
Deep learning corrects artifacts in RASER MRI profiles

Moritz Becker , Filip Arvidsson , Jonas Bertilson , Elene Aslanikashvili , Jan G. Korvink ,  
Mazin Jouda , Sören Lehmkuhl *
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A B S T R A C T

A newly developed magnetic resonance imaging (MRI) approach is based on “Radiowave amplification by the 
stimulated emission of radiation” (RASER). RASER MRI potentially allows for higher resolution, is inherently 
background-free, and does not require radio-frequency excitation. However, RASER MRI can be “nearly unus-
able” as heavy distortions from nonlinear effects can occur. In this work, we show that deep learning (DL) re-
duces such artifacts in RASER images. We trained a two-step DL pipeline on purely synthetic data, which was 
generated based on a previously published, theoretical model for RASER MRI. A convolutional neural network 
was trained on 630′000 1D RASER projections, and a U-net on 2D random images. The DL pipeline generalizes 
well when applied from synthetic to experimental RASER MRI data.

1. Introduction

Magnetic resonance imaging (MRI) is a key technology that allows 
for destruction-free studies of living and inanimate samples. MRI is 
embedded within the modern healthcare system, and enables the diag-
nosis of diverse diseases. Despite its broad applicability, there remains 
an ongoing quest for the development of personalized medicine, imag-
ing function, in addition to structure. Over the last decade, clinical trials 
with molecular contrast agents have demonstrated their applicability to 
many medical questions. The most prominent molecular contrast agent 
is 13C-labeled pyruvate, which can be used to track the metabolism in 
various types of cancer [1–3]. To achieve the required sensitivity needed 
for imaging, these agents are hyperpolarized with different techniques 
such as dynamic nuclear polarization (DNP) [4,5], spin exchange optical 
pumping (SEOP) [6,7], and parahydrogen-induced polarization (PHIP) 
[8,9]. Despite the spin polarizations (> 10%) that are achieved, even 
more sensitivity is desirable due to the low concentration of relevant 
metabolites. This motivates the search for novel, complementary 
detection schemes that increase sensitivity even more.

In 2022, it was demonstrated that the RASER concept could be 
extended to MRI, enabling the use of this new detection scheme. [10] 
(RASER = Radiowave amplification by the stimulated emission of ra-
diation). The RASER, mimicking the LASER, uses stimulated radio-
frequency emission, instead of an external perturbation source to excite 
quantum particles. To obtain the RASER effect, a population inversion (i. 

e. negative polarization) is required. Fortunately, the hyperpolarization 
techniques, already used for molecular contrast agents, have all been 
shown recently to generate high polarization levels and fuel RASERs on 
different nuclei, including 1H [11–13], 3He [14], 13C [15], 17O [16], 7Li 
and 31P [17], or 27AL [18]. We generated a large negative polarization 
difference with the parahydrogen-based SABRE approach [19] (SABRE 
= Signal Amplification By Reversible Exchange; Fig. 1a, left). The 
detection scheme for the RASER approach in MRI is quite straightfor-
ward. After the nuclear spins are spontaneously self-excited, the radio-
frequency response is encoded using magnetic field gradients during 
acquisition, and processed into a spectrum or an image by known MR 
techniques, or projection reconstruction analogues to computed to-
mography (CT). RASER signals are inherently background-free [20], do 
not require external RF excitation [21] and hence can lead to highly- 
resolved spectra [21,22], or images [10] that are resolved at a higher 
level than previously thought possible. However, the advantages come 
at a cost. The nonlinear interactions in a RASER-active system introduce 
new types of artifacts [23–25].

An example of such artifacts is shown in Fig. 1a (top), for a standard 
NMR tube with 4.1 mm inner diameter containing the analyte. It is still 
an open question whether it is possible to remove these artifacts. 
Considering they arise from highly non-linear effects, an analytical so-
lution may not be tangible. Therefore, we chose a data-driven approach 
to see whether it is possible to remove these artifacts. Throughout this 
work, we demonstrate that it is possible to at least reduce the artifacts by 
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applying deep learning (DL), where the neural network is trained purely 
on simulation-based data. Many studies show how DL applied to CT or 
MRI can improve image quality by reducing noise or removing artifacts 
[26–29], e.g., caused by hardware imperfections. However, to the best 
of our knowledge, no suitable other approach exists for correcting 
RASER MRI images. DL models, as a subgroup of artificial intelligence 
(AI), have demonstrated great success over various domains by end-to- 
end learning, i.e., an algorithm learns, given only the input and the 
target, to automatically detect correlations. One could argue that DL 
confirms the likelihood that the target lies within the reachable space of 
the input. DL models are implemented as stacked layers of artificial 
neurons, where a model learns by updating its neuronal weights through 
backpropagation and gradient descent, to minimize a given loss function 
on the training set. A more detailed description of DL is given in LeCun 
et al. [30]. For our DL approach, we considered that the simplest 
approach would be to “correct” the individual projections, rather than 
correcting the image as a whole. This reduced our problem to a single 
spatial dimension, commensurate with a Radon transfer, and saved 
computational power. The 2D image could then be obtained by the 
Radon transform of an individual projection, and the image as a whole 
could be cleaned up in a consecutive AI-driven step.

2. Generating a dataset, suitable to train the neural net

Deep learning typically requires large amounts of (labeled) training 
data. However, RASER MRI is a very new technique, so that few prior 
images exist. This challenge is further complicated by the fact that 
hyperpolarized MRI is not yet very well automated. Thus, measuring a 
dataset with tens of thousands of images in a short amount of time is 
simply impossible. As an alternative, we used the RASER equations 
[10,31] to simulate an entire set of training data for our neural network. 
A common issue of DL models trained in simulation is the so-called re-
ality gap, which usually prevents any model from successfully general-
izing to the real world if trained in another domain. To ensure that our 

dataset can be applied effectively across different RASER MRI environ-
ments, settings, and imaging subjects, we used domain randomization 
[32]. This approach involves creating data with arbitrary variations 
within an experimentally realizable parameter space. Specifically, by 
exposing our model to images with random noise, artifacts, and vari-
ability in image quality, we make it more robust and capable of gener-
alizing to real-world data. Suppose our model is trained with images 
from a vast amount of different domains. Thus, to our model, reality 
would appear as another arbitrary domain. Following this idea, we 
generated a large set of random images as a basis for the RASER signal 
simulations (see Fig. 2). Details of the random image generator are given 
in the supplementary section. For each batch of images, we simulated 
the RASER signals that would be yielded from N different image pro-
jections. When Fourier transformed, these signals gave us the distorted 
RASER projections, which constituted a dataset together with their 
“labeled” references. For our training dataset, we opted for N = 30 
projections (angles) with a limit of 64 pixels along each projection di-
rection. This decision was primarily motivated by the proof-of-concept 
style of our study, and the computational complexity when scaling to 
more pixels (see SI). Within this selected parameter space, however, we 
chose vast augmentation to artificially inflate the amount of data and 
ensure model generalization.

The RASER simulation is governed by a set of parameters (see Fig. 2). 
The most important experimental parameters can be summarized by 
defining a parameter ε as a measure of how far the system is operated 
above the RASER threshold 

ε = d0/dth (1) 

with the RASER threshold 

dth = 4⋅VS
/(

μ0⋅ℏ⋅Q⋅γ2⋅T*
2
)
, (2) 

where ℏ is the reduced Planck constant, and μ0 is the vacuum perme-
ability. The number of spins that are population inverted at the begin-

