Journal Pre-proof

UVL: Feature modelling with the universal variability language

SOFTWARE

David Benavides, Chico Sundermann, Kevin Feichtinger, José
A. Galindo, Rick Rabiser, Thomas Thiim

PII: S0164-1212(24)00370-4
DOI: https://doi.org/10.1016/j.jss.2024.112326
Reference: JSS 112326

To appear in: The Journal of Systems & Software

Received date: 15 March 2024
Revised date: 1 October 2024
Accepted date: 18 December 2024

Please cite this article as: D. Benavides, C. Sundermann, K. Feichtinger et al., UVL: Feature
modelling with the universal variability language. The Journal of Systems & Software (2025), doi:
https://doi.org/10.1016/j.jss.2024.112326.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2024 Published by Elsevier Inc.

https://doi.org/10.1016/j.jss.2024.112326
https://doi.org/10.1016/j.jss.2024.112326

UVL: Feature Modelling with the Universal Variability
Language

David Benavides®, Chico SundermannP, Kevin Feichtinger®, José A. Galindo?,
Rick Rabiserd, Thomas Thiim®

% Department of Computer Languages and Systems, I8US, Universidad de Sevilla, Av.
Reina Mercedes, Seville, 41012, Spain {benavides, jagalindo} @Qus.es
b Institute of Software Engineering and Programming Languages, University of
Ulm, Albert-FEinstein-Allee 11, Ulm, 89069, Germany chico.sundermann@uni-ulm.de
¢CRC 1608, KASTEL — Dependability of Software-intensive Systems, Karlsruhe Institute of
Technology, Am Fasanengarten 5, Karlsruhe, 76131, Germany kevin.feichtinger@kit.edu
4 Christian Doppler Laboratory VaSiCS, LIT CPS Lab, Johannes Kepler University
Linz, Altenberger Strafie 69, Linz, 4040, Austria rick.rabiser@jku.at
¢ Institute of Software Engineering and Automotive Informatics, TU
Braunschweig, Muhlenpfordtstr. 23, Braunschweig, 38106, Germany
thomas.thuem@tu-braunschweig.de

Abstract

Feature modelling is a cornerstone of software product line engineering, provid-
ing a means to represent software variability through features and their rela-
tionships. Since its inception in 1990, feature modelling has evolved through
various extensions, and after three decades of development, there is a growing
consensus on the need for a standardised feature modelling language. Despite
multiple endeavours to standardise variability modelling and the creation of
various textual languages, researchers and practitioners continue to use their
own approaches, impeding effective model sharing. In 2018, a collaborative
initiative was launched by a group of researchers to develop a novel textual lan-
guage for representing feature models. This paper introduces the outcome of
this effort: the Universal Variability Language (UVL), which is designed to be
human-readable and serves as a pivot language for diverse software engineering
tools. The development of UVL drew upon community feedback and lever-
aged established literature in the field of variability modelling. The language
is structured into three levels —Boolean, Arithmetic, and Type— and allows for
language extensions to introduce additional constructs enhancing its expressive-
ness. UVL is integrated into various existing software tools, such as FeatureIDE
and flamapy, and is maintained by a consortium of institutions. All tools that
support the language are released in an open-source format, complemented by
dedicated parser implementations for Python and Java. Beyond academia, UVL
has found adoption within a range of institutions and companies. It is envisaged
that UVL will become the language of choice in the future for a multitude of
purposes, including knowledge sharing, educational instruction, and tool inte-
gration and interoperability. We envision UVL as a pivotal solution, addressing
the limitations of prior attempts and fostering collaboration and innovation in

Preprint submitted to Journal of Systems and Software January 9, 2025

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

the domain of software product line engineering.

Keywords: feature model, software product lines, variability

1. Introduction

Feature modelling [48], a crucial component of software product line engi-
neering, is one of the most used approaches for representing software variability
through the abstraction of features and their relationships [7]. A feature is de-
fined as an increment in product functionality [8]. A software product line is
modelled using a Feature Model (FM) where features are arranged in a tree-like
structure with additional cross-tree constraints. FMs with thousands of features
are reported in the literature [15, 53, 69, 85]. FMs are represented using feature
diagrams but can also be represented using different textual notations. Tex-
tual notations for FMs range from XML-based to tool-specific ones [11]. Over
the past thirty years, the evolution of feature modelling has given rise to diverse
extensions and representations [26]. However, the absence of a standardised lan-
guage has impeded effective model sharing among researchers and practitioners,
hindering progress in the field.

The year 2018 marked a turning point as a collaborative initiative emerged
intending to address the standardisation challenge. This initiative brought to-
gether a group of researchers from different universities and research centers
under the umbrella of the MODEVAR! workshop series. This effort was dedi-
cated to crafting a new textual and simple language for FMs [82]. The outcome
of this collective effort is the Universal Variability Language (UVL), a solution
designed to be both human-readable and a pivot language for a variety of soft-
ware engineering tools.

UVL’s development was not only informed by community feedback but also
based on established literature in the field of variability modelling. The lan-
guage is meticulously structured into three levels —Boolean, Arithmetic, and
Type— allowing for a representation of different features and varying types of
relationships. Furthermore, UVL embraces extensibility, permitting the intro-
duction of additional constructs to enhance its expressiveness and accommodate
diverse modelling needs.

UVL is integrated into existing variability modelling tools, such as Fea-
tureIDE [50] and flamapy [38]. All the tools that support the language are
available in an open-source format, complemented by dedicated parser imple-
mentations for Python and Java using ANTLR, [70]?, which allows designing
parsers for other languages. This openness paired with a structured process
to involve the community encourages transparency, collaboration, and wider
adoption.

We envision an impact of UVL beyond academia, with institutions and com-
panies recognising its potential. As an example, an importer for UVL models

'https://modevar.github.io/
?https://www.antlr.org/

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

=3

9

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

was already integrated in a commercial variant management tool [76]. UVL
could be used as the language of choice for a myriad of applications, including
knowledge sharing, educational instruction, and seamless tool integration. The
broad vision for UVL is to overcome the limitations of previous standardisa-
tion attempts, such as the Common Variability Language (CVL) [39] or ISO-
26558 [46]. CVL [39] eventually and unfortunately failed to become a standard
due to legal reasons [72] and ISO-26558 [46] did not reach the community and
industry. However, as UVL is community driven, we envision UVL to foster col-
laboration and innovation within the realm of software product line engineering.

In this paper, we delve into the development, features, and applications
of UVL, offering a comprehensive exploration of its significance in the evolving
landscape of variability modelling. The contributions of the paper are as follows:

e A tutorial presentation of UVL with a stable version of the language (Sec-
tion 4) validated by different rounds of participation by the community.

e An extensible language design that provides expressive language features
while preserving simplicity with a core language divided into three major
levels and an option to decompose large feature models.

e A formal textual syntax and semantics of UVL (Section 5).

e An open source implementation® of the language with parsers for Python
and Java using ANTLR that allows supporting new general languages such
as JavaScript or C# in the future (Section 6).

e A report of our experiences regarding the feasibility of the language based
on an interactive and participated process with the community (Section 3)
as well as the integration of UVL with different tools (Section 6).

Regarding novelty since previous publications [34, 67, 76, 82, 87|, different
changes have been introduced and no stable version of UVL was presented so
far. The formal syntax of this stable version of UVL as well as the parser
implementation supporting Java and Python are new. Furthermore, this work
includes the first formal specification and discussion on the semantics of UVL.

The remainder of the paper is structured as follows. Section 2 introduced
the necessary background on FMs. We outline the development process and
the design goals of UVL in Section 3. After that, we introduce the UVL in a
tutorial-like manner and discuss its syntax and semantics in Sections 4 and 5,
respectively. We provide an overview of the current UVL implementation and
existing tools integrating UVL in Section 6. We then discuss challenges and next
steps regarding further adoption of UVL in general and in industry in particular
in Section 7. Section 8 concludes the paper.

2. Feature Models

The term Feature Model (FM) was coined by Kang et al. in the well-known
FODA report in 1990 [48]. Since then, feature modelling has been one of the

Shttps://github.com/Universal-Variability-Language

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

116

117

main topics of research in software product lines [37, 35]. There are different
FM dialects [81], each with different types of features or relationships, but also
with different textual and graphical notations. In the following, we review the
most used notations for those languages to pave the way for the presentation of
UVL. In general, there is no FM language that can be used in all scenarios and
adaptations are often done for concrete domains [6].

A FM is a representation of all possible configurations of a software product
line [35]. Given n features, with no restrictions in the combinations of them,
2™ is the number of all potential configurations. With a small n in terms of
hundreds, the number of configurations is already very big. An FM restricts
this number using feature relationships that represent the constraints of the
application domain. FMs are also used in other domains than software product
lines such as video encoding [6], biological information [17] or exam options [55]
just to mention a few examples. One of the most used examples in the commu-
nity is the Linux kernel FM, which has thousands of modules and configuration
options [88]. Furthermore, large FMs from other domains, such as automotive,
with thousands or even tens of thousands of features were reported in the liter-
ature [53, 51, 85, 15]. Still, there might be even larger FMs used in practice as
FMs from industry are typically not made available.

Legend:

‘ Hi/gh ‘ ‘ Star;dard ‘ ‘ Bank T/ransfer‘
- (Banktransfer A Mobileapp)
Credit Card = High

Cre‘d‘i‘t Card ‘ ‘ Mobile App ‘ ‘ Browser‘ O Optional
A Or

A\ Alternative

Figure 1: Running example of the online shop case study [75]

Figure 1 shows our running example of the FM for a fictitious eShop product
line. A FM is composed of a hierarchically arranged set of features (a.k.a. feature
diagram or feature tree) and a set of cross—tree constraints. FMs that do not have
cross—tree constraints can exist, but they are not very common. Relationships
among features can be of two different types [13]:) relationships between a
parent feature and its child features; i) cross—tree constraints that are typically
inclusion or exclusion statements or more complex constraints in the form of
arbitrary (propositional) formulae.

There are several FM dialects [81]. In this section, we will revisit the most
used relationships in the literature and also mention some of the extensions pro-
posed. In basic FMs, the following relationships among features are defined [13]:

e Mandatory. A child feature has a mandatory relationship with its par-
ent if the child is part of all configurations in which its parent feature is
included, e.g., any configuration of an eShop has to have a Catalogue.

e Optional. A child feature has an optional relationship with its parent if

119

120

121

122

123

124

125

126

127

128

129

130

131

133

134

135

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

the child can optionally be part of all configurations in which its parent
feature is included, e.g., a configuration of an eShop can optionally have
SEQ support.

e Alternative. Child features have an alternative relationship with their
parent if exactly one of them can be part of a configuration if the parent
feature is included. In the example, the Payment of the eShop must be
either Banktransfer or Credit card (but not both in the same configu-
ration).

e Or. Child features have an or relationship with their parent if one or more
of them can be part of the configuration if the parent feature is included.
In Figure 1, whenever Platform is selected, Mobileapp, Browser or any
combination thereof including at least one of these two features can be
selected.

Note that always a child feature can only be part of a configuration if its
parent feature is part of the configuration. Additionally, the root feature is
included in all the configurations of the product line. A FM can also contain
cross—tree constraints between features — basic ones are the following:

e Requires. If a feature A requires a feature B, the inclusion of A in a
configuration implies the inclusion of B in such a configuration. In the
example, an eShop including Credit card must include High security
support.

e Excludes. If a feature A excludes a feature B, both cannot be in-
cluded in the same configuration, i.e., there is a feature exclusion. The
Banktransfer feature cannot be combined with a Mobileapp, i.e., these
two features are incompatible.

More complex cross-tree relationships are often used allowing constraints in
the form of generic propositional formulas, e.g., “A and not B implies C” [8]. In
some cases, there is a distinction between concrete and abstract features [90].
Concrete features have a mapping with domain implementation artefacts in the
solution space [7], while abstract features are used for organisation purposes and
do not have any direct mapping to any artefact in the solution space. Often, only
leaves of the tree are concrete features and all the other intermediate features
are abstract [9].

