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Abstract—Plagiarism is a significant challenge in computer
science education. Thus, tool-based approaches are widely used
to combat software plagiarism. However, especially due to the
recent rise of automated obfuscation via algorithmic or AI-
based techniques, these tools face difficulties due to increasingly
sophisticated obfuscation techniques. To address this challenge, we
present a novel defense mechanism against automated obfuscation
attacks. This mechanism iteratively merges matching program
subsequences to counteract the effects of the obfuscation. Our
approach is language-independent, attack-agnostic, and integrates
well into state-of-the-art software plagiarism detectors. The
evaluation based on five real-world datasets indicates that our
approach not only provides broader resilience against algorithmic
and AI-based obfuscation attacks than the state-of-the-art but
also improves the detection of fully AI-generated programs.

Index Terms—Software Plagiarism Detection, Source Code
Plagiarism, Plagiarism Obfuscation, Obfuscation Attacks

I. INTRODUCTION

Plagiarism poses a continuous challenge within computer
science education [1–4]. Plagiarism in coding assignments
is particularly pronounced in beginner-level and mandatory
courses, such as introductory programming courses [5]. Due
to the substantial size of these courses, solely relying on
manual inspection is infeasible [6–8]. Moreover, plagiarizers
use techniques like renaming, reordering, or inserting [9–11]
to obfuscate their plagiarism or collusion. In light of these
issues, it is common for educators to use software plagia-
rism detectors to uphold academic integrity for programming
assignments [12].

Software plagiarism detectors analyze sets of programs to
detect pairs with a suspiciously high degree of similarity [13,
14]. Ultimately, it is a human decision to assess which of them
qualify as plagiarism, given the underlying ethical considera-
tions [15]. Currently, MOSS [16] and JPlag [14, 17] are the
detectors most widely used by educators [18]. An enduring
assumption was that evading detection requires more time
than it takes to complete the actual assignments and requires
a profound understanding of programming languages [12,
19]. However, this assumption has been invalidated with the
emergence of automated obfuscation attacks and plagiarism
generators [20, 21]. While designing such an attack takes time
and programming proficiency, using it as a student to plagiarize
requires neither. While early automated attacks relied on
algorithmic approaches, for example, via repeated modification
as done by MOSSAD [12], the challenge intensifies with
the rise of generative artificial intelligence, especially Large

Language Models (LLMs) [22, 23], making the obfuscation of
plagiarism more effortless than ever before [24, 25].

State-of-the-art plagiarism detectors compare the code’s
structure [9, 26] by parsing and linearizing the program’s
parse tree. Matching fragments are identified on pairs of these
linearized representations, which are then used to compute a
similarity score and derive suspicious candidates. By omitting
details like names during the linearization, the detectors
are resilient against specific obfuscation attacks [25] such
as renaming, retyping, and other lexical changes [14, 19].
However, this inherent resilience does only apply to some
(automated) obfuscation attacks [21, 27]. While there is some
research to counteract such automated obfuscation attacks,
these approaches face two crucial challenges [21]. First,
language-dependence: Defense mechanisms are often highly
language-specific, hindering straightforward generalization or
transferability across different programming languages. Second,
attack-type-dependence: Defense mechanisms are only tailored
to one specific attack vector, thus lacking broad resilience.
While they are highly efficient against the intended attacks,
they provide little resilience for other attack types. Thus, they
serve little protection against unknown attacks. Such emerging
attacks, however, constitute the most challenging scenarios.
However, with the recent rise of large language models and
their commoditization via tools like ChatGPT [28], addressing
emerging attacks is more crucial than ever [22].

Approach: Given these challenges, this paper investigates
a novel approach called subsequence match merging (SMM)
to bolster the obfuscation resilience of today’s state-of-the-
art software plagiarism detectors. All obfuscation attacks,
whether known or unknown, have to disrupt the matching
of code fragments in order to be effective [12]. Thus, they
must affect the detectors’ internal program representation [21].
To this end, obfuscation attacks try to alter the structural
properties of a plagiarized program. Our approach iteratively
merges neighboring fragment matches in pairs of linearized
programs according to a well-designed heuristic until no more
neighboring pairs remain. This process effectively reverses the
effects of obfuscation, enhancing the detection of obfuscated
plagiarism while minimizing false positives. As our approach
operates solely on the internal linearized representations of
programs, it is fully language-independent and not limited to
a single obfuscation attack type. We thus provide a robust
and versatile approach for a broad spectrum of known and
unknown obfuscation attacks. Alongside our approach, we



TABLE I: Original code (left) and modified variant (right) after
inserting one statement (+) and altering one (∼).

Original → Variant
printNumbers(int max){ printNumbers(int max){
int[] n = range(0,max); int[] n = range(0,max);
String result = ""; String result = "";

(+) int debug = n.length;
for(int i=0; i<max; i++) (∼) for(int number : n)
result += n[i]; result += number;

println(result); println(result);
} }

introduce a comprehensive threat model highlighting the danger
of automated obfuscation attacks. We categorize different
attack types and relate them regarding their effectiveness and
applicability. By examining the attack surface of software
plagiarism detectors, we show that all obfuscation attacks
must affect the internal program representation to disrupt the
detection process.

Evaluation: We evaluated our defense mechanism using the
open-source plagiarism detector JPlag [14, 17, 29]. For our
evaluation, we employed five real-world datasets and four types
of automated obfuscation attacks: Statement insertion, statement
alteration, AI-based obfuscation, and AI-based generation.
In total, we thus evaluate 758 original and 747 obfuscated
programs, encompassing 288,865 pairwise comparisons. Our
results demonstrate that our approach increases the median
similarity of plagiarism pairs by up to 44 percentage points
while maintaining a minimal impact of around 4pp on the
original and unrelated pairs, thus significantly improving
resilience against algorithmic and AI-based obfuscation attacks.
It is therefore evident that our approach not only provides
broader resilience against obfuscation attacks than the state-of-
the-art, but it also improves the detection of fully AI-generated
programs by increasing similarity scores among these programs.