Fig. 1. Deep learning corrects artifacts in RASER MRI profiles. a) Detection scheme of a RASER image: First, a population inversion is generated using SABRE 
hyperpolarization of pyrazine at 6.5 mT in a 5 mm NMR tube. The tube is then transferred into a 1.5 T benchtop NMR magnet, where one projection is recorded at a 
gradient of 0.26G/m. This hyperpolarization and detection scheme is repeated for each angle and the resulting projections are collected in a sinogram. A distorted 
image is obtained after Fourier and Radon transform. The individual projections of the sinogram can be corrected using artificial intelligence (AI). Further, AI can 
help to enhance the full 2D image (field-of-view (FOV) = 7.4 mm × 7.4 mm with 67 × 67 pixels). b) Detection scheme of an MRI reference image: A spin echo image 
of a 10/90 % H2O/D2O mixture is measured in a 5 mm NMR tube (inner diameter = 4.1 mm, FOV = 7.4 mm × 7.4 mm with 128 × 128 pixels, gradient = 79 G/m). 
The obtained image can be enhanced by traditional or DL-based post-processing approaches.
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ning of the experiments, d0, is a measure of the total population inver-
sion (TPI). It is therefore determined by the spin density and its negative 
polarization. For our test molecule pyrazine, with four magnetically 
equivalent protons, this equals four times the negative molar polariza-
tion, a metric introduced in the context of metabolic imaging with 
fumarate [33]. By varying ε through our simulations, we not only 
accounted for changes in concentrations, and the polarization difference 
between experiments, but also for other effects such as polarization 
losses before the onset of the experiment, e.g., due to relaxation in a less 
efficient resonator (characterized by Q), or a less homogeneous mag-
netic field B0 (characterized by T*

2). Additionally, the nonlinear effect 
strongly depended on how far the system was above the RASER 
threshold [10,23,25].

For our augmentation, we chose ε = 3⋅1016⋅N (1, σ) with different 
noise variances σ for both different signals of projections within one 
image and among images. In addition, we chose to assign the starting 
signal amplitude A and phase φ to a random value within the scope of 
typical experimental noise, while φ experienced uniform and A normal 
noise, respectively. Finally, we also considered variations in the polar-
ization pumping rate Γ. Polarization pumping can for example happen 
through polarized molecules entering the sensitive volume of the NMR 
detection (e.g. by diffusion). In low-field experiments, additional SABRE 
pumping still occurs after the bubbling or shaking of the sample has been 
halted. This can be either through dissolved parahydrogen or by addi-
tional parahydrogen dissolving when a capillary is still in the solution. 
We included simulations with a decaying pumping rate Γ representing a 
case similar to the parahydrogen-pumping needles as in Lehmkuhl et al. 
[10]. The pumping terms are added in two random positions between 
positions 24 and 42 of each projection, avoiding pumping close to the 
boundaries, which can cause ripple effects in the signal.

Each individual image, together with its 30 projections, simulation 
parameters, and distorted spectra, were stored as one sample of the 
simulated dataset (see Fig. 2). Formally, we created a static dataset D =
{
(x,y)i

}|D |

i=1, where x is the input, and T i =
{(

kj, pj

)

i

}N

j=1 
are subsets 

for every x with N projections/angles. In detail, let x ∈ ℝ44×44 be a 
random generated image, and p1…pj ∈ ℝ1×67 be projections thereof, 
with j being the number of projections/angles. Each projection under-
went a RASER simulation with different parameters (TPI, pumping, …), 

yielding a RASER signal rj = Rα

(
pj

)
∈ ℝ1×4096. The distorted spectra 

kj ∈ ℝ1×200 were obtained by Fourier transform (FFT) of rj. By Radon 
transform (RT) of the absolute of spectra kj, we obtained a RASER image 
z = RT(k1,…, kN) with artifacts.

In total, we simulated 10.000 images without pumping, and 10.000 
images with pumping, as well as 1.000 images with high fluctuations in 
the polarization level between the projections of one experiment. In 
total, this gave 21.000 images with over 630 k pairs of distorted and 
target spectra, available for download from Becker et al. [34]. We also 
generated 100 additional images as a hold-out test set for performance 

evaluation.