2.1. Feature Model Extensions

There are different ways to extend FMs with different constructs. The most
well-known families of extensions are cardinality—based and attribute—based FMs.
These extensions include a discussion that has been going on in the community
over the years: what are the semantics of feature cardinalities, cloning, or at-
tributes? [18, 20, 27, 74, 80] In this section, we do not repeat such discussions in
detail. In following sections when UVL is presented, more details on how those
discussions are taken into account will be reported.

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

Cardinality—based FMs introduce two relationships that resemble those of
the Unified Modelling Language (UML) with multiplicities in class diagrams —
see [19, 74]. The relationships introduced in cardinality—based feature modelling
are the following [13]:

e Feature cardinality. A feature cardinality is a sequence of intervals
[n..m] with n as lower bound and m as upper bound (n < m). Feature
cardinalities are also known as feature clones. The intervals describe the
number of instances of the feature that can be part of a configuration.
This relationship may be used as a generalisation of the original mandatory
([1,1]) and optional ([0, 1]) relationships defined in classical FMs described
previously. Cloning a feature means having different instances of the same
feature several times in a configuration.

e Group cardinality. A group cardinality is an interval (n..m), with n
being the lower and m the upper bound (n < m) limiting the number
of child features that can be included in a configuration when the parent
feature is selected (remember that if the parent is not included in a con-
figuration, none of its children are included). An alternative relationship
is equivalent to a (1..1) group cardinality. An or-relationship is equivalent
to (1..N), being N the number of features in the relationship.

Attribute—based FMs. In certain situations, FMs include additional infor-
mation about the features. For example, the cost or memory consumption of a
particular feature in an eShop configuration. Such information can be included
using feature attributes, which are designed for this specific purpose. When FMs
are expanded by including additional information in the form of attributes, they
are referred to as extended, advanced, or attribute-based FMs [6]. Most propos-
als of attribute-based FMs agree that an attribute should consist at least of a
name, a type, a domain and a value.

3. Development Process and Design Goals of UVL

We first describe how UVL was developed in a participatory effort in the
SPL community and then summarise its design goals.

3.1. Participatory Development Process

UVL is the result of a community effort that started in 2018 as depicted
in Figure 2. The idea began with an informal meeting at SPLC 2018 with
around twenty key researchers from the SPL community. After a brainstorming
session, we agreed on several action points. Among those, it was decided to run
a workshop (MODEVAR?) to be “an interactive event where all participants
shall share knowledge about how to build up a simple feature model language
that all the community can agree on”.

4https://modevar.github.io/

198

199

200

201

202

203

205

206

207

208

209

210

212

213

214

215

216

217

218

219

220

221

MODEVAR

=~ \
. . . - « FeaturelDE integration « Stable parser(Python, Java) \

| Desgin decisions survey | « UVL repository « Stable language levels !
|

7) i3 i |
|

|

|

|

|

|

|

|

|

|

|

|

o) (o) (o) (o) (o) () (oo

v v

« Textual languages surve) N . : : "

guag 4 « Transformation strategies « pure:variants integration
+ Language levels « Python analysis « First language proposal
+ Usage scenarios V! y: ‘guage prop

\
! UVL related |
X UVL Tutorials papers @ SPLC !
! |
: [2022] [2023] [2021 J [2023] [
i)
\ 7

Figure 2: UVL development process since 2018

In the 2019 edition [12], the main outputs were a revisited literature review
on textual variability modelling languages [11], the proposal of having different
language levels [91] and a set of fourteen usage scenarios of the language [14]
described by examples. Those scenarios were the result of a systematic process,
where members of the community gave original descriptions, which received
feedback via a survey and expert feedback. The survey, the language levels, and
the usage scenarios were used for the next steps in the process.

During the 2020 VaMoS event, a survey (results later published at SPLC
2021 [82]) aimed at informing the language’s design decisions was performed.
This survey comprised a questionnaire administered to 20 workshop attendees.
In the initial part of the questionnaire, participants shared their preferences
concerning the gathered structural attributes of the language. Subsequently,
in the latter part, attendees deliberated on which language features should be
incorporated based on their considerations. Throughout the questionnaire, par-
ticipants collaborated in pairs to deliberate on their viewpoints and offer more
meticulously considered responses.

The workshop was run again in 2020 at SPLC [2] (online due to the pan-
demic). Transforming different variability models is a challenge, in [32] us-
age scenarios, required capabilities and challenges for an approach for semi-
automatically transforming variability models were presented. One of the con-
clusions was that a pivotal common language can help to transform variability
artifacts and underlines the necessity of UVL in this sense as a pivotal language
for transformations. In addition, a new tool based on Python to analyse FMs
was presented [36] with the potential of including UVL as variability language

222

223

224

225

226

228

229

230

231

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

252

253

254

255

256

257

258

259

260

261

262

263

265

266

(see Section 6.2.3).

In 2021 [89], two concrete integrations of UVL in different tools were pre-
sented. First, an integration of one of the previous versions of UVL in Fea-
turelDE showed the feasibility of the language [84]. Second, a prototype of a
repository to share UVL models was presented [77]. This way, some of the ob-
jectives of the language started to materialise: tools integration and knowledge
sharing (see Section 6).

In 2022 [45], another integration, in this case with a commercial variant
management tool was presented [76]. Concretely, UVL was integrated with
pure::variants [71], one of the most well-known commercial tools in the software
product line engineering area. In addition, a first tutorial on a previous version
of UVL was given.

During these years, some tools integrated different versions of UVL produc-
ing their own parsers [38, 57, 41]. In 2023, there was an implementation effort
to produce a common stable parser of UVL with support for Python and Java.
This parser was briefly introduced during the MODEVAR 2024 edition at Va-
MoS 2024 and it is one of the contributions of this paper (cf. sections 4 and
6). Additionally, further developments around UVL and its expressiveness were
presented [5, 43, 78].

In 2024 a second MODEVAR edition took place [30]. This time the focus of
the community turned towards the adoption of UVL in industry. For that, po-
tential challenges [73] and necessary extensions [29] for UVL were discussed with
a representative of pure::variants [71]. Additionally, a generator for UVL mod-
els in arbitrary size and complexity was introduced, which facilities scalability
analysis [86].

Although MODEVAR has been the meeting point of researchers and prac-
titioners with interest in the development of a simple, common textual feature
modelling language, the outputs and discussions of the workshop served to pro-
duce other artefacts outside of the workshop [52, 83]. Concretely, there were
two tutorials at SPLC 2022 and 2023 presenting the advances of UVL as well
as analysis and transformation capabilities. Also, there were two major papers
at SPLC 2021 and 2023 presenting a first version of the language [82] and some
transformation and analysis capabilities [87].

In summary, one unique selling point of UVL is the community-driven design
of the language [82]. With various surveys and discussions with experts of the
community, different authors derived requirements for the design of a widely
adopted variability language [11, 12, 14, 82, 91]. In the following, we present
derived requirements that influenced the language design and how we address
these in UVL.

3.2. Design goals

Designing a language is difficult [92]. With the participatory process de-
scribed in the previous section, we mitigated the possibility of having a language
that was not accepted by the community. With the inputs of the workshops
and working sessions, we defined several design goals that are summarized as
follows:

267

268

269

270

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

292

293

294

296

297

298

299

300

301

302

303

304

Simplicity. In general, UVL should be simple to use. For simplicity, we con-
sider two dimensions: (1) UVL should be easy to use, understand (with simple
constructs), learn and comprehend (facilitating the comprehension of the vari-
ability in hand) for humans [14] and (2) it should not require too much effort
to integrate UVL in variability modelling tools. For human understandability
and comprehension, UVL should use concepts familiar to users. As potential
users, we consider people working in the computer science field and/or using
variability modelling. Hence, we aim to use concepts from programming lan-
guages, modelling in computer science (e.g., grammars or meta-models), and
existing variability languages. For easier integration, we consider the following
requirements for UVL. First, the core language should be simple so that develop-
ers do not have to integrate various complex constructs. Second, the language
should reuse existing concepts from other variability languages, e.g., common
keywords like alternative. Third, the core language should be simple to analyse
with conventional analysis tools used in the domain, such as SAT [22, 65, 93],
BDD [40] or #SAT solvers [53, 56, 85].

Information Hiding. In practice, it often makes sense to only work on small
subparts of a variability model. First, large variability models are typically
hard to oversee [3]. Second, different stakeholders commonly do not work on
the entire variability model but specific parts [3]. Hence, UVL should have a
mechanism to support focusing on a subset of interest.

Ezxpressiveness. To be widely applicable, one of UVL’s goals is to cover many
practical use cases. First, users of UVL should be able to specify constraints as
needed to describe the set of valid configurations, which may include proposi-
tional logic, constraints over numeric values, or even reasoning about content of
strings [11]. Second, UVL should be able to describe constructs used in available
feature modelling tools [4, 38, 61, 64].

Extensibility. A higher expressiveness conflicts with the goal of simplicity [91],
as more and potentially more complex language constructs need to be supported.
As a compromise in UVL, we aim to have an extensible language design with a
simple core language that can be easily adopted and extensions that introduce
more expressiveness. Here, we use the concept of language levels [91] that
encapsulate different language constructs and extend the UVL core language.

Exchange. Models of a common variability language should be exchangeable
between different tools [14]. For simplifying exchange, we consider two aspects.
First, available tool support (e.g., for parsing) should be reusable for different
users of UVL. Second, there should be a mechanism to exchange UVL models
between tools that support different levels of expressiveness.

305

306

307

308

309

310

317
318

319

320

321

323

324

325

326

4. The Universal Variability Language (UVL)

In this section, we illustrate how to specify variability models with UVL®
using our running example. The design of UVL consists of a simple base language
with several language extensions, which we call language levels (cf. Section 5).
Here, we start with a simple version and extend it iteratively to showcase more
expressive UVL language levels. For a formal description on the language, we
refer to Section 5.

4.1. Language Levels

In UVL, we use language levels to tackle expressiveness and extensibility
while preserving a simple core language. The idea is that users of UVL can limit
their models to specific language constructs. If a tool only supports very simple
constructs, higher language levels can be forbidden. If more expressiveness is
needed, additional language levels can be enabled.

Major Minor (optional)
Type
o —-m-- -
l Type Features }» - ‘{ String Constraints |
Arithmetic _ .-| Feature Cardinality ‘

’ Numeric Constraints % b <Z

\’ Aggregate Function ‘

Boolean

Boolean Features
Group Keywords {
B |

Boolean CTC |
Feature Attributes || | | " 77777

Group Cardinality | :
|

Figure 3: Language Level Hierarchy in UVL

Figure 3 shows the language levels currently available in UVL. Each language
level encapsulates certain language constructs. We distinguish between major
and minor language levels. The major levels have a hierarchical order. The
Boolean-level is the core language of UVL. The Arithmetic-level fully includes
the major Boolean level and extends it with numeric constraints over feature
attributes. The Type-level extends both with typed features, such as string or
numeric features. The goal of these levels is to separate the language according
to reasoning engines that could be used to reason about them. For instance, the
Boolean-level can be simply encoded as a SAT problem. Minor language levels

5We discussed different name alternatives for the proposed language and we decide to use
UVL because the intention is to make it an Universal language used by many stakeholders in
the variability modelling community.

10

327

328

329

330

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

are optional extensions of the major levels. The idea is to separate constructs
that can be analysed with the same reasoning engine but may require further
handling or are not always supported by available tools. They are not automati-
cally included in higher language levels. Group Cardinality extends the boolean
level with cardinality group relationships which enable selecting [n..m] features
from the group. Feature Cardinality and Aggregate Functions are optional ex-
tensions of the arithmetic level. They enable (1) selecting a feature multiple
times and (2) aggregates, such as sums, over numerical attributes, respectively.
String Constraints add constraints to compare strings and lengths of strings. In
the following, we showcase the different language levels by extending our base
example shown in Listing 1.

4.2. Boolean Level

Listing 1 shows our running example from Figure 1 in UVL syntax. The UVL
model consists of two main parts: the feature tree and the cross-tree constraints.
The tree hierarchy is represented using indentation. Keywords are used to spec-
ify the parent-child relationship. As in Figure 1, eShop has two mandatory and
three optional child features. Furthermore, exactly one Security option and ex-
actly one Payment option can be selected as denoted by the alternative-keyword.
For the feature Platform, the or-group denotes that at least one platform can
be selected. The cross-tree constraints are used to impose further limitations on
the features. For instance, Bank Transfer and Mobile App cannot be included
in the same configuration, i.e., they are incompatible features. Also, a Credit
Card requires a High security level. For the core language, the constraints are
limited to propositional logic.

In addition to feature dependencies, the UVL model contains some attributes
that provide information on the respective features. In our model, we have a
number attribute (price), a Boolean attribute (SEPA), and a string attribute
(URL). In the core language of UVL, attributes can only be used for storing
information about features that do not influence the validity of configurations.
Constraints over attributes are excluded in the core language, since the reason-
ing is considerably more complex and not straightforward to encode for many
automated reasoning engines, such as SAT solvers. Still, attributes are rele-
vant to (1) store tool-specific information, (2) attach general information to
features, and (3) can be used to compute metrics for configurations based on
user selections, such as a price.

For further information, comments can be added either single line with //
or multiple lines with /* <comment> */. All comments are discarded during
the parsing process.

Listing 2 shows an adaptation of the previous eShop but using now the
cardinality capacity for a feature group. Another change is the include at the
very top of the listing. The include mechanism allows users to specify explicitly
which language constructs are supported. This can be used for (1) providing
information on the contents of the language level and (2) ensure that users
do not introduce constructs that are not supported by the tool using UVL. In
the latter case, the UVL parser should provide information on the mismatch of

11

Listing 1: UVL Running Example: Core

1| features
eShop
3 mandatory // select all
Security
5 alternative // select ezactly one
High {Price 100}
7 Standard {Price 50+
Catalogue
9 optional
SEO
11 Payment
alternative
13 ?Bank Transfer” {Price 10, SEPA true}
?Credit Card” {Price 20}
15 Platform
or // select at least one
17 ”Mobile App”
Browser {URL "www.uvleshop.org’}
19
constraints
21 ! (?Bank Transfer” & ”Mobile App”)
?Credit Card” => High

37

N

declared and used levels. By default, i.e., when no language levels are specified
a3 in includes, all language levels are included. Each construct in the initial eShop
s Listing 1 is part of the core language. Group cardinality is a minor level of the
Boolean (i.e., core) language level. Including the minor level group-cardinality
s automatically includes its major level Boolean. In Section 4.3 and Section 4.4,
s we illustrate the other two major language levels in UVL, namely Arithmetic
s and Type, using our running example.

@

37!

o

Listing 2: UVL Running Example: Group Cardinality

379
380 1| include

381 Boolean.group-cardinality
3823
383 | features
384 5 Ca
385 Platform

386 7 [2..3]

387 ?Desktop App”

388 9 ”Mobile App”

389 Browser {URL ’www.uvleshop.org’}
Ll

s Group Cardinality. In addition to the specification of included language levels,
33 there are changes in the feature tree. Now, in Listing 2 the customer has three
s34 Platform options to choose from. In addition, the group-type changed to a
a5 group cardinality. The group denotes that the customer needs to select between

w6 two and three ([2..3]) platform features instead of at least one.

©

12

397

398
399

400

402

403

404
405 1

406
407 3
408
409 5
410
4117
412
4139
414

a3t

417
418
419
420
421

422

423
4241

425
426 3
427
428 5
429
430 7
431
4329
433
4341
435
4363

4%

439

440
441
442

443

4.8. Arithmetic Level

In this section, we extend our FM with constructs from the Arithmetic-level
and its minor levels. Listing 3 further enriches our eShop with an arithmetic
constraint over the price attribute. The constraint denotes that the overall sum
in price of all selected features should be smaller than 200. With the Arithmetic-
level, the following operators are supported: +, -, *, /, ==, <, >, <=, and >=.
The minor level aggregate-function also introduces sum() and avg().

Listing 3: UVL Running Example: Arithmetic

include
Boolean.group-cardinality
Arithmetic.aggregate-function

features

constraints
! (?”Bank Transfer” & ”Mobile App”)
?Credit Card” => High
sum(Price) < 200

Feature Cardinality. In Listing 4, we introduce feature cardinality, which is a
minor level of the Arithmetic-level. In our example, the user can decide to have
between one and five Catalogue features as denoted by cardinality [1..5]. A
customer may select varying catalogues for different markets, e.g., Europe and
North America. Note that each selected Catalogue would increase the overall
price by 30.

Listing 4: UVL Running Example: Feature Cardinality

include
Boolean.group-cardinality
Arithmetic.aggregate-function
Arithmetic.feature-cardinality

features
eShop
mandatory
Security
alternative
High {Price 100}
Standard {Price 50+
Catalogue cardinality [1..5] {Price 30}

4.4. Type Level

Listing 5 shows the last version of our eShop with all language levels in-
cluded. Here, we newly added the Type-level, which introduces features with
the following types: integer, float, and string. Note that any feature can still
be deselected even if it is not Boolean. For, instance the customer can now

13

10

12

14

16

18

20

22

24

26

28

32

445

446

448

449

450

451

452

453

454

455

456

457

458

Listing 5: UVL Running Example: Typed Features

include
Boolean.group-cardinality
Arithmetic.*
Type.string-constraints

features
eShop
mandatory
Security
alternative
High {Price 100}
Standard {Price 50+
Catalogue cardinality [1..5] {Price 30}
Integer ”Items in Basket”
optional
SEO {Price 40}
Payment
alternative
”?Bank Transfer” {Price 10, SEPA true}
?Credit Card” {Price 20}
Platform
[2..3]
”Desktop App” {Price 70>
Boolean ”"Mobile App” {Price 80}
String Browser {Price 20}
constraints

! (?Bank Transfer” & "Mobile App”)
”Credit Card” => High

sum(Price) < 200

0 < ”Items in Basket”

len(Browser) < 30

configure an integer feature Items in Basket, which can be used to limit the
maximum number of items a customer can put in his basket at the same time.
A cross-tree constraint ensures that the maximum number of items is higher
than zero. Further, Browser is now a string feature where the URL can be
directly configured. Another cross-tree constraint denotes that the URL may
not be longer than 30 characters. The used len-function is part of the string-
constraints minor level which also introduces equality checks between strings.
Note that we also replaced the two lines for specifying both minor levels of the
Arithmetic level with a wildcard Arithmetic. *.

4.5. Import Mechanism

With thousands of features and constraints in practice [58, 53, 85], FMs
are often hard to overview. Further, stakeholders often only need to consider
a subset of the FM. To simplify managing large FMs and focusing on parts of
interest, UVL provides a mechanism for decomposing models into subparts that
can then be imported in an overall model if needed.

14

459

460

461

462

463

465

466

467

468

469

470

472

473

474

475

476

478

479

Listing 6 showcases the import mechanism of UVL where we have the Platform
subtree (Listing 7) and the Security subtree (Listing 8 as separate files. Those
subtrees are imported using the imports-keyword. Imports are specified using
a relative file path to the imported UVL model. For instance, platform refers
to a file in the same directory named platform.uvl. Non-trivial paths can be
specified with a Python-like dot notation (e.g., submodels.platform). Imports
can also be given an alias with the as keyword. The submodel can then be at-
tached to an arbitrary location in the feature tree by referencing its root feature
(e.g., pl.Platform). In the cross-tree constraints all features of submodels can
be referenced using the submodels’ namespace. The shown model (Listing 6)
is equivalent to Listing 5. Semantically, the feature reference in the composed
model is expanded to include the entire subtree. For instance, pl.Platform
references the entire FM in Listing 7. Also, all cross-tree constraints in the im-
ported submodels are applied for the composed model. Cross-tree constraints
in the composed can reference features from imported submodels using the file-
name or alias and the feature name. For example, in line 21 pl."Mobile App"
is referenced. The import mechanism may have the following two advantages for
our running example. First, Listing 6 is shorter and easier to overview than the
entire model shown in Listing 5. Second, a developer only responsible for plat-
form or security development can separately work on the submodels Listing 7
and Listing 8, respectively.

15

N

480
481

482 2
483
484 4
485
486 6
487
488 8
489
4900
491
49202
493
4944
495
4966
497
498 8
499
50@0
501
5022
503

3084

Listing 7: UVL Running Example: Platform Submodel

features
Platform
[2..3]
?Desktop App” {Price 70}
Boolean ”Mobile App” {Price 80}
String Browser {Price 20}

constraints
len(Browser) < 30

Listing 8: UVL Running Example: Security Submodel

features
Security
alternative
High {Price 100}
Standard {Price 50}

Listing 6: UVL Running Example: Import Mechanism

imports
platform as pl
security

features
eShop
mandatory
security.Security
Catalogue cardinality [1..5] {Price 30}
Integer ”Items in Basket”
optional
SEO {Price 40}
Payment
alternative
?Bank Transfer” {Price 10, SEPA true}
”Credit Card” {Price 20}
pl.Platform

constraints
!(?Bank Transfer” & pl.”Mobile App”)
?Credit Card” => security.High
sum(Price) < 200
”Items in Basket” > 0

16

506

507

508

509

510

512

513

514

515

516

517

518

519

520

521

522

523

525

526

527

528

529

530

532

533

534

535

536

537

538

539

540

541

542

543

545

546

Summary. UVL provides a simple core language and an import mechanism that
enables decomposing models into manageable small submodels to tackle its de-
sign goal simplicity. Additional language levels provide more expressiveness
with constructs to specify cardinalities, different constraints over numeric val-
ues, typed features, and constraints over strings. The design of the language
levels is extensible to allow different users to tailor their UVL models to their use
case and tool limitations. We used this section to introduce UVL with an exam-
ple, in Section 5 we define UVL models more formally and discuss the semantics
of different constraints.

5. Syntax & Semantics: Language Specification

In this section, we discuss the syntax and semantics of UVL more formally.
The goal is to clarify possible ambiguities and provide clear guidelines on how
to interpret UVL and work with the language. Note that we use some concepts
here requiring computer science background to understand.

5.1. UVL Syntax

Figure 4 shows a simplified view on the abstract syntax of a UVL model in
form of a meta-model (more details on concrete parts of the meta-model will be
elaborated later). A UVL model consists of four major parts: imports, language
levels, feature tree, and cross-tree constraints. In the following, we explain the
four major parts in more detail and the language constructs that can be used
within.

Imports. As discussed in Section 3, decomposing a feature model into smaller
sub-parts is beneficial. Still, knowledge about cross-dependencies between those
sub-parts needs to be maintained as they may impact the configuration space.
With UVL, we support composition of various smaller sub-models with an import
mechanism. Hereby, another UVL model can be imported via import submodel.
Then, the submodel can be referenced at an arbitrary location in the feature
tree with submodel.Root. Note that Root is the name of the root feature here.
While the composed model only contains one line for adding the root feature,
this is semantically equivalent of copying the entire sub-model at this location.
Cross-tree constraints of the sub-model also apply for the composed model.
Constraints between features of different sub-models can be specified using the
same syntax as in the feature tree (e.g., submodell.A & submodel2.B). For each
import, an alias can be specified with the as-keyword (e.g., import submodell
as s1). Features can then be referenced with s1.A. Submodels in other, possibly
nested, directories can be referenced with <diri1>.<dir2>.<uvlfile>.

Language Levels. Language levels can be explicitly specified with the include
keyword. The included language levels are listed in separate lines using the
syntax <major>. (<minor>|*)?. So, one line can either specify a major level
(<major>), a minor level (<major>.<minor>, or all minor levels (<major>.*). If
a developer violates the language levels by adding an unsupported construct, the

17

UVL Model

0..1 0..1 1 0..1

| Imports | Language Levels Feature Tree | Constraints |

L D SR

0..* 0..* 1 0..*
Import Language Level Feature Constraint
path : String Major-level : String [1..1] name : String
alias : String Minor-level : String [0..1] lower : int
upper :int
attributes: List<Attribute>

1 1.%

parent » <« parent
0.* 1

Group

Figure 4: UVL Meta Model

18

547

548

549

550

552

553

554

555

556

557

558

559

560

562

563

564

565

566

568

569

570

571

572

573

576

577

parser would provide a warning or error to him. Note that using a minor level
always includes the respective major level. By default, all language levels are
included. Hence, not specifying any level includes enables the full expressiveness
of UVL.

Figure 3 shows the language levels currently supported in UVL and the lan-
guage constructs they include. The three major levels Boolean, Arithmetic,
Type encapsulate language constructs that can be reasoned about with a spe-
cific reasoning engine. For instance, UVL models of the Boolean level should be
straightforward to encode as a SAT instance (e.g., CNF)[8, 54]. In contrast, the
Arithmetic level can be directly represented as SMT [24] or CP [47] problem,
but requires further processing to be encoded as SAT instance.

parent »
| Feature | 0..* 1 | Group |
« parent
1 0..* JAN
[l i e Lt---Z-F -5 [1
I I ! I I
| Optional | | Mandatory | | Or | | Alternative Cardinality
lower: int
upper: int

Figure 5: UVL Feature-Group Types

Feature Tree. The UVL feature tree consists of two main elements: features and
groups. The tree requires exactly one root feature. Each feature may have an
arbitrary number of groups which in turn may have an arbitrary number of
features each. The relationship between features and groups are denoted with
indentation. For a feature, its corresponding groups are indented by one line
and vice versa for groups. A feature always requires a unique name as identifier.
Here, the identifier needs to be enclosed by quotation marks if the used symbols
may introduce an ambiguity in the UVL model.® Each feature can have a feature
cardinality [n..m], which denotes that the feature can be selected between n and
m times. Also, a list of attributes {attl, att2, ...} can be attached. There are five
feature group types supported in UVL as seen in Figure 5. Optional, mandatory,
or, and alternative are part of the core (Boolean) level, while group cardinality
is a Boolean minor level.

Feature Attributes. For each feature, an arbitrary number of attributes can
be attached. Generally, attributes are key-value pairs with the key being an
identifier and the value being of one of the types shown in Figure 6. One
exception is that it is allowed to only specify a key, which is then considered as
Boolean attribute with true as value. The attributes of a feature are declared in
curly brackets as follows: {<keyl> <vall>, <key2> <val2>}. Nested attribute
lists can be specified with {<key> {<keyl> <vall> ...}}. Types of attributes

S1dentifiers not matching [a-zA-Z0-9_]1*[a-zA-Z_] [a-zA-Z0-9_]* must be protected.

19

ss are not explicitly stated but rather inferred from the value. String constants
so (i.e., values of string attributes) are specified with single quotation marks to
s prevent ambiguities with feature names.

Attribute

name : String < has
value : <Type> 1.*%

Boolean Integer Float String AttributeList

Figure 6: UVL Feature Attributes

s Constraints. The constraints part of a UVL model consists of a list of constraints
ss2 that can evaluate to either true or false. A valid configuration needs to satisfy
ss3 every attached constraint. In UVL, constraints are mostly based on common
ss¢ propositional logic operators, namely ! (not), & (and), | (or), => (implies), <=>
sss (equals), and brackets. These operators combine Boolean variables, Boolean
6 constants (i.e., true or false), or predicates(cf. Figure 8), which each need to
ss7 evaluate to a Boolean. The Boolean variables can refer to either a feature name
sss Oor an Boolean-attribute key.

Constraint

<« connects

<« negates
]]]]]
Parenthesis Const. | Negation | | Predicate Reference Binary Const.
id : String
has »
1
Operator
1
r——-—-—-- r-—=-—-T-~----- 1
| And | | Or | |Imp|ication Equivalance

Figure 7: UVL Cross-Tree Constraint

20

589

590

591

593

594

595

596

597

598

599

600

601

602

603

604

606

607

608

609

610

612

613

614

615

616

<« connects X

1 Predicate

2
1
Term has »

1

Operator
4

- - -~ - - -~~~ it - - -~ - Iy S 4 I
Equals Greater Lesser Unequals| |Greater Equals| |Lesser Equals

Figure 8: UVL Predicates

Predicates. Predicates are used in UVL to specify dependencies based on string
and numerical values. As shown in Figure 8, each predicate has exactly one
operator of equals (== in UVL), greater (>), lesser (<), unequal (!=), greater
equal (>=), and lesser equal (<=). Note that each of these operators evaluates
to a Boolean value. Those operators connect two terms, which are illustrated
in Figure 9.

Terms can only be used within predicates in UVL. A term can be (1) a
reference to a variable, (2) a constant, (3) a function, or (4) a binary expression.
The referenced variables can be either features or attributes. Constants can be
either strings or numeric values. String constants are always enclosed with single
quotation marks to prevent ambiguities with references. Otherwise, it would be
impossible to distinguish between a string constant matching a feature name and
said feature. For functions, sum, average are currently supported for numeric
values and length for strings. The binary expression can connect two numeric
values with simple arithmetic operators, namely add (+ in UVL), subtract (-),
multiply (*), and division (/).

5.2. Constraint Semantics

In this section, we discuss the semantics of constraints in UVL considering
on how they affect the set of valid configurations. Our goal here is to clarify
potential ambiguities in the semantics of specific constraints. Table 1 shows a
formal definition of the restrictions different constraints impose on the config-
uration space VC (i.e., the set of valid, complete configurations modeled by a
UVL model). For C = (I, E), I is the set of included features and E of excluded
features. Further, f is a feature, p(f) the parent feature of f, s(f,C) the selec-
tion status of f in C, card(f, C) the cardinality of f in C. The selection status is
a function s : (feature, configuration) — {0, 1} that maps a feature selected (1)
or deselected (0). The cardinality of a feature card(f, C') describes the selection
of a feature as integer number. Note that features without denoted cardinality

21

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

642

643

644

encloses » < connects
Term
1 2
Parenthesis Exp. Constant Function Reference Binary Exp.
7

value : <Type> | |target: Reference | [id: String

______ T oo o= 1

r 1 ! has »

]] 1

Sum Average Length
T: Numeric T: Numeric T: String Operator
r-—-—--- F-t--q----- 1
| Add | |Subtract | | Multiply | | Division |

Figure 9: UVL Terms

can only have the values 0 and 1. G is a set of features and ¢ is an arbitrary
logical formula. The semantics of the different constraints are equivalent to the
descriptions in Section 2.

Feature Cardinality. The semantics of feature cardinality are not straightfor-
ward and drive discussions in research [21]. Generally in UVL, we consider sub-
trees induced by a cardinality as clones that can be configured separately. How-
ever, the current syntax does not support referencing specific clones, which re-
quires a default behaviour in handling feature cardinalities in other constraints.
In the following, we discuss how we interpret interactions between feature cardi-
nality and cross-tree constraints. We use Listing 9 to illustrate the interactions
of feature cardinalities within a simple UVL model. The feature A can be selected
between two and three times. As a consequence, the entire subtree including B
and C can be configured up-to three times. However, it is not straightforward to
interpret both cross-tree constraints. If we select A two times and also select D,
do we need to select C for every subtree clone as consequence of the implication
D = C? Or do we need to select at least one C? In the following, we explain on
how we interpret feature cardinalities with UVL.

Listing 10 shows a UVL model where we resolved the feature cardinality
to illustrate its semantics. The feature cardinality consists of three clones of
the original subtree within a group cardinality that ensures that [2..3] of those
subtrees must be selected. Listing 10 also depicts three variants to interpret
the cross-tree constraints. The first version contextual clone constraints is the
interpretation used in UVL. Here, we have copies of the cross-tree constraints
containing a feature from the feature cardinality subtree for each clone (i.e., A_1—-
A_3). Each of those constraints is only applied in its respective context (i.e., its
subtree is selected). For instance, (B_2 => C_2) only needs to be satisfied when
the second instance of A is selected. This is realised in UVL with the implication
A 2 => (B2 =>C_2). If the constraint would always be applied (i.e., only having

22

11

645

646

647

648

649

650

651

652

653

654

655

Table 1: Constraint Semantics

Constraint If C = (I,E) € VC this needs to hold
Feature f s(p(f), C) = s(f,C)
Root f s(f,C)=1
Mandatory f s(p(f),C) =s(f,C)
Group Cardinality [n..m] G n < Z s(f,C)<m
feaq
Alternative G Z s(f,C) =1
fea
Or G > s(f.0) =1
feG
Feature Cardinality [n..m] f n < card(f,C) <m
Cross-tree constraint ¢ SAT (¢ A /\ i A /\ —e)
i€l ecE

Listing 9: Cardinality Interactions in UVL

features
R
optional
A cardinality [2..3]
optional

B
C

D

constraints
B=>C
'D | (C&B)

right side of implication), the constraints would automatically apply for every
clone. In particular, when D is selected, it would be required to select every C_i
and in consequence every A_i. Hence, selecting D would enforce selecting three
instances of A. In addition to the contextual clone constraints, we have one copy
of constraints containing features that are part of the cardinality subtree and
ones that are not. Here, we replace each occurrence of a cardinality feature f
with an or over each of the clone features f; V...V f,,. For an example, see the
first cross-tree constraint in Listing 10. The idea of this constraint is to ensure
constraints with other features are met with at least for one clone. We assume
that this often matches the expectation for constraints such as D => C, where
one would expect that selecting D requires to have a C.

23

Journal Pre-proof

Listing 10: Cardinality Semantics Different Versions

features
2 A
[2..3]
4 Al
optional
6 B_1
C1
8 A2
optional
10 B_2
C2
12 A3
optional
14 B.3
C3
16 D

18| // Contextual Clone Constraints

constraints

20 DI ((C11C2|C3)&(B1|B2]|B3))
A1l=>(D&(C1 | B.1))

22 A2=> (D¢ (C2 | B2))

A3=>(D(C3 | B3))

24 Al=>(B1=>C.1)

A2 =>(B2=>C.2)

26 A3=>(B3=>C3)

24

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

672

673

674

675

676

678

679

680

681

683

684

685

686

687

688

689

690

691

Boolean Arithmetic Type

Group Feature Aggregate String
Cardinality Cardinality Functions Contraints

[Corefaf ------- - {care]s------

Figure 10: Language Levels in UVL

5.8. Conwversion Strategies

With the extensible language design of UVL, another problem arises: the
exchange of UVL models between tools that employ different language levels.
If tool A supports a higher language level than tool B, feature models of tool
A cannot be used in tool B. This may even be an issue for a single developer,
as different variability modelling tools have different capabilities and advan-
tages [62, 4, 64, 57].

With UVL, we tackle the issue of exchanging models with different language
levels by using conversion strategies. Note that we only consider translation
between different levels of UVL here in contrast to conversions to other vari-
ability languages as performed by tools such as TraVarT [34]. Figure 10 shows
the current language level hierarchy of UVL and conversion strategies between
them. A conversion takes a UVL model of a certain level and converts it to a
UVL model of the next lower level by replacing the constructs with semantically
equivalent constructs from the lower level. The possible conversions and their
directions are marked in Figure 10 with dashed arrows. For a minor level, its
next lower level is its major level (e.g., Boolean for group cardinality). For a
major level, its next lower level is the most expressive major language level that
is included (cf. Figure 3) by the level to translate. In Figure 10 the hierarchy
is illustrated from right to left with the rightmost (Type) having the highest
hierarchy. Since we have a conversion to the next lower level for every level, we
can transitively convert higher language constructs to lower ones. Also, we only
need to implement one additional conversion when introducing a new language
level. Note that models may exponentially grow in size when converted.

Table 2 shows the conversion strategies applied in UVL. The rows show the
source level, the target level when converting the source level, an illustration of
the construct in the source level, and the result of the respective conversion. For
Group Cardinality and Arithmetic-level, we provide a specific example in the
table for comprehensibility of the conversion strategy. For conversions of both
concepts, we specify the valid partial configurations over the features involved
according to the respective constraint. Involved are the features in the Group
Cardinality and the features occurring in the predicate, respectively. For Feature
Cardinality, we expand the Feature Cardinality by introducing the respective
number of clone (cf. Section 5.2). Note that we directly convert the Group
Cardinality according to the presented conversion strategy, since conversions do
not rely on other minor levels. For Aggregate Functions, we expand the function

25

692

693

694

695

696

by applying the operation on all features that have the respective attribute.
For the Type-level, we transform the features with different types to a boolean
feature which has an attribute according to the type of the original feature.
Currently, we just drop the string constraints from the Type-level, since we
found no way to represent those constraints with constructs from other levels.

26

doa(g (3)uer

dox(Jang, == odAT, SHUTRI)SU0D-SULI}S OdAT,
] J ueajoog
{0 Sumng} 3 j Suing
{0 yeora} j ¥ yeorq
{0 10829ur} 3 J I08eju] ONPWYILIY odAT,
AT ar]
T o g o) (v)3ae
DUl 4 el + oIS (p)mms SMPWIIIY UOIPIUNJ-0)eSoISTe O1)om Iy
wy
o
[
® [t u] AjpeurpIed ' - OTOWIIITY A[RUIPIRI-OINYRIJ D)W ILIY
I =q ‘or=qf ‘c=elf
(Ef v Ef)= A= 0z > 28 + qef +elf wea[oog] OBRUIHIY
¢f
ef
(f v ef v o)A ks
(ef vefu v If)A(Bfov e vIf) [e2] uea[00g Ayeurpres-dnois-ursjoog
PoLIDATIO)) reutStQ 1981e], 92IN0g

So1399eI)G UOISIDAUOY) 7 d[R],

27

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

77

718

719

720

721

722

723

724

725

726

727

728

729

730

732

733

734

735

736

6. UVL Implementation and Integration with other Tools

In this section, we introduce the reference parser implementation of the
UVL language. Further, we outline other tools integrating the UVL for various
purposes, including graphical editing, textual editing, analysis, configuration,
and transformation.

6.1. UVL Parser

The current UVL parser [87] extends the previous implementations by the
presented language levels discussed in the previous sections. The parser is based
on ANTLR [70] and is available as an open-source implementation in Java and
Python.” Listing 11 shows the syntax of a UVL model implemented in the parser
as a simplified grammar in an EBNF-like notation. The parser implements the
necessary conversion strategies between Boolean, Arithmetic, and Type-level of
UVL (cf. Table 2). A conversion only works from a higher level to the next lower
level to allow importing more expressive UVL models in tools that only build on
lower levels. Thus, concepts of the Type-level are converted to the Arithmetic-
level and these concepts are then converted to the core Boolean-level. Figure 10
shows the implemented language concepts, organised per level and highlighting
the conversion strategies. In previous work, we implemented parsers based on
Clojure [82] and Python [36], but both those parsers are limited to the Boolean
level of UVL.

6.2. Available Tooling

Several tools, such as FeatureIDE [61, 84], flamapy [38], TRAVART [34], or
variability.dev [43] have integrated UVL for different purposes. Most tools either
enable graphical [43, 61, 84] or textual [57] editing, analysis [38, 43, 57, 61, 67,
84], transformation [34, 67], or configuration [38, 43, 57, 61, 84] of UVL models.
Some tools, such as FeatureIDE [61, 84], flamapy [38] or Nemo [67] do support
multiple purposes at once. For instance, the UVLS [57] provides an implemen-
tation of the language server protocol to enable easy integration into existing
tools and additionally the configuration of UVL models. Other tools use UVL to
facilitate variability model interoperability via the transformation of variability
artefacts into UVL [34, 67]. Further, some tools, such as pure::variants [71, 76],
ddueruem [42], FM Fact Label [44], or V4rdiac [28], integrated UVL or one of
the tools supporting UVL to expand the range of supported variability artefacts
in their respective tool. Not all tools support all language levels of UVL. In the
following, we discuss the respective tools, their focus, and which UVL language
level they support. Table 3 summarises the discussed tools.

6.2.1. Graphical editing

FeatureIDE [61, 84] is the de-facto standard for graphical editing of feature
models. The Eclipse-based tool allows defining feature models using the core
of the UVL Boolean-level. Thus, UVL models created in FeatureIDE may con-
sist of optional and mandatory features, and each feature may consist of a set

TUVL Parser — https://github.com/Universal-Variability-Language/uvl-parser

28

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73

77
79

Listing 11: Simplified UVL Grammar in EBNF Notation

featureModel: includes? NEWLINE? imports? NEWLINE? features? NEWLINE? constraints? EOF;

includes: ’include’ NEWLINE INDENT includeLine* DEDENT;
includeline: languagelLevel NEWLINE;

imports: ’imports’ NEWLINE INDENT importLine* DEDENT;
importLine: ns=reference (’as’ alias=reference)? NEWLINE;

features: ’features’ NEWLINE INDENT feature DEDENT;

group
: ORGROUP groupSpec # 0rGroup
ALTERNATIVE groupSpec # AlternativeGroup
OPTIONAL groupSpec # OptionalGroup
MANDATORY groupSpec # MandatoryGroup
CARDINALITY groupSpec # CardinalityGroup

groupSpec: NEWLINE INDENT feature+ DEDENT;

feature: featureType? reference featureCardinality? attributes? NEWLINE (INDENT group+ DEDENT)?;

featureCardinality: ’cardinality’ CARDINALITY;
attributes: OPEN_BRACE (attribute (COMMA attribute)*)? CLOSE_BRACE;
attribute
valueAttribute
| constraintAttribute;
valueAttribute: key value?;
key: id;
value: BOOLEAN | FLOAT | INTEGER | STRING | attributes | vector;
vector: OPEN_BRACK (value (COMMA value)*)? CLOSE_BRACK;
constraintAttribute
’constraint’ constraint # SingleConstraintAttribute
| ’constraints’ constraintList # ListConstraintAttribute
conséraintList: OPEN_BRACK (constraint (COMMA constraint)*)? CLOSE_BRACK;
constraints: ’constraints’ NEWLINE INDENT constraintLinex DEDENT;

constraintLine: constraint NEWLINE;

constraint

: equation # EquationConstraint
reference # LiteralConstraint
OPEN_PAREN constraint CLOSE_PAREN # ParenthesisConstraint
NOT constraint # NotConstraint
constraint AND constraint # AndConstraint
constraint OR constraint # OrConstraint
constraint IMPLICATION constraint # ImplicationConstraint
constraint EQUIVALENCE constraint # EquivalenceConstraint

equation

: expression EQUAL expression # EqualEquation
expression LOWER expression # LowerEquation
expression GREATER expression # GreaterEquation
expression LOWER_EQUALS expression # LowerEqualsEquation
expression GREATER_EQUALS expression # GreaterEqualsEquation
expression NOT_EQUALS expression # NotEqualsEquation

expression:

FLOAT # FloatLiteralExpression
INTEGER # IntegerLiteralExpression
STRING # StringLiteralExpression
aggregateFunction # AggregateFunctionExpression
reference # LiteralExpression
OPEN_PAREN expression CLOSE_PAREN # BracketExpression
expression ADD expression # AddExpression
expression SUB expression # SubExpression
expression MUL expression # MulExpression
expression DIV expression # DivExpression

29

738

739

740

741

742

743

744

745

746

748

749

750

751

752

753

755

756

757

758

759

760

762

763

764

Tool Graphical Textual Config- Analysis Trans- Supported

Editing Editing uration formation Lang. Levels

FeatureIDE [61] v X v v X Boolean
flamapy [38] X X v/ v v Boolean
Nemo [67] X X X v v Boolean
TRAVART [34] X X X X v All

UVLS [57] X v v v X All

variability.dev [43] v/ X v v X Boolean
ddueruem [42] X X X v X Boolean
FM Fact Level [44] X X X v X Boolean
pure:variants [71] / X v v X Boolean
Virdiac [28] X X v X x All

Table 3: Tools integrating UVL either directly (upper part) or indirectly (lower part).

of optional and mandatory features themselves, or a single alternative, or an
or group. However, FeatureIDE also does not support feature and group car-
dinalities. Constraints are limited to propositional logic constraints. Feature
models created with FeatureIDE are usually serialised using an XML format.
However, the serialisation can be changed to the UVL format [84], using the
UVLFeatureModelFormat class.

The web-based feature-modelling tool variability.dev [43]® builds on the
ddueruem [42] analysis wrapper and the FeatureIDE [61] library. Thus, the
expressiveness of the created UVL models is the same as those created with
FeatureIDE and limited to the core of the UVL Boolean-level. However, us-
ing variability.dev, users have a low entry point for experimenting with feature
modelling as users do not have to install a complete Eclipse-based application.
Additionally, variability.dev allows collaborative editing of feature models. Cre-
ated feature models can be downloaded either as a graphical image (SVG) or
as a FeatureIDE XML file.

6.2.2. Textual editing

For textual editing of UVL models, Loth et al. [57] implemented the language
server protocol for UVL in the tool UVLS. The language server protocol enables
important language features, such as syntax highlighting, via a standardised
interface. Thus, it can be integrated into common development environments,
e.g., Visual Studio Code.? The current implementation of the language server
protocol supports all language levels of UVL and features several analysis tech-
niques [57] to enhance the textual editing of UVL models (cf. Section 6.2.3).
For instance, UVLS checks whether the created UVL model is syntactically and
semantically correct, e.g., avoiding void feature models. Furthermore, UVLS
allows the configuration of a UVL model in a simplified configuration editor,
similar to the one provided by FeatureIDE [61, 84].

8variability.dev — https://variability.dev/
9UVLS: https://marketplace.visualstudio.com/items?itemName=caradhras.uvls-code

30

765

766

767

768

769

770

771

772

773

775

776

77

778

779

780

781

782

783

784

785

786

788

789

790

793

794

795

796

797

798

799

800

801

802

803

804

805

6.2.3. Analysis

FeatureIDE [61, 84] can not only be used for graphical editing of feature mod-
els, but also for analysing them. Hence, FeatureIDE also enables the analysis of
UVL models. However, the analysis is limited to the core of the Boolean-level,
as this is the level supported by FeatureIDE (cf. Section 6.2.1).

The language server protocol implementation UVLS [57] provides syntactical
and semantical analysis capabilities. For the syntactic check of a given UVL
feature model, UVLS utilises the tree-sitter parser generator tool.' UVLS then
checks if the tree-sitter parser accepts the given UVL model as a valid input.
For the semantic analysis of a given UVL feature model, UVLS utilises the
Z3 solver [23]. The SMT solver allows detecting if a UVL model does not allow
valid configurations or contains any dead features or contradicting or redundant
constraints.

flamapy [38] is a Python-based analysis framework for feature models.!! The
tool is plugin-based, utilising a core plugin orchestrating the execution of other
plugins and also providing the hooks and frozen points of the framework [60].
Besides the core plugin, flamapy provides a feature model plugin, which supports
the core of UVLs’ Boolean-level and provides translations for PySAT, BDD
support, and various input formats such as FeatureIDE [61] and S.P.L.O.T. [64].
Currently, flamapy supports multiple different solvers via the support of the
PySAT4 metasolver!?, BDDs [40] and dependency graphs [59)].

Nemo [67] allows counting valid configurations of numerical feature models
via bit blasting [66]. The tool currently supports UVL as an input and output
format (cf. Section 6.2.4). Therefore, Nemo utilises the Boolean-level of UVL,
including group cardinalities. Based on the bit-blasted UVL model #SAT solvers
and BDD solvers [40] are executed to count the number of valid configurations
of the resulting model.

The online tool variability.dev [43] uses the analysis wrapper ddueruem [42]
and the FeatureIDE [61] library to perform basic analysis on a created feature
model. For instance, variability.dev detects dead features in a feature tree, or
faulty configurations in the configuration editor (cf. Section 6.2.5).

6.2.4. Transformation

TRAVART [34] is a plugin-based variability model transformation envi-
ronment.'3 At its core, TRAVART uses UVL as the pivot model. As the tool
builds on the current Java implementation, TRAVART supports all language
levels of UVL. Each plugin implements transformations between one variability
artefact type and the UVL. These transformations are usually built by mapping
core concepts of the supported variability model type onto the core concepts of
UVL and vice versa [31, 32, 33]. For instance, in the available plugin for the
DOPLER [25] decision modelling approach, a decision is mapped to a feature
in the UVL. Also, a rule in the DOPLER. decision model is mapped to either a

10tree-sitter: https://tree-sitter.github.io/tree-sitter/
M flamapy: https://flamapy.github.io/

12PySAT: https://pysathq.github.io/

B TraVarT: https://github.com/SECPS/TraVarT

31

806

807

808

809

810

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

828

829

830

831

833

834

835

836

837

838

839

840

841

842

843

844

845

feature property (mandatory), the feature model tree, or a constraint [33]. In
the opposite direction, the hierarchy of the UVL feature model tree is captured
via the visibility conditions of the DOPLER decision model.

Nemo [67] translates numerical feature models into UVL feature models using
bit blasting [66]. Therefore, the bit-blasted numerical feature model is captured
either as a DIMACS file, from which a UVL model is created or directly as
a UVL model. Using Nemo the created UVL model can then be analysed (cf.
Section 6.2.3).

6.2.5. Configuration

FeatureIDE [61, 84] also supports the configuration of feature models. Hence,
FeaturelDE also enables the configuration of UVL models which support the core
of the Boolean-level.

flamapy [38]** utilises the configuration of UVL models, which support the
core of the Boolean-level. flamapy uses the capability to validate if a config-
uration is valid for the given UVL model or to count valid configurations via
state-of-the-art SAT solvers.

UVLS [57] supports configuring a given UVL model using a dedicated edi-
tor. The configuration editor supports the configuration of UVL models of all
language levels. Therefore, UVLS presents a decision for each feature and its
feature attributes to configure a configuration. The editor indicates if the given
values for these features and their attributes still provide a basis for a valid
configuration for the UVL model.

The online tool variability.dev [43] allows configuring created feature models
using its configuration editor. The configuration editor supports the configura-
tion of UVL models using the core of the Boolean-level. By default, the editor
ensures that the selected configuration is valid, but also allows the configuration
of invalid configurations. Configurations can be downloaded as a FeatureIDE
configuration.

6.2.6. Others

UVL has also been either directly or indirectly, i.e., via one of the tools men-
tioned above, integrated into other tools. For instance, pure::variants [71] or
ddueruem [42] support UVL via import and export capabilities [76]. Similarly,
FM Fact Label [44] facilitates the visualisation of feature model metrics and sup-
ports common feature model formats, such as FeatureIDE [61], S.P.L.O.T. [64]
or UVL. Other tools, such as V4rdiac [28], integrated TRAVART [34] to achieve
variability model interoperability via the UVL or to facilitate the configuration
of Cyber-Physical Production Systems [63]. The UVLGenerator can be used to
generate UVL models whose structural properties can be customized according
to the user’s requirements [86]. Last but not least, UVLHub an open repository
with UVL datasets is available [79]'5.

Mhttps://www.flamapy.org/
https://www.uvlhub.io/

32

846

847

848

849

850

851

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

7. Discussion, Open Challenges and Future Work

To increase the adoption of UVL, its acceptance in industry is essential. To
achieve that, we need to address the challenges that industry is having regarding
variability modelling.

In 2020, Berger et al. provided some updates on industry challenges in
SPLE [16] elicited earlier. At the SPLC 2023 Industry Challenges Workshop
[10], 9 companies presented their challenges regarding variability management
and systems and software product lines and discussed research opportunities.
Addressing the challenges elicited in these recent works is essential for UVL to
ensure adoption by industry. Of the many challenges discussed, especially the
need to support multi product lines and system of systems product lines, effi-
cient PL verification and validation, and tool support for integrated variability
management across disciplines are relevant for the further development of UVL.
The already available tooling and the extensibility of UVL should already help
to address these challenges, however, further work needs to be done.

A recent paper [73] described specific challenges for UVL industry adoption,
which we include:

e work with industry to empirically validate UVL and demonstrate it actu-
ally works for realistic cases. Extend or adapt UVL if necessary. Create
demonstrators.

e develop extended tool support for modelling and configuration including
generators for domain-specific artefacts.

e bridge the gap between UVL models and web-based (sales) configurators
(see initial work by Abbasi et al. [1]).

e develop flexible mapping concept to support mapping of UVL features to
solution space artefacts.

e develop consistency checking support intra- and inter-UVL models as well
as between UVL models and artefacts.

e support the verification of UVL models and configurations

e support the automated creation of UVL models based on analysing existing
variability information and existing artefacts [49] to extract variability.

e integrate UVL with tools used in industry such as ALM/PLM tools.

e support product line maintenance and evolution, e.g., develop automated
refactoring support and a proper versioning concept and integrations with
version management frameworks.

e work on the scalability of UVL to real-world systems. The multi-modelling
concept of UVL thus should only be seen as a first step in this direction.

e investigate different visualisations of UVL models and configurations.

33

885

886

887

888

889

890

891

892

893

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

918

919

920

921

923

e provide material to train users as well as the advertise UVL.

e define UVL design patterns and guidelines [68].

Some of the challenges are being addressed and there are some solutions
available. In future work, we plan to work on some of these challenges and also
discuss them further with industry based on first case studies and demonstrators.
We envision that this paper can also foster the community to investigate these
challenges with further studies.

Besides industry adoption, we also plan to increase the adoption within the
software product line and variability modelling community and beyond to the
general software engineering community. Visibility at the main events as well as
demonstrators and examples, together with guidance material, are essential to
achieve that. Including further researchers in the MODEVAR initiative can have
a snowball effect, if the researchers also start to use UVL in their collaborations
with academia and industry as well as for teaching.

A key challenge to address is a more in-depth evaluation of UVL’s simplicity,
efficiency, and applicability in real-world scenarios. We show in this paper some
indicators about these aspects, but a formal evaluation is still missing.

The area of teaching is yet another big opportunity to increase the adop-
tion of UVL. The already existing documentation, example models, and UVL
playground!® are a very good starting point, however, we also need to prepare
specific material for teaching UVL. MODEVAR community members needs to
start using UVL in their teaching and report experiences.

8. Conclusions

During the last decades, feature modelling and analysis have been one of the
main research topics in software product line engineering. UVL is a new language
for textually modelling variability informed by a participatory process within
the software product line community. The language is being used in different
existing tools and is a proposal for the community to adopt in the future. A
single language cannot fit all the variability needs of different scenarios, unless
the language gets more and more complex to cover more needs. That is why UVL
is designed using different language levels and includes extension mechanisms.
As a result, UVL consists of a simple core language and allows users to extend
the language to their specific needs. UVL then allows users to support all UVL
models of other levels as well. Its simplicity allows information sharing among
researchers, and we envision that it can be used in other scenarios, not only in
software product lines.

Although the presented version of the language is stable, and we envision
no major changes in the future, if UVL is widely adopted as we pursue, many
challenges and research opportunities will appear. We plan to maintain and
eventually enlarge a consortium of researchers who discuss the progress of the

6https://universal-variability-language.github.io/

34

924

925

926

927

928

929

930

932

933

935
936
937
938
939
940
941
942
943
944

945

946
947
948
949

954
955
956

957
958
959

960
961
962

963
964
965

language and agree on the language’s evolution every year. We plan to en-
large and maintain the tool chain supporting UVL such as modelling [43, 84],
analysis [38] or sharing [77] capabilities. With UVL, variability modelling can be
adopted in many application domains and can be a central point for information
sharing, tools integration, and variability modelling learning.

Material

All the source code and data can be downloaded and executed from the following reposi-
tory: https://github.com/Universal-Variability-Language

Acknowledgements

Partially funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) — SFB 1608 — 501798263. It was also partially supported by FEDER /Ministry of Sci-
ence, Innovation and Universities/Junta de Andalucia/State Research Agency/CDTI with
the following grants: Data-pl(PID2022-1384860B-100), TASOVA PLUS research network
(RED2022-134337-T) and MIDAS (IDI-20230256). The financial support by the Austrian
Federal Ministry for Digital and Economic Affairs, the National Foundation for Research,
Technology and Development, and the Christian Doppler Research Association is gratefully
acknowledged. The authors thank Sebastian Krieter for insightful discussions on the lan-
guage design of UVL and his contributions to the tools presented. Special thanks go to David
Romero, who implemented UVLHub as a tool on top of UVL and helped us to detect some
issues in the language. In addition, we would like to give a big thanks to all researchers who
have contributed to the MODEVAR initiative throughout these years.

References

[1] Ebrahim Khalil Abbasi, Arnaud Hubaux, Mathieu Acher, Quentin Boucher, and Patrick
Heymans. 2013. The anatomy of a sales configurator: An empirical study of 111 cases.
In Proceedings of the 25th International Conference on Advanced Information Systems
Engineering. Springer, 162-177.

[2] Mathieu Acher, Philippe Collet, David Benavides, and Rick Rabiser. 2020. Third Inter-
national Workshop on Languages for Modelling Variability (MODEVAR@ SPLC 2020).
In Proceedings of the 24th ACM Conference on Systems and Software Product Line:
Volume A-Volume A. 1-1.

[3] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France. 2009. Composing
Feature Models. In Proc. Int’l Conf. on Software Language Engineering (SLE). Springer,
Denver, CO, USA, 62-81.

[4] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France. 2013. Familiar:
A Domain-Specific Language for Large Scale Management of Feature Models. Science of
Computer Programming (SCP) 78, 6 (2013), 657—681.

[5] Prankur Agarwal, Kevin Feichtinger, Klaus Schmid, Holger Eichelberger, and Rick Ra-
biser. 2024. On the Challenges of Transforming UVL to IVML. https://doi.org/10.
48550/arXiv.2403.01952 arXiv:2403.01952 [cs].

[6] Mauricio Alférez, Mathieu Acher, José Angel Galindo, Benoit Baudry, and David Bena-
vides. 2019. Modeling variability in the video domain: language and experience report.
Softw. Qual. J. 27,1 (2019), 307-347. https://doi.org/10.1007/s11219-017-9400-8

35

966

968

969
970

972

973
974
975
976

978
979
980

982
983

984
985
986

987
988
989

990
991
992
993
994

995
996
997

998
999
1000
1001

1002
1003
1004
1005

1006
1007
1008

1009
1010
1011

[7]

(8]

[9]
(10]

(11]

(12]

(13]

(14]

(15]

Sven Apel, Don Batory, Christian Kéastner, and Gunter Saake. 2013. Feature-Oriented
Software Product Lines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/
978-3-642-37521-7

Don Batory. 2005. Feature Models, Grammars, and Propositional Formulas. In Proc.
Int’l Systems and Software Product Line Conf. (SPLC). Springer, Berlin, Heidelberg,
7-20. https://doi.org/10.1007/11554844_3

Don Batory. 2020. Automated Software Design Volume 1. Lulu Press.

Martin Becker, Rick Rabiser, and Goetz Botterweck. 2024. Not Quite There Yet: Re-
maining Challenges in Systems and Software Product Line Engineering as Perceived by
Industry Practitioners. In Proceedings of the 28th ACM International Systems and Soft-
ware Product Line Conference. ACM.

Maurice H. ter Beek, Klaus Schmid, and Holger Eichelberger. 2019. Textual Variability
Modeling Languages: An Overview and Considerations. In Proc. Int’l Workshop on
Languages for Modelling Variability (MODEVAR) (Paris, France). ACM, New York,
NY, USA, 151-157. https://doi.org/10.1145/3307630.3342398

David Benavides, Rick Rabiser, Don Batory, and Mathieu Acher. 2019. First Interna-
tional Workshop on Languages for Modelling Variability (MODEVAR 2019). In Proc.
Int’l Systems and Software Product Line Conf. (SPLC). 323-323.

David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. 2010. Automated Analysis of
Feature Models 20 Years Later: A Literature Review. Information Systems 35, 6 (2010),
615-708.

Thorsten Berger and Philippe Collet. 2019. Usage Scenarios for a Common Feature
Modeling Language. In Proc. Int’l Systems and Software Product Line Conf. (SPLC).
ACM, New York, NY, USA, 174-181.

Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee, Martin Becker, Krzysztof
Czarnecki, and Andrzej Wasowski. 2013. A Survey of Variability Modeling in Industrial
Practice. In Proc. Int’l Workshop on Variability Modelling of Software-Intensive Systems
(VaMoS) (Pisa, Italy). ACM, New York, NY, USA, 7:1-7:8. https://doi.org/10.1145/
2430502.2430513

Thorsten Berger, Jan-Philipp Steghofer, Tewfik Ziadi, Jacques Robin, and Jabier Mar-
tinez. 2020. The state of adoption and the challenges of systematic variability manage-
ment in industry. Empir. Softw. Eng. 25, 3 (2020), 1755-1797.

Mikaela Cashman, Justin Firestone, Myra B. Cohen, Thammasak Thianniwet, and Wei
Niu. 2019. DNA as Features: Organic Software Product Lines. In Proc. Int’l Systems
and Software Product Line Conf. (SPLC) (Paris, France). ACM, New York, NY, USA,
108-118. https://doi.org/10.1145/3336294.3336298

Andreas Classen, Quentin Boucher, and Patrick Heymans. 2011. A Text-Based Approach
to Feature Modelling: Syntax and Semantics of TVL. Science of Computer Programming
(SCP) 76, 12 (2011), 1130-1143. Special Issue on Software Evolution, Adaptability and
Variability.

Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. 2005. Formalizing
Cardinality-Based Feature Models and Their Specialization. Software Process: Improve-
ment and Practice 10 (2005), 7—29.

Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. 2005. Staged Configuration

Through Specialization and Multi-Level Configuration of Feature Models. Software Pro-
cess: Improvement and Practice 10, 2 (2005), 143-169.

36

1012
1013
1014

1015
1016
1017

1018
1019
1020

1021
1022

1023
1024
1025

1026
1027
1028
1029

1030
1031
1032
1033

1034
1035
1036
1037
1038
1039

1040
1041
1042
1043
1044

1045
1046
1047
1048
1049

1050
1051
1052
1053
1054

1055
1056
1057
1058

(22]

(23]

(24]

(25]

[26]

(27]

28]

(29]

(31]

(32]

Krzysztof Czarnecki and Chang Hwan Peter Kim. 2005. Cardinality-Based Feature Mod-
eling and Constraints: A Progress Report. In Proc. Int’l Workshop on Software Factories
(SF). 16-20.

Krzysztof Czarnecki and Andrzej Wasowski. 2007. Feature Diagrams and Logics: There
and Back Again. In Proc. Int’l Systems and Software Product Line Conf. (SPLC). IEEE,
Washington, DC, USA, 23-34.

Leonardo de Moura and Nikolaj Bjgrner. 2008. Z3: An Efficient SMT Solver. In Tools
and Algorithms for the Construction and Analysis of Systems, C. R. Ramakrishnan and
Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 337-340.

Leonardo De Moura and Nikolaj Bjgrner. 2011. Satisfiability Modulo Theories: Intro-
duction and Applications. Comm. ACM 54, 9 (2011), 69-77.

Deepak Dhungana, Paul Griinbacher, and Rick Rabiser. 2011. The DOPLER Meta-Tool
for Decision-Oriented Variability Modeling: A Multiple Case Study. Automated Software
Engineering 18, 1 (2011), 77-114.

Holger Eichelberger and Klaus Schmid. 2015. Mapping the Design Space of Tex-
tual Variability Modeling Languages: A Refined Analysis. Int’l J. Software Tools
for Technology Transfer (STTT) 17, 5 (2015), 559-584. https://doi.org/10.1007/
510009-014-0362-x

Sascha El-Sharkawy, Adam Krafczyk, and Klaus Schmid. 2015. Analysing the KCon-
fig Semantics and its Analysis Tools. In Proc. Int’l Conf. on Generative Programming:
Concepts € Experiences (GPCE) (Pittsburgh, PA, USA). ACM, New York, NY, USA,
45-54. https://doi.org/10.1145/2814204.2814222

Hafiyyan Sayyid Fadhlillah, Kevin Feichtinger, Philipp Bauer, Elene Kutsia, and Rick
Rabiser. 2022. Vd4rdiac: tooling for multidisciplinary delta-oriented variability man-
agement in cyber-physical production systems. In Proceedings of the 26th ACM In-
ternational Systems and Software Product Line Conference - Volume B (Graz, Aus-
tria) (SPLC ’22). Association for Computing Machinery, New York, NY, USA, 34-37.
https://doi.org/10.1145/3503229.3547028

Hafiyyan Sayyid Fadhlillah and Rick Rabiser. 2024. Towards a Product Configuration
Representation for the Universal Variability Language. In Proceedings of the 28th ACM
International Systems and Software Product Line Conference (Dommeldange, Luxem-
bourg) (SPLC ’24). Association for Computing Machinery, New York, NY, USA, 50-54.
https://doi.org/10.1145/3646548.3676544

Kevin Feichtinger and Jessie Galasso-Carbonnel. 2024. Seventh International Workshop
on Languages for Modelling Variability (MODEVARQSPLC 2024). In Proceedings of the
28th ACM International Systems and Software Product Line Conference (Dommeldange,
Luxembourg) (SPLC ’24). Association for Computing Machinery, New York, NY, USA,
224. https://doi.org/10.1145/3646548.3677006

Kevin Feichtinger, Kristof Meixner, Stefan Biffl, and Rick Rabiser. 2022. Evolution
Support for Custom Variability Artifacts Using Feature Models: A Study in the Cyber-
Physical Production Systems Domain. In Reuse and Software Quality, Gilles Perrouin,
Naouel Moha, and Abdelhak-Djamel Seriai (Eds.). Springer International Publishing,
Cham, 79-84.

Kevin Feichtinger and Rick Rabiser. 2020. Towards Transforming Variability Models:
Usage Scenarios, Required Capabilities and Challenges. In Proc. Int’l Workshop on Lan-
guages for Modelling Variability (MODEVAR) (Montreal, QC, Canada) (SPLC ’20).
ACM, New York, NY, USA, 44-51. https://doi.org/10.1145/3382026.3425768

37

1059
1060
1061

1062
1063
1064
1065

1066
1067
1068

1069
1070
1071
1072

1073
1074
1075
1076

1077
1078
1079
1080
1081

1082
1083
1084
1085

1086
1087
1088
1089

1090
1091
1092
1093

1094
1095
1096
1097
1098

1099
1100
1101
1102

1103
1104
1105
1106
1107

(37]

(38]

(40]

[41]

[42]

(43]

Kevin Feichtinger and Rick Rabiser. 2020. Variability Model Transformations: Towards
Unifying Variability Modeling. In 46th Euromicro Conference on Software Engineering
and Advanced Applications. IEEE, Portoroz, Slovenia.

Kevin Feichtinger, Johann Stobich, Dario Romano, and Rick Rabiser. 2021. TRAVART:
An Approach for Transforming Variability Models. In Proc. Int’l Working Conf. on
Variability Modelling of Software-Intensive Systems (VaMoS) (Krems, Austria). ACM,
New York, NY, USA, Article 8, 10 pages. https://doi.org/10.1145/3442391.3442400

Alexander Felfernig, Andreas Falkner, and David Benavides. 2024. Feature Models: Al-
Driven Design, Analysis and Applications. Springer Nature. https://doi.org/10.1007/
978-3-031-61874-1

José A Galindo and David Benavides. 2020. A Python framework for the automated
analysis of feature models: A first step to integrate community efforts. In Proceedings
of the 24th acm international systems and software product line conference-volume b.
52-55.

José A. Galindo, David Benavides, Pablo Trinidad, Antonio-Manuel Gutiérrez-
Ferndndez, and Antonio Ruiz-Cortés. 2019. Automated Analysis of Feature Models:
Quo Vadis? Computing 101, 5 (May 2019), 387—433. https://doi.org/10.1007/
s00607-018-0646-1

José A. Galindo, José Miguel Horcas, Alexander Felfernig, David Ferndndez-Amords, and
David Benavides. 2023. FLAMA: A Collaborative Effort to Build a New Framework for
the Automated Analysis of Feature Models. In Proc. Int’l Systems and Software Product
Line Conf. (SPLC). ACM, New York, NY, USA, 16-19. https://doi.org/10.1145/
3579028.3609008

Qystein Haugen, Andrzej Wasowski, and Krzysztof Czarnecki. 2012. CVL: Common
Variability Language. In Proc. Int’l Systems and Software Product Line Conf. (SPLC)
(Salvador, Brazil). ACM, New York, NY, USA, 266—267. https://doi.org/10.1145/
2364412.2364462

Ruben Heradio, David Ferndndez-Amorés, José A. Galindo, David Benavides, and Don S.
Batory. 2022. Uniform and Scalable Sampling of Highly Configurable Systems. Em-
pirical Software Engineering (EMSE) 27, 2 (2022), 44. https://doi.org/10.1007/
s10664-021-10102-5

Tobias Hefl, Tobias Miiller, Chico Sundermann, and Thomas Thiim. 2022. ddueruem: A
Wrapper for Feature-Model Analysis Tools. In Proc. Int’l Systems and Software Product
Line Conf. (SPLC) (Graz, Austria). ACM, New York, NY, USA, 54-57. https://doi.
org/10.1145/3503229.3547032

Tobias Hef3, Tobias Miiller, Chico Sundermann, and Thomas Thiim. 2022. ddueruem: a
wrapper for feature-model analysis tools. In Proceedings of the 26th ACM International
Systems and Software Product Line Conference - Volume B (Graz, Austria) (SPLC ’22).
Association for Computing Machinery, New York, NY, USA, 54-57. https://doi.org/
10.1145/3503229.3547032

Tobias Hef3, Lukas Ostheimer, Tobias Betz, Simon Karrer, Tim Jannik Schmidt, Pierre
Coquet, Sean Semmler, and Thomas Thiim. 2024. variability.dev: Towards an Online
Toolbox for Feature Modeling. In Proc. Int’l Workshop on Languages for Modelling
Variability (MODEVAR) (Bern, Switzerland). To appear.

Jose M. Horcas, Jose A. Galindo, Ménica Pinto, Lidia Fuentes, and David Benavides.
2022. FM fact label: a configurable and interactive visualization of feature model charac-
terizations. In Proceedings of the 26th ACM International Systems and Software Product
Line Conference - Volume B (Graz, Austria) (SPLC ’22). Association for Computing
Machinery, New York, NY, USA, 42-45. https://doi.org/10.1145/3503229.3547025

38

1108
1109
1110
1111

1112
1113
1114
1115

1116
1117
1118

1119
1120
1121

1122
1123
1124

1125
1126
1127
1128
1129

1130
1131
1132
1133
1134

1135
1136
1137
1138

1139
1140
1141
1142

1143
1144
1145
1146
1147

1148
1149
1150
1151

1152
1153
1154

[49

50

(52]

(53]

[(54]

[55]

[56]

Jose-Miguel Horcas, Angela Villota, David Benavides, and Philippe Collet. 2022. Fifth
International Workshop on Languages for Modelling Variability (MODEVAR@ SPLC
2022). In Proceedings of the 26th ACM International Systems and Software Product
Line Conference-Volume A. 264-264.

ISO/IEC 26558:2017(en) 2017. Software and systems engineering — Methods and tools
for variability modelling in software and systems product line. Standard. International
Organization for Standardization/International Electrotechnical Commission, Geneva,
CH. https://www.iso.org/obp/ui/#iso:std:iso-iec:26558:ed-1:vl:en

Narendra Jussien, Guillaume Rochart, and Xavier Lorca. 2008. Choco: An Open Source
Java Constraint Programming Library. In Proc. Workshop on Open-Source Software for
Integer and Contraint Programming (OSSICP). CCSD-HAL, Lyon, France.

Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. 1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical
Report CMU/SEI-90-TR-21. Software Engineering Institute, Pittsburgh, PA, USA.

Christian Késtner, Alexander Dreiling, and Klaus Ostermann. 2013. Variability mining:
Consistent semi-automatic detection of product-line features. IEEE Transactions on
Software Engineering 40, 1 (2013), 67-82.

Christian Késtner, Thomas Thiim, Gunter Saake, Janet Feigenspan, Thomas Leich,
Fabian Wielgorz, and Sven Apel. 2009. FeatureIDE: A Tool Framework for Feature-
Oriented Software Development. In Proc. Int’l Conf. on Software Engineering (ICSE)
(Vancouver, Canada). IEEE, Washington, DC, USA, 611-614. https://doi.org/10.
1109/ICSE.2009.5070568 Formal demonstration paper.

Alexander Kniippel, Thomas Thiim, Stephan Mennicke, Jens Meinicke, and Ina Schae-
fer. 2017. Is There a Mismatch Between Real-World Feature Models and Product-Line
Research?. In Proc. Europ. Software Engineering Conf./Foundations of Software En-
gineering (ESEC/FSE) (Paderborn, Germany). ACM, New York, NY, USA, 291-302.
https://doi.org/10.1145/3106237.3106252

Sebastian Krieter, Kevin Feichtinger, José A. Galindo, David Benavides, Rick Rabiser,
Chico Sundermann, and Thomas Thiim. 2023. Second Tutorial on the Universal Variabil-
ity Language. In Proc. Int’l Systems and Software Product Line Conf. (SPLC) (Tokyo,
Japan). ACM, New York, NY, USA, 273. https://doi.org/10.1145/3579027.3609002

Andreas Kiibler, Christoph Zengler, and Wolfgang Kiichlin. 2010. Model Counting in
Product Configuration. In Proc. Int’l Workshop on Logics for Component Configuration
(LoCoCo) (Edinburgh, UK). Open Publishing Association, Waterloo, Australia, 44-53.
https://doi.org/10.4204/EPTCS.29.5

Elias Kuiter, Sebastian Krieter, Chico Sundermann, Thomas Thiim, and Gunter Saake.
2022. Tseitin or not Tseitin? The Impact of CNF Transformations on Feature-Model
Analyses. In Proc. Int’l Conf. on Automated Software Engineering (ASE) (Rochester,
MI, USA). ACM, New York, NY, USA, 110:1-110:13. https://doi.org/10.1145/
3551349.3556938

Viet-Man Le, Thi Ngoc Trang Tran, Martin Stettinger, Lisa Weif}l, Alexander Felfernig,
Miislim Atas, Seda Polat Erdeniz, and Andrei Popescu. 2021. Counteracting Exam
Cheating by Leveraging Configuration and Recommendation Techniques. In ConfWS.
73-80.

Jia Hui Liang, Vijay Ganesh, Krzysztof Czarnecki, and Venkatesh Raman. 2015. SAT-

Based Analysis of Large Real-World Feature Models Is Easy. In Proc. Int’l Systems and
Software Product Line Conf. (SPLC). Springer, Berlin, Heidelberg, 91-100.

39

1155
1156
1157
1158

1159
1160
1161
1162

1163
1164
1165
1166
1167
1168

1169
1170
1171

1172
1173
1174

1175
1176
1177

1178
1179
1180
1181

1182
1183
1184

1185
1186
1187
1188

1189
1190
1191
1192
1193

1194
1195
1196
1197

1198
1199
1200
1201

[57]

(60]

(61]

(62]

[67]

(68]

Jacob Loth, Chico Sundermann, Tobias Schrull, Thilo Brugger, Felix Rieg, and Thomas
Thiim. 2023. UVLS: A Language Server Protocol for UVL. In Proc. Int’l Systems and
Software Product Line Conf. (SPLC) (Tokyo, Japan). ACM, New York, NY, USA, 43-46.
https://doi.org/10.1145/3579028.3609014

Rafael Lotufo, Steven She, Thorsten Berger, Krzysztof Czarnecki, and Andrzej Wa-
sowski. 2010. Evolution of the Linux Kernel Variability Model. In Proc. Int’l Systems
and Software Product Line Conf. (SPLC) (Jeju Island, South Korea). Springer, Berlin,
Heidelberg, 136-150.

Germdan Mérquez, José A. Galindo, Angel Jests Varela-Vaca, Maria Teresa Gémez Lépez,
and David Benavides. 2022. Advisory: vulnerability analysis in software development
project dependencies. In Proceedings of the 26th ACM International Systems and Soft-
ware Product Line Conference - Volume B (Graz, Austria) (SPLC ’22). Association
for Computing Machinery, New York, NY, USA, 99-102. https://doi.org/10.1145/
3503229.3547058

Simone Nasser Matos and Clovis Torres Fernandes. 2006. Early Definition of Frozen and
Hot Spots in the Development of Domain Frameworks. In Fourteenth ACM SIGSOFT
Symposium on Foundations of Software Engineering.

Jens Meinicke, Thomas Thiim, Reimar Schroter, Fabian Benduhn, Thomas Leich, and
Gunter Saake. 2017. Mastering Software Variability with FeatureIDE. Springer. https:
//doi.org/10.1007/978-3-319-61443-4

Jens Meinicke, Thomas Thiim, Reimar Schroter, Fabian Benduhn, Thomas Leich, and
Gunter Saake. 2017. Mastering Software Variability With FeatureIDE. Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-319-61443-4

Kristof Meixner, Kevin Feichtinger, Hafiyyan Sayyid Fadhlillah, Sandra Greiner, Hannes
Marcher, Rick Rabiser, and Stefan Biffl. 2024. Variability modeling of products, pro-
cesses, and resources in cyber—physical production systems engineering. Journal of Sys-
tems and Software 211 (2024), 112007. https://doi.org/10.1016/j.jss.2024.112007

Marcilio Mendonga, Moises Branco, and Donald Cowan. 2009. S.P.L.O.T.: Software
Product Lines Online Tools. In Proc. Conf. on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA). ACM, New York, NY, USA, 761-762.

Marcilio Mendonga, Andrzej Wasowski, and Krzysztof Czarnecki. 2009. SAT-Based Anal-
ysis of Feature Models Is Easy. In Proc. Int’l Systems and Software Product Line Conf.
(SPLC) (San Francisco, California). Software Engineering Institute, Pittsburgh, PA,
USA, 231-240.

Daniel-Jesus Munoz, Jeho Oh, Ménica Pinto, Lidia Fuentes, and Don Batory. 2019. Uni-
form Random Sampling Product Configurations of Feature Models That Have Numer-
ical Features. In Proc. Int’l Systems and Software Product Line Conf. (SPLC) (Paris,
France). ACM, New York, NY, USA, 289-301. https://doi.org/10.1145/3336294.
3336297

Daniel-Jesus Munoz, Ménica Pinto, Lidia Fuentes, and Don Batory. 2023. Transforming
Numerical Feature Models into Propositional Formulas and the Universal Variability
Language. Journal of Systems and Software 204 (2023), 111770. https://doi.org/10.
1016/j.jss.2023.111770

Damir Nesi¢, Jacob Kriiger, Stefan Stanciulescu, and Thorsten Berger. 2019. Principles
of feature modeling. In Proceedings of the 2019 27th ACM Joint Meeting of Furopean
Software Engineering Conference and Symposium on the Foundations of Software En-
gineering. ACM, 62-73.

40

1202
1203
1204

1205
1206

1207
1208

1209
1210
1211
1212

1213
1214
1215

1216
1217
1218

1219
1220
1221

1222
1223
1224
1225
1226
1227

1228
1229
1230
1231

1232
1233
1234

1235
1236
1237
1238

1239
1240
1241
1242

1243
1244
1245

(69]

[70]

(71]

(72]

[77]

(81]

Jeho Oh, Don Batory, and Rubén Heradio. 2023. Finding near-optimal configurations in
colossal spaces with statistical guarantees. ACM Transactions on Software Engineering
and Methodology 33, 1 (2023), 1-36.

Terence Parr. 2013. The definitive ANTLR 4 reference. The Pragmatic Bookshelf. 1-326
pages.

pure::systems. 2017. pure::variants. Website: http://www.pure-systems.com/products/
pure-variants-9.html. Accessed: 2017-05-10.

Rick Rabiser. 2019. Feature Modeling vs. Decision Modeling: History, Comparison and
Perspectives. In Proceedings of the 23rd International Systems and Software Product
Line Conference - Volume B (Paris, France) (SPLC ’19). Association for Computing
Machinery, New York, NY, USA, 134-136. https://doi.org/10.1145/3307630.3342399

Rick Rabiser. 2024. Industry Adoption of UVL: What We Will Need. In Proceedings
of the 28th ACM International Systems and Software Product Line Conference vol. 2.
ACM.

Matthias Riebisch, Kai Bollert, Detlef Streitferdt, and Ilka Philippow. 2002. Extending
Feature Diagrams With UML Multiplicities. In Proc. World Conf. on Integrated Design
and Process Technology (IDPT).

Jorge Rodas-Silva, José A Galindo, Jorge Garcia-Gutiérrez, and David Benavides. 2019.
Selection of software product line implementation components using recommender sys-
tems: An application to wordpress. IEEE Access 7 (2019), 69226-69245.

Dario Romano, Kevin Feichtinger, Danilo Beuche, Uwe Ryssel, and Rick Rabiser. 2022.
Bridging the gap between academia and industry: transforming the universal vari-
ability language to pure::variants and back. In Proceedings of the 26th ACM Inter-
national Systems and Software Product Line Conference - Volume B (Graz, Austria)
(SPLC ’22). Association for Computing Machinery, New York, NY, USA, 123-131.
https://doi.org/10.1145/3503229.3547056

David Romero, José A. Galindo, José Miguel Horcas, and David Benavides. 2021. A First
Prototype of a New Repository for Feature Model Exchange and Knowledge Sharing. In
Proc. Int’l Systems and Software Product Line Conf. (SPLC). ACM, New York, NY,
USA, 80-85. https://doi.org/10.1145/3461002.3473949

David Romero-Organvidez, Jose A. Galindo, and David Benavides. 2024. UVL Sentinel:
a tool for parsing and syntactic correction of UVL datasets. arXiv:2403.18482 [cs.SE]
https://arxiv.org/abs/2403.18482

David Romero-Organvidez, José A. Galindo, Chico Sundermann, Jose-Miguel Horcas,
and David Benavides. 2024. UVLHub: A feature model data repository using UVL
and open science principles. Journal of Systems and Software (2024), 112150. https:
//doi.org/10.1016/j . jss.2024.112150

Valentin Rothberg, Nicolas Dintzner, Andreas Ziegler, and Daniel Lohmann. 2016. Fea-
ture Models in Linux: From Symbols to Semantics. In Proc. Int’l Workshop on Variability
Modelling of Software-Intensive Systems (VaMoS) (Salvador, Brazil). ACM, New York,
NY, USA, 65-72. https://doi.org/10.1145/2866614.2866624

Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux, and Yves Bontemps.

2007. Generic Semantics of Feature Diagrams. Computer Networks 51, 2 (2007), 456—
479.

41

1246
1247
1248
1249
1250

1251
1252
1253
1254

1255
1256
1257
1258
1259

1260
1261
1262
1263

1264
1265
1266
1267
1268

1269
1270
1271
1272
1273

1274
1275
1276
1277

1278
1279
1280

1281
1282
1283
1284

1285
1286
1287
1288

1289
1290

1291
1292
1293

(83]

(84]

(85]

(86]

(91]

(92]

(93]

Chico Sundermann, Kevin Feichtinger, Dominik Engelhardt, Rick Rabiser, and Thomas
Thiim. 2021. Yet Another Textual Variability Language? A Community Effort Towards
a Unified Language. In Proc. Int’l Systems and Software Product Line Conf. (SPLC)
(Leicester, UK). ACM, New York, NY, USA, 136-147. https://doi.org/10.1145/
3461001.3471145

Chico Sundermann, Kevin Feichtinger, José A. Galindo, David Benavides, Rick Rabiser,
Sebastian Krieter, and Thomas Thiim. 2022. Tutorial on the Universal Variability Lan-
guage. In Proc. Int’l Systems and Software Product Line Conf. (SPLC) (Graz, Austria).
ACM, New York, NY, USA, 260:1. https://doi.org/10.1145/3546932.3547024

Chico Sundermann, Tobias Hef};, Dominik Engelhardt, Rahel Arens, Johannes Herschel,
Kevin Jedelhauser, Benedikt Jutz, Sebastian Krieter, and Ina Schaefer. 2021. Integration
of UVL in FeaturelDE. In Proc. Int’l Workshop on Languages for Modelling Variability
(MODEVAR) (Leicester, UK). ACM, New York, NY, USA, 73-79. https://doi.org/
10.1145/3461002.3473940

Chico Sundermann, Tobias Hef}; Michael Nieke, Paul Maximilian Bittner, Jeffrey M.
Young, Thomas Thiim, and Ina Schaefer. 2023. Evaluating State-of-the-Art #SAT
Solvers on Industrial Configuration Spaces. Empirical Software Engineering (EMSE)
28, 29 (Jan. 2023), 38. https://doi.org/10.1007/s10664-022-10265-9

Chico Sundermann, Tobias Hef3, Rahel Sundermann, Elias Kuiter, Sebastian Krieter, and
Thomas Thiim. 2024. