𝛾𝑡 ≥0 𝑡 ∈ 𝑇

𝑧𝑝𝑡𝑙 ∈{0,1} 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 , 𝑙 ∈𝐿𝑝

𝜙𝑝𝑡𝑙 ≥0 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 , 𝑙 ∈𝐿𝑝
To make IPCLSP(𝑇 , Ξ) computationally tractable, we employ Monte Carlo sampling as a standard approach used for two-stage 

stochastic programming [17]. Hence, we restrict the set of considered demand scenarios to a number of randomly drawn scenarios. To 
this end, we draw 𝑁 demand scenario realizations and store them in set Ξ𝑁 . IPCLSP(𝑇 , Ξ) is then solved with Ξ ∶= Ξ𝑁 where 𝑃𝑟(𝜉) ∶=
1
𝑁

for all 𝜉 ∈ Ξ𝑁 , i.e., we solve IPCLSP(𝑇 , Ξ𝑁 ) as a sample-based problem version of IPCLSP(𝑇 , Ξ) providing an approximation 
Π(𝑇 , Ξ𝑁 ) of Π(𝑇 , Ξ).

This yields prices 𝑟𝑝𝑡 ∶=
∑
𝑙∈𝐿𝑝 𝑅𝑝𝑙𝑧𝑝𝑡𝑙 for product 𝑝 ∈ 𝑃 in period 𝑡 ∈ 𝑇 which are implemented regardless of the realized demand 

scenario. Contrarily, lot sizing decisions depend on the scenario and cannot be implemented for all demand scenarios. Concerning 
the lot sizing task, from its integration into the stochastic model we recognize its role as a forward-oriented evaluation function of the 
pricing scheme in terms of costs which are incurred depending on the pricing scheme. Clearly, in reality, lot sizing is done according 
to a short lookahead time window for which there is certainty (or almost certainty) about the upcoming demands. In particular, it 
10

may be that this realized demand scenario 𝜉∗ has not been part of the sample-based determination of the pricing decisions through 
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Table 3

Decisions and controls occurring in integrated pricing and lot sizing systems.

pricing lot sizing

utilized model IPCLSP(𝑇 ,Ξ) CLSP(𝑇 , 𝜉∗)
decision character virtual physical

decisions (independent variables) price 𝑟𝑝𝑡 production quantity 𝑥𝑝𝑡
decisions (dependent variables) demand 𝑑𝑝𝑡 inventory level 𝑖𝑝𝑡, shortage 𝑠𝑝𝑡
replanning periods 𝑇 𝑃

𝑝𝑙𝑎𝑛
𝑇 𝐿𝑆
𝑝𝑙𝑎𝑛

planning horizon ℎ𝑃 ℎ𝐿𝑆

solving IPCLSP(𝑇 , Ξ𝑛) as a proxy for IPCLSP(𝑇 , Ξ), i.e., 𝜉∗ ∉ Ξ. Therefore, in the rolling horizon procedure discussed in subsection 3.5, 
the lot sizing problem will be solved for a specific demand scenario 𝜉∗ which is considered as most appropriate for determining the 
concrete production quantities. Therefore, we compute the demands in demand scenario 𝜉∗ which result from the market shares 
stored in 𝛿𝑝𝑡 ∶=

∑
𝑙∈𝐿𝑝 𝑈𝑝𝑙𝜙𝑝𝑡𝑙 as

𝑑
𝜉∗

𝑝𝑡
∶=𝐷𝜉∗

𝑡

∑
𝑙∈𝐿𝑝

𝑈𝑝𝑙𝜙𝑝𝑡𝑙,

and we transfer them to the lot sizing problem CLSP(𝑇 , 𝜉∗) in order to determine the concrete production quantities:

CLSP(𝑇 , 𝜉∗):

min 𝐶(𝑇 , 𝜉∗) ∶=
∑
𝑝∈𝑃

∑
𝑡∈𝑇

(𝐻𝑝𝑡𝑖𝑝𝑡 +𝐴𝑝𝑡𝑦𝑝𝑡 + 𝑆𝑝𝑡𝑠𝑝𝑡)

s.t. 𝑖𝑝,𝑡−1 + 𝑥𝑝𝑡 + 𝑠𝑝𝑡 − 𝑑
𝜉∗

𝑝𝑡
= 𝑖𝑝𝑡 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇

𝑖𝑝,max{𝑡 | 𝑡∈𝑇 } ≥ 𝑖𝑝 𝑝 ∈ 𝑃∑
𝑝∈𝑃

𝑥𝑝𝑡 ≤ 𝐶𝑡 𝑡 ∈ 𝑇

𝑥𝑝𝑡 ≤ 𝑀𝑦𝑝𝑡 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇

𝑥𝑝𝑡, 𝑖𝑝𝑡, 𝑠𝑝𝑡 ≥ 0 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇

𝑦𝑝𝑡 ∈ {0,1} 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇

3.5. Rolling horizon scheme

To allow model users to specify the validity duration of a pricing scheme and to react to demand realizations with production 
schedule adaptations, we embed the stochastic solution approach into a rolling horizon procedure providing the opportunity for reop-

timization. The advantage of the rolling horizon procedure lies in its ability to react to previously unanticipated changes concerning 
the demand process from a certain period onwards. With pricing and lot sizing decisions to be made repetitively, we must account 
for both types of decisions which, however, typically are evoked in frequencies differing from each other. Hence, to control a lot 
sizing application with integrated pricing, a rolling horizon framework addressing both decisions must yield the required amount of 
flexibility for both subproblems. To this end, we denote the sets of upcoming replanning periods by 𝑇 𝑃

𝑝𝑙𝑎𝑛
and 𝑇𝐿𝑆

𝑝𝑙𝑎𝑛
, indicating the 

periods at which the next replanning for pricing and lot sizing will be carried out, respectively. We note that between two successive 
planning steps of either pricing or lot sizing, the previously computed pricing or lot sizing plan is put into practice as planned without 
any recomputation other than the update of physical inventory levels. While pricing is carried out for a tactical horizon of ℎ𝑃 ∈ ℕ0
periods, lot sizing is carried out for an operational horizon of ℎ𝐿𝑆 ∈ℕ0 periods with ℎ𝐿𝑆 ≤ ℎ𝑃 . We further observe that the decisions 
are of a different nature: While pricing relates to the virtual quantities of price and demand, lot sizing refers to the physical quantities 
of produced units and inventory levels. As such, lot sizing decisions must account for the limited physical size of inventories and 
production capacities. For this reason, the consequences of uncertainty must be reviewed more frequently by adjusting lot sizing 
decisions on a finer temporal scale as compared to pricing decisions. Whilst this would already be achieved by updating inventory 
statuses once demands are realized and production quantities are implemented, the availability of lot sizing model CLSP(𝑇 , 𝜉∗) also 
suggests a lot sizing planning adaptation before the integrated pricing and lot sizing model IPCLSP(𝑇 , Ξ) is executed for the next 
time. Table 3 summarizes the most important decisions and controls which are obtained from the usage of models IPCLSP(𝑇 , Ξ) and 
CLSP(𝑇 , 𝜉∗) and utilized for controlling an integrated pricing and lot sizing application, respectively.

With these definitions, we are in a position to formulate the workflow of a rolling horizon scheme for the integrated pricing and 
lot sizing application in Algorithm 1. We remark that problem IPCLSP(𝑇 , Ξ) is solved approximately through problem IPCLSP(𝑇 , Ξ𝑁 )
as a proxy. As explained previously, in practice – due to the physical restriction of inventory and production capacities, the stochastic 
influence on actual demand realizations, and the undesirability of having price changes too often – lot sizing decisions typically must 
11

be adapted and replanned more frequently than pricing decisions, especially in a B2B context.
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Algorithm 1 rollingHorizonProcedure.

Require: overall planning horizon 𝑇 , length ℎ𝑃 of planning horizon for each pricing optimization, length ℎ𝐿𝑆 of planning horizon for each lot sizing optimization, set 
𝑇 𝑃
𝑝𝑙𝑎𝑛

of pricing reoptimization periods, set 𝑇 𝐿𝑆
𝑝𝑙𝑎𝑛

of lot sizing reoptimization periods, initial inventory levels 𝑖0 and shortage 𝑠̄0 , pricing restriction set , number 
𝑁 of demand scenario samples for uncertainty consideration

1: 𝑡 ∶= 1
2: while 𝑡 ≤ 𝑇 do

3: obtain 𝐷𝑡

4: if 𝑡 ∈ 𝑇 𝑃
𝑝𝑙𝑎𝑛

then

5: 𝑇 𝑃 ∶= {𝑡, 𝑡 + 1, … , 𝑡 + ℎ𝑃 − 1}
6: update demand scenario set Ξ, i.e., update 𝐷𝜉

𝑡′
for 𝑡′ ∈ 𝑇 𝑃 with 𝑡′ > 𝑡, 𝜉 ∈ Ξ

7: generate demand scenario samples Ξ𝑁 by sampling from Ξ
8: obtain 𝑟𝑡′ for 𝑡′ ∈ 𝑇 𝑃 by solving IPCLSP(𝑇 𝑃 , Ξ𝑁 )
9: end if

10: if 𝑡 ∈ 𝑇 𝐿𝑆
𝑝𝑙𝑎𝑛

then

11: 𝑇 𝐿𝑆 ∶= {𝑡, 𝑡 + 1, … , 𝑡 + ℎ𝐿𝑆 − 1}
12: fix demand scenario 𝜉∗ over 𝑇 𝐿𝑆 , e.g., according to most probable demand scenario

13: obtain 𝑥𝑡′ for 𝑡′ ∈ 𝑇 𝐿𝑆 by solving CLSP(𝑇 𝐿𝑆 , 𝜉∗)
14: end if

15: implement 𝑟𝑡 , 𝑥𝑡 , compute ̄𝑖𝑡 and 𝑠̄𝑡
16: 𝑡 ∶= 𝑡 + 1
17: end while

Ensure: implementation of overall pricing scheme and production schedule

This double horizon approach is illustrated in Fig. 2. It shows how demand scenarios are used in the rolling horizon procedure for 
the two repetitively occurring subproblems of integrated pricing and capacitated lot sizing (IPCLSP(𝑇 , Ξ), to be solved at times 𝑡𝑃 ) 
and capacitated lot sizing (CLSP(𝑇 , 𝜉∗), to be solved at times 𝑡𝐿𝑆 ). Whereas in the former, a set of demand scenarios Ξ is considered 
at time 𝑡𝑃 , the latter makes use of an anticipated demand scenario 𝜉∗ which is to be expected at time 𝑡𝐿𝑆 for the near future.

4. Computational experiments

We examine four computational research questions in order to assess the developed methodology’s suitability for practical pur-

poses:

• Influence of problem size on computational time

• Influence of pricing restrictions on number of price changes and profit

• Influence of demand uncertainty on profit

• Benchmarking of dynamic pricing with static pricing

Experiments are executed on a personal desktop computer with Intel Core 3.2 GHz processor and 16 GB RAM under Microsoft 
Windows 10 (64-bit). Algorithms are coded in Python 3.8; IP models are coded in Python using the docplex modeling library and 
solved via IBM ILOG CPLEX 20.1.0 solver.