3. Deep learning training pipeline based on a RASER simulation

After generating the simulated data, we trained our DL models on 
these to correct for RASER MRI artifacts. Our AI-driven approach for 
correcting RASER MRI images included two different AI models applied 
consecutively (see Fig. 3): The first model used a convolutional neural 
network (CNN) to correct the one-dimensional projections that made up 
the sinogram, one at a time. This model mainly aimed at correcting the 
nonlinear artifacts generated by the interaction between the spins dur-
ing the RASER. A Radon transform of the corrected sinogram yielded an 
AI-corrected image. This image could be further optimized using an 
additional model. The second model was based on a U-Net architecture 
[35] and took the whole image into account, not only individual pro-
jections. It also helped to denoise the image and increase contrast, such 
that the predicted image matched the target image before the RASER 
simulation.

In detail, both phases were trained with our simulated dataset D =

{xi}
|D |

i=1, the first model on 1D distorted projections, and the second on 
2D RASER images.

Formally, the first phase used a 1D model FA
θA

(
kj
)
, where FA is a CNN 

with parameters θA, that is supposed to correct each distorted spectra kj 

to its original projection counterpart ̂pj = FA
θA

(
kj
)
. Ideally, ŷ = RT(p̂1,… 

, p̂N) of all corrected projections should match the random image x, and 
be of better quality/resolution than the RASER image z. The CNN model 
is trained in a supervised manner using subset T to minimize the mean 
squared error (MSE) loss L 1 between the predictions p̂ and p.

The second correction phase incorporated an additional model x̂ =

FB
θB
(ŷ), where FB was an encoder-decoder architecture based on U-Net 

[35] with parameters θB, to denoise the 1D-corrected image ŷ to x = x̂. 
The U-Net model was trained to minimize the mean absolute error 
(MAE) loss L 2 between x and x̂.

Details of the DL training and the neural network architectures are 
given in the supplementary.

With these two DL models trained on our simulated RASER image 
dataset we evaluated the overall performance of our approach, as pre-
sented next.

4. Removing artifacts in RASER images with AI

To assess the overall performance, we first tested our approach on a 
hold-out test set from our random image generator. In a second step, we 
tested our approach on an out-of-distribution image. Finally, we tested 
with experimental data. For the prior, we chose the modified Shepp- 
Logan phantom, a commonly used CT phantom (see Fig. 4 A-D) and 
for the latter we recorded a RASER image using SABRE hyperpolar-
ization [19] in a 5 mm NMR tube (Fig. 4 E-H).

First, we evaluated our AI pipeline on our hold-out test set. In detail, 
we report the mean squared error (MSE) and structural similarity index 

Fig. 2. Generating a RASER MRI training set from simulation data. A batch of images is obtained using a random image generator (details see SI). 30 projections of 
each image, taken along different angles, were fed into the simulation along with experimental parameters, which were varied widely (details see text) to ensure 
augmentation. The simulated RASER signals for each projection exhibited nonlinear effects, which depended on the different input parameters of the simulation. A 
Fourier transform of the signals gave the distorted projections, which could be compared to the targets, resulting in a labeled dataset.
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measure (SSIM) [36], a quality measure based on human perception, to 
assess the qualitative performance of our networks for artifact removal 
and/or RASER MRI image reconstruction. For MSE, lower values 
(∈ ℝ>0) are preferred, and for SSIM, higher values (∈ [0, 1]) are 
desirable.

On the hold-out test set with 100 randomly generated images, the 
model achieved 0.002 ± 0.002 MSE and 0.906 ± 0.065 SSIM, on 
average.