Contributions: In this paper, we present three contributions:
C1 A comprehensive threat model for (automated) obfuscation

attacks targeting software plagiarism detection systems.
C2 Subsequence match merging (SMM), a novel language-

independent and attack-type-independent defense mecha-
nism against a wide range of obfuscation attacks.

C3 A four-stage evaluation using real-world data sets with
automatically obfuscated plagiarism instances based on
both algorithmic and AI-based obfuscation.

II. RUNNING EXAMPLE

We utilize the programs depicted in Table I as our illustrative
example in the remainder of this paper. Both programs print the
concatenated numbers from 1 to a specified maximum value.
Notably, the program on the right is a modified variant of the
one on the left, produced via two structural changes that avoid
altering the program’s behavior. Specifically, a new variable
named debug is inserted, and the array-style loop is replaced
with a for-each loop. Although the similarities between the two
programs remain obvious for such a small example, this may
not hold true when applying similar changes at a large scale.
Crucially, such alterations reduce the likelihood of detection
by a plagiarism detector.

TABLE II: The two token sequences corresponding to the
programs in Table I with matching subsequences highlighted.

id Original Tokens → id Variant Tokens
1 variable 1 variable
2 apply 2 apply
1 variable 1 variable

(+) 1 variable
3 loop start 3 loop start
1 variable 1 variable
4 assign (∼)
4 assign 4 assign
5 loop end 5 loop end
2 apply 2 apply

Table II illustrates the internal, linearized representations of
both programs. For simplicity, only the representations of the
contents of both methods are depicted (signatures are omitted).
State-of-the-art plagiarism detectors linearize the programs by
parsing them and extracting a subset of the parse tree nodes
as tokens [21]. The resulting token sequences consist solely
of structural elements [14]. Details like names, types, values
and formatting are omitted, thus providing some obfuscation
resilience. Due to the modifications made to generate the
variant, the token sequences of both programs are not identical.
We can identify three matching subsequences (highlighted in
grey), with each neighboring match interrupted by a single
token. Note, that the differing tokens interrupt the matching.

III. THREAT MODEL

In the following, we introduce a comprehensive threat model
as our first contribution (C1). Obfuscation attacks aim to avoid
detection by strategically altering a plagiarized program, thus
obscuring the relation to its original [21]. As state-of-the-
art detection approaches compare the structure of programs
by identifying similarities between code fragments [26], ob-
fuscation attacks try to alter the structural properties of the
program, ideally without affecting its behavior [10, 30, 31].
The intended outcome is to disrupt the matching of fragments
between programs (as seen in Table II), thus leading to a
reduced similarity score [12]. Specifically, the goal is to prevent
the matching of fragments above the detector’s specified match
length cut-off threshold. However, to impact the detection
quality of a software plagiarism detector, the obfuscation must
affect the detectors’ linearized program representation, which in
the case of token-based approaches is the token sequence [21].
Consequentially, modifications to the program code that do
not affect the token sequence are inherently ineffective. For
example, renaming classes, members, and other elements does
not affect token-based approaches, as names are omitted during
the tokenization [14, 25].

A. Adversary Model

Students have access to peers’ solutions, which they may use
as a basis for plagiarism [12]. As instructors can access all
solutions, students try to avoid detection by minimizing the
similarity between the plagiarized program and the original
while retaining program behavior.

We propose the following adversary model. The adversary
is typically a student aiming to pass off the program of a third



party as their own. This third party is typically another student
who may or may not willingly participate. To evade detection,
the adversary strategically obfuscates the plagiarized program.
The program is thus the target of the adversary. The educator
and the plagiarism detector serve as the defenders in trying to
detect plagiarism. Crucially, the defender has little knowledge
of obfuscation attempts. It is not clear which programs were
plagiarized. Additionally, it is unclear what kinds of obfuscation
techniques an adversary employs and to which parts of the
program they were applied. Finally, the defender does not
even know if an obfuscation attempt occurred. This uncertainty
adds a layer of complexity to plagiarism detection, making it
challenging to identify plagiarized programs [32]. As a result,
prioritizing the obfuscation resilience of plagiarism detectors is
more effective than attempting to identify obfuscation attempts
explicitly.

B. Attack Surface Analysis

Obfuscation attacks affect the detection quality during the
pairwise comparison by splitting up subsequences until they
fall under the detector’s matching threshold and are thus
omitted. As token-based detectors solely use the internal
representation of the programs for subsequence matching, the
token-sequence, being that representation, is the only attack
surface. Consequentially, for any obfuscation attack to be
effective, it needs to affect the token sequence. Moreover,
to interrupt the subsequence matching enough to reduce the
calculated similarity, the attack must broadly affect the token
sequence, meaning consistently over the entire sequence length.
Note that while the token sequence is the attack surface, it
cannot be directly altered. Instead, the program code needs to
be altered to lead to a different token sequence. For this reason,
simple techniques like renaming have no effect on token-based
approaches. While they change the program, names are not
considered during the tokenization and thus do not affect the
token sequence.

Table II illustrates how the effect of the obfuscation attempts
in Table I affect the subsequence sequence matching. While
only two tokens are affected, the matching is disrupted, and
only three subsequences are matched. For a hypothetical cut-
off threshold of 4 tokens, all three would be ignored, thus
reducing the similarity from 100% to 0%. Note how renaming
variables in the original programs would not affect the internal
representation of the derived token sequences, as this type of
information is not present.

Each token essentially stores the syntactic category of its
corresponding program element, such as control structures or
variable definitions. By assigning a unique number to each
category, the token sequence can be seen as a sequence of
integers. Table II shows this integer representation. Based on
this, we can derive three possible atomic types of alterations:
Deleting a token from the sequence, inserting a token into the
sequence, and changing the position of a token in the sequence.
The effects of all possible obfuscation attacks, no matter how
simple or complex, can be broken down into a combination of
these atomic changes.

Lexical Obfuscation Attacks
 - Renaming
 - Comments
 - Formatting

Data-based Attacks
 - Retyping
 - Value Obfuscation
 - Precision Modification

Structural Attacks
 - Dead Code Insertion
 - Statement Reordering
 - Statement Deletion

Complex Attacks
 - Refactoring
 - Control Flow Transformations
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Fig. 1: Categorization of obfuscation attacks according to
Karnalim [10] and Faidhi and Robinson [33], illustrating
obfuscation effectiveness and applicability.

C. Categorization of Obfuscation Attacks

The challenge for an adversary is finding a combination of
changes that maximize obfuscation but minimize the impact
on program behavior. We classify potential obfuscation attacks
on a conceptual scale based on Karnalim [10] and Faidhi and
Robinson [33] from verbatim copying to semantic clones. The
latter is inherently hard to distinguish from non-plagiarized
programs. We define the following categories:
Lexical Attacks include renaming elements, changing comments,
altering the code formatting, whitespace manipulation, and symbol
substitution (e.g., parentheses and brackets).
Data-Based Attacks cover type changing data types, replacing liter-
als with equivalent but differently represented values, and adjusting
the precision of numeric values.
Structural Attacks involve fine-grained changes to the program
structure, such as dead code insertion and the reordering of inde-
pendent statements.
Complex Attacks include refactoring-based attacks like changing
loop types, code (de-) fragmentation, inheritance hierarchy manipula-
tion, and modifying the control flow structure.
Re-implementation includes both partial re-implementation, for
example, replacing a sorting algorithm with another one, as well
as full implementation, which produces semantic clones.

Note that these categories are not meant to be complete
but rather showcase different manifestations of obfuscation
attacks [9, 10]. In our example in Table I, statement insertion
is a structural attack, while loop modification exemplifies a
complex attack, albeit a simple instance.

Token-based approaches are inherently resilient to lexical
obfuscation attacks [19], but an adversary may nevertheless
employ them to alter the program’s appearance to the human
eye. Most approaches, provided they employ proper tokeniza-
tion, are also resilient against data-based attacks. For instance,
changing the name or value of the inserted debug statement in
Table I would not impact the derived tokens in Table II. Figure 1
also illustrates the effect strength of these attack types. With
rising complexity, the effect of the token sequence grows larger.
However, with rising complexity, the applicability becomes less
broad. For example, dead code insertion can be applied almost



everywhere in a code base, while specific refactoring attacks
can only be executed where the refactoring preconditions are
met [21]. An important limitation of our threat model concerns
semantic clones. Once a certain level of re-implementation
is reached, the program code may look distinct but behave
similarly. The challenge lies in accurately distinguishing these
cases without erroneously flagging unrelated programs as false
positives. It’s worth noting that this limitation is intrinsic to
plagiarism detection, whether conducted by humans or through
automated tools.

D. Automation of Obfuscation Attacks

As discussed previously, automated obfuscation attacks refute
the established assumption that evading detection requires
more effort than completing the actual assignment [12, 19].
While designing such an automated attack is complicated,
using it is not. A notable example of such automated attacks
is MOSSAD [12], which repeatedly inserts (mostly dead)
statements into a program to generate an obfuscated version.
These statements are taken from the original program and a
pool of predefined statements called entropy. As statements are
selected randomly and inserted in random positions, this process
is indeterministic and allows to generate multiple plagiarized
programs from one original. For each iteration, MOSSAD
checks if the code still compiles and checks on deviating
behavior by comparing the assembly code of the compiled
program. This process terminates when a chosen plagiarism
detector computes a similarity between the original and obfus-
cated version of the program that is below a targeted threshold.
In summary, this attack is algorithmic, indeterministic, and
has a threshold-based termination criterion. Other attacks, in
contrast, may be AI-based, e.g. via large language models,
deterministic, or use an exhaustive termination criterion, e.g.
insertion in every possible line in the code [21, 25]. This
highlights the variety of potential automated attacks. Given
this variety, defending against specific attack types alone is no
longer sufficient.

Two key questions must be considered to assess any
automated obfuscation attack: First, how effective are the
underlying obfuscation attack types? Second, how easily can
they be automated? Simpler, more fine-grained attacks, such
as statement insertion, are easier to automate and can be
applied more broadly across different sections of the code.
However, combining different attack types is more effective in
obfuscating a given program. In the past, complex attacks have
been challenging to automate reliably due to their intricacy.
However, with the rise of large language models, it is relatively
easy to automatically apply various obfuscation attacks to
a given program [23–25]. An additional consideration is
semantics. Adversaries typically aim to avoid significantly
altering program behavior to ensure their program still solves
the given assignment. Consequently, the types of attacks are
constrained, and the attack surface is limited. MOSSAD, for
example, avoids inserting statements that change the program’s
behavior. However, a possible scenario is accepting a limited
degree of deviating behavior to achieve stronger obfuscation.

Considering the threat of detection, an adversary might accept
not fully solving the assignment. In our work, we mainly
consider semantic-preserving obfuscation attacks.

IV. SUBSEQUENCE MATCH MERGING

This section presents our main contribution: Subsequence
match merging (C2). This approach heuristically searches
among all matched subsequence pairs between two linearized
programs to find neighboring matches that can be merged
into a single one, subsuming the (unmatched) gap between
them. This is done iteratively until no more neighboring pairs
are found. This approach effectively reverts the effects of
obfuscation attacks on the linearized program. As discussed
in section III, all obfuscation attacks must affect the token
sequence, thus interrupting the matching, to be effective.
Our approach works solely on matching subsequences in
the internal token-based representation, independent of the
underlying programs. This makes it inherently language-
independent. Furthermore, our approach relies only on the
structural properties of all matched subsequences but does
not consider the semantics of the corresponding tokens, thus
making it attack-type-independent. Therefore, our approach
provides resilience against all obfuscation attacks listed in
Figure 1. The degree of resilience depends on the strength and
type of the obfuscation attack.

