KIT | KIT-Bibliothek | Impressum | Datenschutz

Modeling the ratio of correlated biomarkers using copula regression

Berger, Moritz; Klein, Nadja ORCID iD icon 1; Wagner, Michael; Schmid, Matthias
1 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Abstract:

Modeling the ratio of two dependent components as a function of covariates is a frequently pursued objective in observational research. Despite the high relevance of this topic in medical studies, where biomarker ratios are often used as surrogate endpoints for specific diseases, existing models are commonly based on oversimplified assumptions, assuming e.g. independence or strictly positive associations between the components. In this paper, we overcome such limitations and propose a regression model where the marginal distributions of the two components are linked by a copula. A key feature of our model is that it allows for both positive and negative associations between the components, with one of the model parameters being directly interpretable in terms of Kendall’s rank correlation coefficient. We study our method theoretically, evaluate finite sample properties in a simulation study and demonstrate its efficacy in an application to diagnosis of Alzheimer’s disease via ratios of amyloid-beta and total tau protein biomarkers.


Verlagsausgabe §
DOI: 10.5445/IR/1000179001
Veröffentlicht am 12.02.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Biologische Grenzflächen (IBG)
Karlsruher Institut für Technologie (KIT)
Scientific Computing Center (SCC)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 05.2025
Sprache Englisch
Identifikator ISSN: 0962-2802, 1477-0334
KITopen-ID: 1000179001
HGF-Programm 46.21.02 (POF IV, LK 01) Cross-Domain ATMLs and Research Groups
Erschienen in Statistical Methods in Medical Research
Verlag SAGE Publications
Band 34
Heft 5
Seiten 968–985
Projektinformation ENP, 1. Förderabschnitt (DFG, DFG EIN, KL 3037/1-1)
Vorab online veröffentlicht am 11.02.2025
Nachgewiesen in Dimensions
OpenAlex
Web of Science
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page