For out-of-distribution testing, 30 projections of the simulated 
Shepp-Logan phantom (D) were taken, which were subject to our RASER 
simulation. The reassembled image (A) did not show any recognizable 
features and had clear artifacts. After correcting the 1D projections with 
our 1D CNN model, and Radon transform of the predicted sinogram, the 
main features of the phantom were visible (B). Contrast and quality were 
further enhanced after predictions with our U-Net (C). The model’s 
predictions were quite close to the target (D) and allowed for the in-
spection of important structures. Quantitatively speaking, the model 
achieved an MSE of 0.056, and SSIM of 0.275, after AI-driven correction 
of the 1D signals (B), and an MSE of 0.026, and SSIM of 0.599, after the 
full correction pipeline, depicted in (C). Note that even with perfect 
prediction performance of our U-Net model, (C) cannot reach full 
reconstruction quality of (D) due to losses during filtered back projec-
tion from a sinogram with only 30 projections to the image.

The models’ generalization is demonstrated with an experimental 

RASER image using a standard 5 mm glass tube on a 1.5 T benchtop 
NMR spectrometer(Fig. 4 E-H). The experiments were conducted such 
that they match the simulation’s dimensionalities. The RASER image (E) 
was measured using SABRE hyperpolarized pyrazine with a molar po-
larization of − 1.2 mmol L− 1 at a gradient of 26 μTm− 1. (more details are 
provided in the SI). Our SABRE polarization was reproducible to ±5% 
between each projection, falling below a polarization fluctuation of up 
to ±20% during the training of our neural network. Due to the low 
gradient and high molar polarization, the RASER is higher above the 
threshold than in the previous work. This results in stronger nonlinear 
artifacts to provide the AI with a reasonable challenge. As a reference, a 
traditional, (hyperpolarization-free) image is recorded using a spin-echo 
sequence (H) and at a much higher gradient of 7.9 mTm− 1. The RASER 
image shows severe artifacts, but after AI correction of the image pro-
jections, the real geometric dimensions of the glass tube are clearly 
visible (inner diameter of 4.1 mm in (F)). The image quality could be 
further improved by 2D image enhancement using AI (G). Nonetheless, 
the RASER image shows an oval-like shape with approximately 4.1 × 4.5 
mm (MRI reference diameter 4.1 mm). This dougnut-like appearance of 
the image may be caused by the inhomogeneity of the B1 field, which is 
stronger at the boundaries of the sample. Note that for these experi-
ments, a reference image without artifacts was not available due to the 
novelty of RASER MRI, and thus, we could not calculate qualitative 
metrics. This is expected to change in the future.

Fig. 3. Two-Stage Deep Learning (DL) pipeline. Random images and corresponding projections from a simulated dataset were fed to our DL models. A convolutional 
neural network corrected one-dimensional distorted spectra, which were reconstructed with the Radon transform to an image. This image was further enhanced by a 
U-Net model.

Fig. 4. AI-correction of the Shepp-Logan phantom in simulation (A-D), and an experimental RASER image (E-H). The distorted RASER images (A,E) were corrected in 
a first step with the 1D CNN model (B,F). A second step with a 2D U-Net enhanced image quality further (C,G). The best achievable reference for the simulated Shepp- 
Logan phantom, reconstructed with Radon transform from only 30 projections, is shown in (D), and reference spin echo image in (H). Experimental images were 
obtained at 1.5 T with a 60 mmol L− 1 solution of SABRE-hyperpolarized pyrazine in deuterated methanol, and the FOV for both images is 7.4 mm × 7.4 mm with 128 
× 128 pixels for MRI, and 67 × 67 pixels for RASER, respectively.
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5. Discussion & outlook

In this work, we demonstrated that it is possible to reduce artifacts 
from RASER images, despite strong nonlinear perturbations. Our two- 
step AI model could correct otherwise unrecognizable images. Due to 
the limited availability of measured RASER images, the models were 
solely trained on synthetic data.

The simulations were based on a theoretical model of RASER MRI 
[10], which accounts well enough for the nonlinear effects arising in a 
RASER system. This includes the effects of strong radiation damping and 
coupling between the different RASER active frequencies. Distant 
dipolar fields, which typically plague such nonlinear systems 
[11,37,38], only played a minor role in previous parahydrogen RASER 
experiments [10,21,25]. The simulations themselves were limited to a 
maximum number of M = 67 modes to reduce the computational (and 
with it, environmental) footprint, as the required simulation time 
roughly scales cubically with the number of modes M (see supplemen-
tary Fig. D.6). This came at a cost because current AI cannot yet 
extrapolate to predict larger images correctly, due to the inherent 
properties of nonlinear interactions (they scale nonlinearly with 
distance).

Despite the current limitations, cleaning up RASER images using AI is 
not only the first, but also a very promising technique. The corrected 
images are nearly independent of the nonlinear effects if there is enough 
signal.

Code availability

The code is available via GitHub at github.com/mobecks/raser-mri 
-ai. The dataset is publicly available at Becker et al. [34].
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Appendix A. Random image generator details

Random images for the simulation of RASER signals combined basic shapes and image transformations. We arbitrarily selected 2 to 20 shapes with 
a random opacity ∈ [0, 1] from circle (80 %) or polygon shapes with 4–8 vertices. Additionally, Gaussian blur was applied with a 50 % probability, and 
noise was added with a 30 % probability. Each image was then masked with a circle (56 %), square (24 %), star (5 %), scribble (5 %), KIT logo (5 %), or 
liu logo (5 %), each scaled randomly between 50 and 100 % of the image’s width and with the center location shifted to within 1/4 of the image size, 
also rotated and blurred randomly. Finally, a line with random width, random rotation, and 30 % Gaussian blur was added to 80 % of the images.

Appendix B. DL details

B.1. Normalization

All image projections were zero-padded by double the number of points on both sides of the time domain to increase the resolution for the 
subsequent Fourier transform. Then, the absolute value of the spectrum was cut to a region of interest (ROI) of size 200 centered at the maximum 
value, then normalized to [0, 1] w.r.t. the TPI value. The regression targets, i.e., the target projections, were normalized to [0,1].

B.2. Architectures

The neural network used for step 1 was a vanilla convolutional neural network with 3 convolutional (each consisting of convolution, ReLU, 
dropout, pooling) blocks with kernel size of 8, 64 filters, pooling 2, followed by 5 fully connected layers (each with FC, activation, dropout) with 1024 
hidden neurons. The final activation was an exponential linear unit (ELU), and all dropout rates were 0.2. Step 2 was based on a U-net architecture 
with reduced feature size, from github.com/aladdinpersson/Machine-Learning-Collection. Our final models were carefully selected from a large 
cohort of candidates, all trained with limited neural architecture search (NAS) and automated hyperparameter optimization (HPO) using raytune [39]. 
We tested FC and CNN with different hyperparameters for 1D, autoencoders and UNet with varying input-output combinations, including sinogram- 
image (inspired by Zhang et al. [40]), image-image, and sino-sino for 2D. Further details are also given in Arvidsson and Bertilson [41]. 

M. Becker et al.                                                                                                                                                                                                                                 Magnetic Resonance Imaging 115 (2025) 110247 

5 

http://github.com/mobecks/raser-mri-ai
http://github.com/mobecks/raser-mri-ai
http://github.com/aladdinpersson/Machine-Learning-Collection


Fig. B.5. Neural network architectures.

B.3. Training

We trained our models using the Pytorch framework [42]. The CNN model was trained for 500 epochs, and a batch size of 300 to minimize the MSE 
loss. The U-Net model was trained for 20 epochs with a batch size of 5 to minimize MAE. Both models used the Adam optimizer [43] with a learning 
rate of 4.145 × 10− 5 and weight decay of 1.012 × 10− 6.

B.4. Hardware requirements

We generated our simulated dataset and performed DL training with an AMD Ryzen 95,950× equipped with 64GB RAM and a graphics processing 
unit NVIDIA GeForce RTX 3080Ti. The datasets roughly required 99.6GB of disc space. The trained models required approximately 28 MB and 2 MB of 
disc space for CNN and U-Net, respectively. The simulation time of one image with 67 modes and 30 angles was roughly half a minute (24 s to 43 s) on 
a Ryzen 95,950× workstation with 64GB of RAM with MATLAB R2023a, giving a total simulation time of more than seven days for our entire dataset.

Appendix C. Experimental setup for experimental measurements

C.1. Synthesis of Ir-IMes catalyst

In a purged Schlenk flask, 1,3-bis(2,4,6-trimetylphenyl)-imidazol-1-ium chloride (341 mg, 1 mmol, 1.00 eq.) and C16H24Cl2Ir2 (403 mg, 0.6 mmol, 
0.6 eq.) were dissolved in dry THF (10 mL) under argon atmosphere. Potassium tert-butoxide (134 mg, 1.2 mmol, 1.2 eq.) was dissolved in dry THF (4 
mL), and dropwise added to the reaction flask under vigorous stirring. The mixture was stirred for 30 min, and then methylene chloride (20 mL) was 
added. The organic phase was washed with distilled water (2× 19mL), dried over Na2SO4, and concentrated under reduced pressure. The resulting 
residue was purified by flash column chromatography on silica gel using methylene chloride to provide IrClC29H36N2 (0.451 mg, 70.3 %) as a yellow 
solid.

C.2. SABRE sample preparation

For our SABRE sample, individual stock solutions of the Ir-IMes catalyst and pyrazine were prepared, 6 mmol L− 1, and 120 mmol, respectively. All 
solutions were made with deuterated methanol under inert gas conditions. The deuterated methanol was degassed by three freeze-pump-thaw cycles. 
350 μL of each stock solution was transferred into a standard 5 mm NMR tube to result in a 700 μL sample with 3 mmol catalyst and 60 mmol pyrazine 
concentration.
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C.3. Parahydrogen generation

The parahydrogen gas of 98 % fraction used in the SABRE experiments was obtained using a commercial helium compressor at 23 K. The catalyst 
used in the generator was Iron (III) oxide hydroxide.

C.4. Parahydrogen bubbling experiments

To ensure maximum polarization build-up, parahydrogen gas was bubbled with a thin needle through the sample for 20 s, while being placed in a 
6.5 mT magnetic field. This generated a polarization of about − 2.0 % on pyrazine (molar polarization of − 1.2 mmol L− 1). Consecutively, the needle 
was removed from the tube, and the tube inserted into the spectrometer for detection within two seconds. This manual process is still unreasonable for 
in-vivo measurements, but can already be automated [44].

C.5. NMR spectroscopy (detection and processing)

After generating the required population inversion with SABRE, the RASER signal is detected in a 60 MHz benchtop spectrometer in the presence of 
a frequency encoding gradient of 26 μTm− 1. A 1D projection is obtained after a Fourier Transform of the signal. By switching the gradient direction 
between different RASER acquisitions, different projections can be acquired and collected in a sinogram, which can be translated into a 2D image by a 
Radon transform analogue to computed tomography (CT). 1H NMR spectra were recorded on the Magritek Spinsolve 60 MHz benchtop NMR spec-
trometer. Without an excitation RF pulse, the receiver signal with 32,768 points was recorded with a dwell time of 500 μs, and a bandwidth of 2 kHz. 
The NMR spectra were recorded at room temperature in deuterated methanol from Sigma Aldrich.

C.6. MR reference image

The MR reference image in Fig. 4 (H) was recorded using a 10/90 % H2O/D2O mixture (molar polarization of 26 μmol L− 1). The shim coils 
generated a gradient of up to 7.9 mTm− 1. The image was acquired within 54.2 s without averaging, by only filling 50 % of k-space and using the 
following parameters: 7.4 mm × 7.4 mm field-of-view (FOV), 400 μs dwell time, 60 ms echo time, 500 ms repetition time, 4 dummy scans, 2.5 kHz 
bandwidth, 12.3 μs pulse length, 128 points, and a tip angle of 45◦.

Appendix D. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.mri.2024.110247.
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