Experiments with an overall planning horizon of one year (52 weeks, 𝑇 = 52) are based on an instance generator producing 
instances with a pricing time horizon of 52 weeks for each solve (ℎ𝑃 = 52) and a lot sizing time horizon of 26 weeks for each solve 
(ℎ𝐿𝑆 = 26). Pricing reoptimization is executed monthly (𝑇 𝑃

𝑝𝑙𝑎𝑛
= {1, 5, 9, 13, 17, 22, 26, 31, 35, 39, 44, 48}); lot sizing reoptimization is 

executed weekly (𝑇𝐿𝑆
𝑝𝑙𝑎𝑛

= {1, 2, 3, … , 52}). Thus, to ensure that every pricing reoptimization (also the last one in week 48) utilizes 
forecasted demands of 52 weeks, we draw base demand scenarios for 48 + 52 = 100 weeks. Subsequently, we discuss the random pa-

rameters of the computational experiments. Cost parameters and pricing model parameters are generated through random drawings 
in a similar fashion as explained by [53]. However, in contrast to existing literature, our data generation explicitly allows for mul-

tiple planning horizons to be covered in the rolling horizon procedure, time-dependency of cost parameters, and demand scenarios 
originating from a stochastic process. With #𝑃 𝑎𝑙𝑙 denoting the sum of the number of own and external products, the overall demand 
for all products is drawn from a discrete uniform distribution over {50 ⋅ #𝑃 𝑎𝑙𝑙, … , 250 ⋅ #𝑃 𝑎𝑙𝑙}; the same proportionality applies for 
the weekly overall production capacity for own products drawn from {50 ⋅ |𝑃 |, … , 250 ⋅ |𝑃 |}. Price levels originate from {1, 2, … , 15}
and price sensitivities are drawn uniformly from [−0.75, −0.25]. Holding cost and fixed cost parameters are drawn from the uniform 
distribution over [0.1, 0.5] and [25, 75], respectively. The shortage cost parameter is 10 yielding different trade-offs between all cost 
parameters depending on the drawings of the holding cost and fixed cost parameters. Since both planning time horizons (ℎ𝑃 = 52, 
ℎ𝐿𝑆 = 26) cover rather large portions of the overall planning horizon (𝑇 = 52), we do not restrict ending inventories in any of the 
model formulations, i.e., 𝑖𝑝 = 0 for 𝑝 ∈ 𝑃 . Demand scenarios are chosen with reference to the base demand scenarios, respectively, 
by randomly drawing in each period from [0.75, 1.25] in order to obtain the related fraction of the base demand scenario. In 20% 
of all periods, demand values in each scenario are further perturbed by randomly drawing up- and down-phases in which demand 
values are reduced or increased by 25%, respectively. Throughout all experiments, we assume three external products. Observe that 
12

the number of external products does not contribute to the problem complexity as all external product utilities are computed upfront.
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Fig. 2. Consideration of demand scenarios by IPCLSP(𝑇 ,Ξ) and CLSP(𝑇 , 𝜉∗).

After initial manual experimentation, we have decided – as a result of the incurred computational times – that the design of 
the systematic experimentation relies on variation of the following parameters which from now on we will refer to as controlled 
parameters:

• For the number of own products, we consider |𝑃 | ∈ {2, 3, 4}.

• For the number of price levels, we consider |𝐿| ∈ {3, 5, 10} in the case of |𝑃 | = 2 and – due to excessive runtimes – |𝐿| ∈ {3, 5}
in the case of |𝑃 | ∈ {3, 4}.

• For the number of samples used in the stochastic procedure, we consider 𝑁 ∈ {5, 10, 15, 20, 25} and an additional setting (sym-

bolically indicated by 𝑁 = 0) for the deterministic case exhibiting clairvoyance with respect to the realized demand scenario. 
The latter situation can be thought of as customers having to sign up for their demands in respective periods whilst not allowing 
for spontaneous buying.

• For the pricing restriction types, we consider 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 ∈ {𝑛𝑜𝑛𝑒, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑛𝑢𝑚𝑏𝑒𝑟} where 𝑛𝑜𝑛𝑒 refers to no pricing restrictions, 
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 refers to a minimum number of periods between price changes of a specific product, and 𝑛𝑢𝑚𝑏𝑒𝑟 refers to a maximum 
number of price changes for each product over the entire planning horizon. Specifically, we assume a minimum number of periods 
between consecutive price changes for the same product of 𝑛𝑓𝑖𝑥 = 12 and a maximum number of price changes per product of 
𝑛𝑚𝑎𝑥 = 3.

Subsequently, we refer to a given set of controlled parameters by a controlled parameter configuration (CPC). For each CPC, we 
obtain the entire parameterization including the random parameters by specifying a seed value for the random instance generator. 
For each CPC, this procedure is initiated with seed values {0, 1, … , 19}, i.e., we consider 20 different instances for each CPC. Overall, 
depending on |𝑃 |, |𝐿|, 𝑁, 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 and the seed values, we hence analyze 1 ⋅3 ⋅(5 +1) ⋅3 ⋅20 = 1080 for |𝑃 | = 2 and 1 ⋅2 ⋅(5 +1) ⋅3 ⋅20 =
13

720 for |𝑃 | ∈ {3, 4}, i.e., a total of 1080 + 720 + 720 = 2520 problem instances. Recalling that within each instance, we carry out 12 
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Fig. 3. Average runtime per instance over all seeds and restriction types over all instances with prescribed CPC.

pricing reoptimizations and 52 lot sizing reoptimizations, we recognize the computational burden of this experimentation design. 
As a result, for each pricing reoptimization we limit the maximum computational time to 120 seconds and employ an optimality 
gap of 0.01. Manual experimentation has shown that extending the maximum computational time or decreasing the optimality gap 
further yields no substantial additional benefit as a result of the overall methodology’s rolling horizon character and the randomness 
of demand values.

4.1. Influence of problem size on computational time

For all examined CPCs, Fig. 3 summarizes the computational effort for running the entire rolling horizon approach from 
Algorithm 1 in the form of the average computational time required over all restriction types and seed values. We first remark 
that the upper bound of approximately 1500 seconds results from delimiting the solve time for each instance of the pricing problem 
to 120 seconds. As seen in Fig. 3a, the computational effort becomes excessively high in case of ten potential price levels already for 
two products. Therefore, we restrict the further analysis to three and five price levels as illustrated in Fig. 3b and Fig. 3c, respectively. 
14

Over all examined numbers of products, we find that increasing the sample size 𝑁 involved in the uncertainty set Ξ𝑁 of model for-
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(c) 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟

Fig. 4. Distribution of number of price changes depending on pricing restriction type over all instances with prescribed CPC.

mulation IPCLSP(𝑇 , Ξ𝑁 ) leads to a moderate increase of computational times. Nonetheless, this can lead to a substantial consumption 
of computational resources as seen to the right of each subfigure. However, the number of considered own products contributes more 
significantly to the rise of computational times as found from comparing Fig. 3a to Fig. 3c relative to each other. In fact, for |𝑃 | = 4
and 𝑁 ≥ 10 this nearly always leads to utilizing the full 120 seconds granted for solving IPCLSP(𝑇 , Ξ𝑁 ) which is conducted for each 
month of the considered overall time horizon of one year.

Managerial insight: Computational requirements of an ordinary desktop computer are not capable of handling realistic settings 
of integrated pricing and lot sizing with five or more products in comparable settings. This result points towards the necessity of 
developing heuristics both for the specific setting of integrated pricing and lot sizing and for the general task of integrated pricing 
and production operations when applied to larger product programs.

4.2. Influence of pricing restrictions

We first analyze the influence of employing pricing restrictions on the difference in the number of price changes compared to the 
case where no restrictions are imposed upon price setting. Fig. 4 illustrates the effectiveness of the pricing restriction requirements 
imposed over the entire planning horizon of one year. Regardless of the restriction type, there are plenty of instances without any price 
changes, i.e., for these instances no price sensitivity is observed and the methodology serves for finding the optimal fixed selection 
of prices. Over all instances, concerning the reduction of price changes, we see that their average number drops from 4.1 per year in 
case of 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑛𝑜𝑛𝑒 (cf. Fig. 4a) to 1.5 for 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (cf. Fig. 4b) and to 1.6 for 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 (cf. Fig. 4c). 
15

Moreover, the maximum number of price changes drops significantly from 34 to 8 and 9, respectively. Likewise, both distributions on 
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Fig. 5. Boxplot for relative profit deterioration (in %) due to pricing restrictions over all instances with prescribed CPC.

the number of price changes associated with 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 ∈ {𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑛𝑢𝑚𝑏𝑒𝑟} are shifted to smaller values and appear in a compressed 
form. Hence, both 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 and 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 lead to comparable results.

As a further investigation, we scrutinize the effect of the pricing restrictions on the achievable profits. Surprisingly, on average the 
impact of the pricing restrictions turns out to be of minor magnitude. Fig. 5 reveals that average deterioration is below 2% regardless 
of the number of products and restriction type with the largest fraction of deterioration close to negligible. Hence, solving the model 
formulation IPCLSP(𝑇 , Ξ𝑁 ) even after incorporating the pricing restrictions prescribed by 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 ∈ {𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑛𝑢𝑚𝑏𝑒𝑟} leads only 
to a minor change in the achievable profit. Thus, there are possibilities resulting from the combinatorial nature of the problem setting 
which allow to shift to other solutions of comparable objective while adhering to the pricing restrictions.

Managerial insight: Pricing restrictions shall be employed only if it is known that those will have a positive effect upon customer 
perception of the company’s pricing behavior. We remark that on the instance level, however, both deterioration and improvement 
of substantial magnitude can be observed. This is due to the rolling horizon procedure and the non-clairvoyant nature of demand 
knowledge. Hence, pricing decisions carried out at an early stage of the planning horizon, may severely trim the pricing options 
in later periods due to pricing restrictions being delimited. Consequently, resulting from the inability to foresee future demands, it 
16

cannot be avoided that initial pricing decisions are regretted later on.
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Fig. 6. Boxplot for relative profit deterioration (in %) due to demand uncertainty in case of 𝑁 = 25 demand scenario samples compared to case of perfect information 
over all instances with prescribed CPC.

4.3. Influence of demand uncertainty

To analyze the effect of uncertainty, we compare the achievable profits from the setting with uncertainty to those from the setting 
where the demand information of the upcoming planning horizons (both concerning pricing and lot sizing) is known to the decision 
maker deterministically in a clairvoyant fashion ahead of each planning step. In other words, we assume that there exists one realized 
demand scenario for each problem instance, and we compute the value of perfect information (in the operations research community 
sometimes also referred to as value of clairvoyance or lookahead) with respect to weekly overall product demands. These demands 
remain uncertain to the decision maker in the non-clairvoyant setting, and the uncertainty is translated into the randomly drawn 
scenarios (𝑁 demand samples representing possible demand realizations over the planning horizon). Since computational results are 
carried out with sample sizes 𝑁 ∈ {5, 10, 15, 20, 25}, the case of 𝑁 = 25 demand scenario samples represents the most fine grained 
resolution of uncertain demand information. Therefore, we restrict the presentation to this case. Fig. 6 displays the deterioration 
that results from not knowing the upcoming demands precisely while having to rely on the distributional information obtained 
from sampling as reflected by the uncertainty set Ξ25 in model IPCLSP(𝑇 , Ξ25). Irrespective of the specific CPC, Fig. 6a to Fig. 6c

with average performance deterioration between 18.28% and 38.88% demonstrate that achievable profits are rather sensitive to the 
type of knowledge of demand information. This stands in stark contrast to the price restriction aspect investigated in the previous 
subsection 4.2.

Managerial insight: In terms of impact on achievable profits, strengthening the reliability of available demand information would 
represent a significant step towards eliciting the profitability potential which could then be realized through the developed integrated 
pricing and lot sizing methodology. Hence, integrating pricing and lot sizing yields the potential of playing a significant role in an 
effective enterprise management.

4.4. Benchmarking with static pricing

We compare the profits obtained from dynamic pricing with those obtained under static pricing. To obtain a worst-case analysis, 
results from our developed approach compete against those of the best possible static pricing scheme. Clearly, when no price changes 
are employed (cf. subsection 4.2), then there is no difference between dynamic and static pricing. Exemplary for a comparison between 
static and dynamic pricing in case of two own products in the deterministic case, Fig. 7 shows the improvements from dynamic pricing 
for problem instances with at least one price change. Each mark corresponds to an instance where a price change occurs and gives the 
relative improvement in profit due to this price change when compared to the best static pricing scheme. We observe a substantial 
increase in attainable profits once price changes are employed in an instance. In this setting, the overall average of relative profit 
improvement over all instances with at least one price change amounts to 4.1%; and depending on the number of price changes, 
the average improvement lies between 0.99% and 8.21%. A similar analysis can be applied to settings with a different number of 
products and/or demand scenarios. We conclude that dynamic pricing leads to substantial improvement when price-sensitivity can 
be attributed to the problem instance under consideration. We remark that the utilization of static pricing schemes may also serve as 
a construction heuristic for generating feasible pricing schemes, upon which related production schedules can be derived.

Managerial insight: Integrating pricing and lot sizing as well as allowing for dynamic pricing is particularly worthwhile when the 
17

problem instance data leads to an optimal pricing scheme with several price changes. Decision makers are encouraged to inspect 
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Fig. 7. Relative improvement in attained profits of dynamic pricing compared to static pricing in deterministic case for |𝑃 | = 2.

instance data beforehand for implicit evidence pointing to potential price adaptations throughout the planning horizon. Typical root 
causes can be attributed to the interplay between production capacities, seasonality, price sensitivities, and cost rates.

5. Conclusion and outlook

With the integrated pricing and capacitated lot sizing problem, this paper examines a fundamental setting at the interface between 
marketing activities and production operations. The devised methodology allows for the repetitive and adaptive determination of 
product prices to control the demand side in a business environment coined by uncertain future demands. Such environments require 
a flexible determination of production schedules in order to match product supply and demand. The driving factors of complexity, 
namely nonlinearity and uncertainty, are resolved methodologically through discretization and linearization in the former case and 
through sampling-based Monte Carlo simulation in the latter case. Time dynamics are tackled through the adaptive consideration of 
changes in demand forecasts as part of a rolling horizon procedure which accounts for pricing (as design decisions) and lot sizing (as 
recourse decisions) alike. Likewise, the outline incorporates practical pricing restrictions which have to be asserted in an environment 
where customer preference for price consistency must be acknowledged.

In terms of managerial insights, we show that integrating pricing and production planning yields an effective approach of proac-

tively managing demand via price setting and matching it with supply as required by the operations of a capacitated production 
system. At the same time, the developed rolling horizon procedure facilitates reactive decision making with respect to lot sizing 
activities, factoring in observed realizations of demand scenario paths. In particular, the exploitation of revenue and cost potentials 
becomes possible which would remain untapped in case of separate considerations of pricing and lot sizing, respectively. Likewise, 
pricing restrictions implement the idea of pricing consistency over time, thereby ensuring long-term customer loyalty.

For future research, we recommend a generalization to the setting of integrated pricing and capacitated resource planning with 
several resources to be managed simultaneously. Moreover, as concluded from the computational times for problem instances of 
even modest size, (meta-) heuristics need to be developed to cope with a larger number of products to be priced over time. Another 
extension of the devised methodology concerns the incorporation of several customer segments allowing for a further fine-grained 
optimization of prices on the one hand and customer-dedicated production on the other hand. This extension would be particularly 
fitting to exclusive goods industries with orders built in a custom shop environment. Finally, we believe that the sensitivity with 
respect to uncertainty in other model components deserves research attention in order to promote robustness in pricing schemes, 
e.g., with respect to different models of customer choice.
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