As discussed, all token-based plagiarism detectors employ
a cut-off threshold, below which matched code fragments are
ignored to avoid false positives. This threshold, often called
minimum match length (MML) [34], defines the minimal
number of tokens required for two matching subsequences
to be counted toward the similarity score. Thus, the MML
controls the sensitivity of the comparison algorithm: if set
too low, it increases the similarity but also the likelihood of
false positives and vice versa. Obfuscation attacks affect the
detection by splitting up matching subsequences of tokens
until sufficiently many subsequences are small enough to fall
below the MML and are thus ignored. Thus, our approach
aims to reverse this by merging neighboring blocks of matches.
The merging operates heuristically by assessing how close
neighboring matches are, regardless of whether the alterations
initially involved insertion, deletion, or reordering. By carefully
selecting the matches to merge, we ensure a negligible impact
on the false positive rate.

A. Neighboring Matches

A key concept in our approach is neighborhood of matches.
We define matches as neighbors if they directly follow each
other in the same order in both token sequences of a program
pair. Directly refers to having no other matches in between
on either side of the pair. This, however, does explicitly
not include unmatched tokens. To illustrate, Figure 2 depicts
matches between the token sequences of two programs. The
matched subsequences are in the order (A, B, C, D) in
the original program and (B, A, C, D) in the variant.
Therefore, matches A and B would not be considered neighbors,
as their subsequence order is inconsistent across both programs.
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Fig. 2: Two tokenized programs with four subsequence matches
(A-D), of which matches C and D are neighbors.

Matches A and C are not neighbors, as the corresponding
subsequences in the original are interrupted by match B, which
also is the case for B and C in the variant. In contrast, match C
and match D are considered neighbors because they follow each
other in the same order and are only separated by non-matching
tokens.

Neighboring subsequence matches represent matching code
fragments in the original programs. For instance, in Table I,
lines 1-3 and 6-8 match in the original program and the
variant. These lines appear in the same order and have no
other matching segments in between, thus leading to a pair of
neighboring matches in the token sequences. The non-identical
statements that separate these neighboring matches are the
inserted line 4 and the altered line 5.

B. Algorithm

Subsequence match merging operates as outlined in Algorithm
1. The algorithm takes the token sequences of two programs and
their matching subsequences as input. Note that this includes
all matches, including those who fall below the MML of
the plagiarism detector. Initially, we compute which matching
subsequences qualify as neighboring matches. If a pair of
neighboring matches meets the merging criteria, we merge
them and eliminate the gap in both token sequences. This
involves effectively ignoring the unmatched tokens between
the neighboring matches. After each merge, we recompute the
neighbors and repeat this process until no more neighboring
matches that fulfill the merging criteria are found. This means
that merged matches can be merged with others in the following
iterations. Our merging criteria are defined as follows:
Neighbor length: Both neighboring matches must exceed a specific
length in tokens (e.g., matches with a length above two tokens).
Gap Size: The gap of unmatched tokens between these neighboring
matches must not exceed a specific size (e.g., below six tokens).

For instance, as illustrated in Figure 3, the first pair of
neighboring matches consists of two tokens in the first match
and three in the second match. In the original program, no
tokens separate these matches, whereas, in the variant, one
token separates them. We merge pairs of neighboring matches
when both have significant lengths and are separated by
minimal tokens, indicating the pair represents a formerly single
uninterrupted match. Our heuristic thus sets thresholds for
minimum neighbor length and maximum gap size, merging
matches that meet these criteria. Note that the neighbor length
fulfills a purpose similar to the minimal match length. It controls
the sensitivity of the approach.

Algorithm 1 Subsequence Match Merging
Require: tokenSequences,matches
1: neighbors← COMPUTENEIGHBORS(matches)
2: repeat
3: for each neighborPair ∈ neighbors do
4: if average size of gapTokens ≤ gapSizeThreshold then
5: mergedMatch← MERGENEIGHBORS(neighborPair)
6: matches← matches ∪ mergedMatch
7: matches← matches \ neighborPair
8: end if
9: end for

10: neighbors← COMPUTENEIGHBORS(matches)
11: until no more valid merges
12: prunedMatches← PRUNEMATCHES(matches)
13: return prunedMatches

1 541 13 42 2Original

Variant 1 51 13 42 21
Step 0

1 541 13 42 2Original

Variant 1 51 13 42 2
Step 1

1 51 13 42 2Original

Variant 1 51 13 42 2
Step 2

Fig. 3: Steps of the subsequence match merging for the running
example in Table II (minimum match length = 4, minimum
neighbor length = 2 and maximum gap-size = 1).

Finally, after merging, we need to filter any remaining
matches that fall below the minimum match length to ensure
that the resulting matches do not violate the assumptions of
the plagiarism detector. This means some merged matches may
not be included, as they may fall below the minimum match
length threshold. By considering matches below the MML
threshold, our approach can merge matches that the plagiarism
detector would not have considered. Essentially, this allows
the fragmentation of matches to be reversed, thus reverting the
effects of obfuscation attacks.

Figure 3 illustrates the subsequence match merging algorithm
for our running example in Table I. Step 0 displays the token
sequences of the original program and its obfuscated variant
from Table II, along with the matching subsequences between
them. For illustrative purposes, let the minimum match length
threshold be four tokens, resulting in a similarity score of 0%
because all three matches fall below this threshold. In Step
1, we consider the first pair of neighboring matches. After
merging, the match length increases to 5, thus raising the
similarity score to 58.8%. In Step 2, we assess the remaining
pair of neighbors that also meet the threshold criteria. Merging
them raises the similarity score to 100%, thus reverting the
obfuscation demonstrated in the running example.

C. Hyperparameters

We intentionally avoided designing a defense mechanism
that relies on too many hyperparameters, as it is always
challenging for users to determine an optimal configuration in



such cases [35, 36]. However, we provide two hyperparameters:
the minimum neighbor length and the maximum gap size (see
subsection IV-B). These can be adjusted to, for example, fit
the algorithm to a specific dataset. Both thresholds are critical
for tuning the heuristic’s aggressiveness in deciding which
neighboring matches to merge. Setting a low neighbor length
and a high gap size threshold tends to merge unrelated matches,
increasing false positives. Conversely, a high neighbor length
and a low gap size threshold limit the effectiveness of our
approach by failing to detect most instances of plagiarism. We
conducted a grid search for a suitable default parameterization
to address the trade-off between precision and recall. We
explored neighbor length values from 1 to the minimum match
length. The minimum match length was chosen as the upper
threshold, as matches above this threshold are already detected.
Furthermore, we explore gap size values from 1 to 20. We
chose 20 as the upper threshold, representing a significant code
fragment. During our grid search, this was confirmed, as the
best results occur far below the threshold of 20. After evaluating
each combination across various real-world datasets consisting
of different assignment types, sizes, and different programming
languages, as well as with varying obfuscation attacks, we
observed that a minimum neighbor length of 2 and a maximum
gap size of 6 yields the strongest resilience against obfuscation
attacks. To recap, this means that neighboring matches are
merged only if each match spans at least two tokens and six
or fewer tokens separate them. Thus, we propose these values
as default parameterization. However, we also recommend
adjusting these hyperparameters for the dataset at hand when
using our approach.

V. EVALUATION

This section presents the evaluation of our defense mechanism
(C3), where we use the state-of-the-art [9] plagiarism detector
JPlag [14, 29] as the baseline. We employ five real-world
datasets, totaling 758 original and 787 automatically obfuscated
programs. This yields a total of 288,865 pairwise comparisons.
We show that our approach provides resilience against auto-
mated obfuscation attacks. The code and the evaluation data
are also provided in the supplementary material [37].

A. Methodology

The evaluation follows the Goal-Question-Metric (GQM)
method [38, 39]. We define the following goals, evaluation
questions, and metrics:
G1 Mitigating the impact of algorithmic obfuscation attacks.

Q1 Resilience to semantic-preserving attacks?
Q2 Resilience to (simulated) semantic-agnostic attacks?
M1/2 Similarity scores with SMM enabled vs. disabled.

G2 Mitigating the impact of AI-based obfuscation attacks.
Q3 Resilience to AI-based obfuscation?
Q4 Detection rate among AI-generated programs?
M3/4 Similarity scores with SMM enabled vs. disabled.

Both goals relate to the resilience that our approach, subse-
quence match merging (SMM), provides against automated
obfuscation attacks as outlined in section III. The corresponding
questions regard specific types of obfuscation attacks, thus

evaluating the broadness and strength of the resilience. Soft-
ware plagiarism detectors compare programs pairwise, thus
computing pairwise similarity scores. To clearly distinguish the
plagiarism instances from the unrelated programs during the
human inspection, the similarity scores of plagiarism instances
to their source must be high [21]. Vice versa, the similarity
score for pairs or unrelated programs must be low. Thus, for all
metrics, we evaluate whether the difference between plagiarism
pairs and unrelated pairs increased when using our approach.

1) Datasets: For our evaluation, we employed five real-
world datasets. They all come from an educational setting but
stem from different courses and assignment types. Thus, they
vary in the number and size of the programs, and especially
in their programming language. First, we used two tasks from
the publicly available collection PROGpedia [40]. Here, Task
19 covers the design of graph data structure and a depth-first
search to analyze a social network. Task 56 is about minimum
spanning trees using Prim’s algorithm. Both datasets contain
Java programs. Next, we used the TicTacToe dataset from [21],
which contains command-line-based Java implementations of
this paper-and-pencil game. Finally, we used two tasks from the
publicly available homework dataset [41] by Ljubovic and Pajic
[42]. While both tasks contain C++ programs, one pertains to
managing student and laptop records within a university setting,
whereas the other requires implementing a Fourier series. To
prepare the datasets for our evaluation, we removed all solutions
that did not compile, as JPlag requires valid input programs.
We also removed all human plagiarism (if present) based on the
labeling provided by the datasets. If no labeling was present,
we removed verbatim copies. This notably reduces the size of
some datasets. Consequently, we obtained the following five
datasets, with size measured in lines of code (LOC), excluding
comments and empty lines:
PROGpedia Task 19: 27 programs with a mean size of 131 LOC.
PROGpedia Task 56: 28 programs with a mean size of 85 LOC.
Homework Task 1: 59 programs with a mean size of 282 LOC.
Homework Task 5: 18 programs with a mean size of 123 LOC.
TicTacToe: 626 programs with a mean size of 236 LOC.

2) Obfuscation Attacks: We employ two algorithmic ob-
fuscation attacks to evaluate the first goal (G1). The first is
PlagGen [43], which inserts new, primarily dead, statements.
Thus, it is similar to MOSSAD [12]. PlagGen is also semantic-
preserving and indeterministic but uses an exhaustive termi-
nation strategy (see subsection III-D). The statement insertion
uses statements from the original program and a pool of pre-
defined statements. We use PlagGen for Java and MOSSAD
for C++. Second, we simulate a semantic-agnostic obfuscation
attack by randomly changing 25% of the tokens to a different
one. While this attack is only simulated, it mirrors the effects of
strong obfuscation attempts that alter a quarter of the program’s
code without considering program behavior. We include the
results for other percentages in the supplementary material.

To evaluate the second goal (G2), we exploit OpenAI’s
GPT4 for automated plagiarism, which is currently the state-
of-the-art LLM. There are generally two ways [25] of using
generative AI to cheat for programming assignments: AI-based



TABLE III: Number of plagiarized programs per dataset and
obfuscation attack type used in our evaluation (787 in total).

Obfuscation Attack Type Pp-19 Pp-56 Hw-1 Hw-5 TT

Semantic Preserving Obf. 27 28 59 17 50
Semantic Agnostic Obf. 27 28 59 17 50
AI-based Obf. (15 Prompts) 75 75 75 75 75
AI-based Generation - - - - 50

obfuscation, where the adversary provides an AI model with
a pre-existing program and tasks it to generate an obfuscated
version. AI-based generation, where the adversary uses the
assignment’s description to generate a program from scratch
via an AI model. We employ AI-based obfuscation as a third
obfuscation attack alongside both algorithmic ones. We use
different prompts, mimicking how students would ask GPT to
obfuscate their plagiarism. Finally, we use full generation only
for the TicTacToe dataset, as we require the full assignment
description and test cases to test for the expected behavior. In
sum, we use the following four techniques attacks to create
787 plagiarized programs (see Table III for details):
Semantic-Preserving Obfuscation: Inserting new and existing state-
ments into the program (PlagGen [43] and MOSSAD [12]).
Semantic-Agnostic Obfuscation: Simulate changing large parts of
the program by randomly changing 25% of the tokens.
AI-based Obfuscation: We obfuscate human solutions with GPT-4
based on 15 varying prompts requesting structural changes.
AI-based Generation: We fully generate AI-based solutions with
GPT-4 based on the textual task description (TicTacToe only).

According to the threat categorization in Figure 1, semantic-
preserving obfuscation using insertion is categorized as a struc-
tural attack. Semantic-agnostic obfuscation simulates structural
and complex attacks but refactoring only to a lesser extent. AI-
based obfuscation is multifaceted, mapping to both structural
and complex attacks, especially including refactoring. AI-based
generation is classified as full re-implementation, which is
highly challenging to address. Our evaluation, therefore, covers
a broad range of possible obfuscation attacks.

B. Evaluation Results

This section presents the evaluation results, demonstrating that
our approach significantly improves resilience against all four
obfuscation attack types. In the following, we will discuss the
results of each obfuscation attack type individually.

1) Semantic-Preserving Obfuscation: Figure 4 shows the
results for obfuscation attacks based on the insertion of
statements into programs. Our approach shows strong im-
provements in resilience to these attacks. For all five datasets,
our approach significantly increases the similarities of the
plagiarism pairs. Specifically, the median similarities increase
by between 16 percentage points (TicTacToe) and 39 percentage
points (PROGpedia-56 and Homework-5). Regarding original
pairs, the median similarities rise by 2 to 3 percentage
points for each dataset, except for PROGpedia-56, where
the median increases by around 9 percentage points. We
hypothesize that this exception is attributable to the small
program size of the PROGpedia-56 dataset. Overall, however,
the similarity increase for the original pairs is relatively small
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Fig. 4: Similarities for pairs of human programs and insertion-
based plagiarism with and without our approach. Plagiarism
pairs should be high, original pairs should be low.

and thus negligible. However, when looking at the separation
of plagiarism and originals, we can see the similarity increases
significantly more for the plagiarism pairs than the originals.
In fact, the delta between the median similarities of both
types of pairs increases by between 16 percentage points
(TicTacToe) and 30 percentage points (PROGpedia-56). As
previously mentioned, these values represent the improvement
in separating plagiarized and original programs.
Answer to Q1: SMM significantly increases the resilience
against semantic preserving obfuscation attacks, thus
enabling separation between plagiarized and original
programs.

2) Semantic-Agnostic Obfuscation: Figure 5 shows the
results for obfuscation attacks based on a simulated 25% change
to the program. We include the results for 10% to 30% in
the supplementary material. Our approach also shows strong
resilience improvements for these attacks. Again, our approach
significantly increases the similarities of the plagiarism pairs
for all datasets. In detail, the median similarities increase
by at least 30 percentage points (Homework-1) and up to
44 percentage points (PROGpedia-56). As the original pairs
remain the same for all evaluation stages, the results still show
a median similarity increase of 3 percentage points for all but
one dataset. Again, regarding the separation of plagiarism and
originals, we observe a notably greater increase in similarity
for the plagiarism pairs compared to the original ones. Here,
the delta between the median similarities of both types of pairs
increases by at least 26 percentage points (TicTacToe) and up
to 39 percentage points (PROGpedia-56). Consequently, the
interquartile ranges of plagiarism and original pairs no longer
overlap. This means that our approach facilitates detection
despite randomly changing 25% of the linearized program.
Answer to Q2: SMM significantly increases the resilience
against semantic agnostic obfuscation attacks, thus clearly
separating plagiarized and original programs.

3) AI-based Obfuscation: Figure 7 shows the results for
obfuscation attacks via GPT-4 prompts. We used 15 different
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Fig. 5: Similarities for human programs and alteration-based
plagiarism (25% of tokens) with and without SMM.
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Fig. 6: Similarities for human programs and GPT-obfuscated
plagiarism pairs with and without our approach.

prompts, asking the LLM to alter the program without changing
its behavior. The results show that our approach improves
resilience to these obfuscation attacks. For the plagiarism
pairs, our approach increased median similarities by at least 6
percentage points (Homework-1) and up to 19 percentage points
(PROGpedia-56). Regarding the separation of plagiarism and
originals, the delta between the median similarities of both types
of pairs increases by between 9 percentage points (PROGpedia-
56) and 16 percentage points (PROGpedia-19) for all datasets,
except for Homework-1. For this dataset, the median similarity
delta only increases by 3 percentage points. This increase is less
prominent than that observed with algorithmic attacks, which
can be attributed to two factors. Firstly, the overall varying
effectiveness of AI-based obfuscation. For plagiarized programs
already exhibiting high similarity to their originals, there
remains limited enhancement potential. Secondly, the broader
range of modifications produced by generative AI. These
diverse modifications alter token sequences more extensively,
thereby limiting the effectiveness of subsequence merging.
Notably, despite both factors, we observe an improvement in
resilience against AI-based obfuscation.
Answer to Q3: While the effectiveness of AI-based
obfuscation depends on the dataset, SMM increases the
resilience against these attacks, albeit to a lesser degree.
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Fig. 7: Similarity values for pairs of human programs and
GPT-generated programs with and without SMM.

4) AI-generated Programs: Figure 7 shows the results
for programs generated via GPT-4 based on the assignment
description. Unlike in the previous three evaluation stages, we
technically do not employ obfuscation attacks. The generated
programs are not derived from human-made programs. Thus,
our comparison focuses solely on how the similarity among
generated programs differs from that of unrelated human
programs. Without SMM, the median similarity of pairs of
unrelated human programs is 6%, while it is 21% for AI-
generated programs. This means that AI-generated programs
show higher inherent similarities than human solutions due
to the deterministic nature of generative AI. With SMM
enabled, the median similarity of the AI-generated programs
increases by around 9 percentage points to 30%. In contrast,
the similarities of unrelated human programs only change very
little. This shows that our approach improves the detection of
fully AI-generated programs by increasing the similarity values
calculated for them while only minimally affecting pairs of
unrelated human-made programs. These results are remarkable
given that our approach is not designed to detect fully AI-
generated programs. The fact that it improves detection for
them highlights its versatility.
Answer to Q4: SMM increases the separation between
human and AI-generated programs, thus improving the
detection of AI-generated programs.

C. Statistical and Practical Significance

To test the significance of our results, we conducted statistical
tests for all evaluation stages for JPlag with and without
our approach. The detailed results are depicted in Table IV.
Regarding statistical significance, the results show strong
statistical significance for all evaluation stages with p-values
at or below 2.133e-07. The effect sizes (0.645 and 0.929)
are large for algorithmic obfuscation attacks and small to
medium (0.214 and 0.320) for AI-based methods. The smaller
effect size for AI-based obfuscation is caused by the high
similarity variance inherent to this obfuscation method, as
different prompts vary strongly in effectiveness. The results
also show practical significance, as the effect sizes demonstrate
the robustness of our approach in real-world scenarios. This



is confirmed by the increased separation between plagiarism
pairs and original pairs, aiding with distinguishing between
plagiarized and original solutions.

TABLE IV: One-sided Wilcoxon rank-sum tests results (sig.
level of α = 0.01, alternative hypothesis H1 = greater, test
statistic W , Cliff’s delta δ, the 95 percent confidence interval
CI , sample size n, variance σ2) for Plagiarism-to-Source (P2S),
Original Pairs (OP), and Fully Generated Pairs (FG).

Obfuscation Pairs p W δ 95%CI n σ2

Semantic-Pres. P2S <2.2e-16 27,250 0.645 [0.55, 0.72] 364 5.09
OP <2.2e-16 2.4436e+10 0.243 [0.24, 0.25] 396,436 0.39

Semantic-Agn. P2S <2.2e-16 31,954 0.929 [0.88, 0.96] 364 5.06
OP <2.2e-16 2.4427e+10 0.243 [0.24, 0.25] 396,436 0.39

AI-based Obf. P2S 2.133e-07 84,444 0.214 [0.13, 0.29] 746 10.12
OP <2.2e-16 2.4451e+10 0.243 [0.24, 0.25] 396,436 0.39

AI-based Gen. FG <2.2e-16 990,448 0.320 [0.28, 0.36] 2,450 2.02
OP <2.2e-16 2.3833e+10 0.246 [0.24, 0.25] 391,250 0.38

D. Discussion

The evaluation results reveal several noteworthy insights, both
regarding automated obfuscation attacks and the effectiveness
of our subsequence match merging approach.

1) AI-based Obfuscation Attacks: In our observation, the
effectiveness of AI-based obfuscation attacks strongly varies
depending on the dataset used. As illustrated in Figure 6,
the plagiarized programs mostly stay above 65% for the
PROGpedia-19 dataset, while most of them fall below 50% for
the Homework-5 dataset. Median similarities vary between
17% and 76% for these programs. Yet, we use the same
obfuscation prompts for both datasets. Moreover, compared to
algorithmic obfuscation, the range of similarities per dataset
varies more notably for AI-based obfuscation. For the former,
all interquartile ranges of plagiarism pairs are below 30
percentage points. For the latter, we observe interquartile ranges
that span more than 50 percentage points (PROGpedia-19).
Finally, in some cases, GPT produces incomplete or invalid
code. Sometimes, the programs did not compile, thus requiring
re-generation. Despite over 50 attempts, we could not produce
a valid result for three original programs, which all exceeded
300 LOC. Thus, algorithmic obfuscation currently exhibits
more consistent results than AI-based obfuscation and currently
seems more effective. However, AI-based obfuscation is more
useful in avoiding detection during manual inspection, as it
produces a diverse range of modifications.

While full AI-based generation works to a certain extent,
currently its effectiveness is limited. The programs entirely
generated with GPT did not precisely adhere to the assignment’s
requirements, which led to additional output or slightly altered
behavior. These discrepancies suggest that full generation may
only be suitable for very small assignments. In our case,
the TicTacToe dataset is both in complexity and size (∼236
LOC) at the perceived threshold, at which fully generated
solutions start to show such discrepancies. Interestingly, even
without applying our approach, AI-generated programs display

a higher degree of similarity to each other than human-
generated solutions. This can be attributed to the inherent
degree of determinism within Large Language Models. While
they are not entirely deterministic, their level of determinism
is sufficient for software plagiarism detection purposes.

2) Resilience via Subsequence Match Merging: The evalua-
tion shows that our approach provides obfuscation resilience
for all employed attacks and datasets. Thus, we demonstrate
that our approach’s effectiveness is not limited to a specific set
of obfuscation attacks. It has exhibited effectiveness against a
diverse range of obfuscation attacks, including both algorithmic
and AI-based attacks, encompassing semantic-preserving and
semantic-agnostic alterations. Furthermore, we evaluated it
across datasets in different programming languages, in addition
to diverse assignment types and sizes, thus demonstrating its
adaptability. This underscores our approach’s broad resilience
and language independence, positioning it as a versatile defense
mechanism against automated obfuscation attacks on software
plagiarism detectors.

While attack-specific defense mechanisms may achieve even
better results for their targeted obfuscation attacks than attack-
independent approaches, they fall short for other attack types.
For example, an approach based on dead code detection may
outperform ours for obfuscation via dead statement insertion;
however, it will have no effect on refactoring-based obfuscation,
as GPT employs. Moreover, attack-specific defense mechanisms
can only be designed for known obfuscation attacks and are
thus not suitable for emerging threats. Attack-independent
approaches, like ours, are crucial for emerging threats. As
they operate only at the level of the actual attack surface, the
linearized program representation, and do not make assumptions
about incoming attacks, they allow resilience against unknown
attacks. As our approach can be combined with any other
defense mechanism, we ultimately argue that layering defense
mechanisms is the safest strategy (swiss cheese model [44]
or defense in depth [45–47]). Layering allows combining the
broad resilience of attack-independent approaches with the
targeted effectiveness of attack-specific ones.

E. Threats to Validity

We now discuss how we address threats to the validity of our
work as outlined by Wohlin et al. [48], as well as Runeson
and Höst [49]. Internal Validity: For internal validity, we
evaluated JPlag both with and without our approach, ensuring
that all other conditions remained constant. Furthermore, for the
automated obfuscation, we randomly selected programs from
the respective datasets. To address the impact of prompt choice
on AI-based obfuscation, we performed systematic ”prompt
engineering” prior to the evaluation. We then evaluated with 15
different prompts. External Validity: To ensure external validity,
we employ five real-world datasets. These datasets are diverse,
encompassing two programming languages and varying in the
number of programs, program sizes, assignment types, and
complexity levels. This diversity underscores the generalizabil-
ity of our approach across different contexts. Moreover, our
approach is tool-independent, allowing it to be implemented in



any token-based and most structure-based plagiarism detectors,
further enhancing its applicability. Construct Validity: To ensure
construct validity, we aligned our evaluation methodology with
those from related works [15, 21, 34]. Furthermore, we have
accurately labeled datasets; as for automated obfuscation, we
know which programs are plagiarized. Finally, we employ an
approach-independent ground truth, use established similarity
metrics, and a GQM plan [38, 39]. Reliability: For reliability,
we provide our full code and data (see section VIII). Moreover,
our approach has been incorporated into the widely used
plagiarism detector JPlag [29].

F. Limitations

While our approach addresses current generative AI threats,
rapid advancements in this field may necessitate future re-
evaluation. However, all emerging attacks must affect the same
attack surface (see subsection III-B). Thus, we are confident our
approach will remain effective for emerging attacks. Moreover,
small assignments are a challenge in plagiarism detection,
as minor similarities can lead to false positives, given their
minimal solution space. This makes separating plagiarism from
coincidental similarities difficult. However, this limitation is
inherent to plagiarism detection [34].

VI. RELATED WORK

A. Software Plagiarism Detection
Code plagiarism detectors focus on the structure of programs [9,
26]. They find matching fragments via hashing and tiling [16,
17]. Specifically, JPlag [14, 17] and Sherlock [19] use greedy
string tiling [50, 51], whereas MOSS and Dolos [52] employ
winnowing [53]. Resilience via Graphs: Liu et al. [54] introduce
GPlag, a graph-based approach that compares graphs directly
instead of linearizing the program. They provide resilience
against some obfuscation attacks like dead code insertion.
However, they are impractical due to their computational
expense; determining subgraph isomorphism is NP-complete,
and doing so for pairwise comparisons does not scale well.
Resilience via Intermediate Representation: Devore-McDonald
and Berger [12] propose using semantic checking of inter-
mediate representation (assembly and Java byte code) to
defend against MOSSAD. However, this language-dependent
defense mechanism is conceptual and is yet to be realized.
Similarly, Karnalim [10] introduces an approach based on Java
byte code. They employ normalization, e.g., by linearizing
method contents. This approach can handle some obfuscation
attacks. Nevertheless, this excludes higher-level obfuscation,
e.g., via refactoring. Resilience via Preprocessing: Krieg [55]
provides a preprocessing approach that removes tokens to
increase the similarity between programs. However, this token-
level approach is limited in effectiveness and computationally
expensive. Inspired by theirs, our approach gains effectiveness
and scalability by operating on matched subsequences as a
post-processing step. Novak [30] proposes preprocessing via
Common-Code-Deletion. They remove meaningless statements,
such as getters, setters, and empty methods. This improves
insertion resilience in certain cases. Karnalim et al. [56] employ

a similar strategy via multiple preprocessing techniques. While
this is effective against tools like MOSSAD, it is ineffective
for others. Differentiation. In contrast to all aforementioned ap-
proaches, our defense mechanism is both language-independent
and attack-independent, as we operate on the abstract level of
the matched subsequences. Thus, we achieve broad resilience.
Our approach can be combined with others, for example, token
sequence normalization [21], to increase obfuscation resilience.
This combines broad resilience with narrow capabilities against
specific attacks.

B. Software Clone Detection
Plagiarism detection relates strongly to clone detection; how-
ever, code clones typically arise inadvertently [57]. Consequen-
tially, plagiarism detection approaches need to deal with an
additional layer of complexity introduced by an adversary-
defender-scenario [21]. Targeted obfuscation attacks thus make
software plagiarism detection more challenging than clone
detection [58]. Still, many clone detection approaches share
similarities in their employed techniques [59–61].

C. Genome Sequencing
Indel detection in bioinformatics identifies altered genome se-
quence pairs. Similarly, plagiarism detection identifies program
pairs despite minor changes. TransIndel by Yang et al. [62]
compares genome sequences composed of chimeric reads and
aligns them. It infers insertions or deletions by iterating through
both sequences with a fixed window size, thus resembling
SMM. The Needleman–Wunsch algorithm [63] computes the
globally optimal alignment between sequences. While designed
for gene sequencing, it could be applied to plagiarism detection.
However, it comes with high algorithmic complexity.

VII. CONCLUSION
This paper addresses the challenge of emerging automated
obfuscation attacks in software plagiarism detection. To this
end, we introduce a novel approach called subsequence match
merging to enhance the obfuscation resilience of plagiarism
detectors. Using only the abstract program representation,
our approach is language-independent and obfuscation-attack-
agnostic, thus proving broader resilience than the state-of-
the-art. We evaluate our approach on five real-world datasets.
We observe an increase of up to 44 percentage points for
plagiarism pairs while maintaining minimal impact (avg. of
4pp) on unrelated programs. The results show that our approach
provides significant resilience against both algorithmic and AI-
based obfuscation attacks. Moreover, our approach improves
the detection of AI-generated programs.

VIII. DATA AVAILABILITY
Our approach has been incorporated into the widely used open-
source plagiarism detector JPlag [29]. We also provide our
code and evaluation data as supplementary material [37].
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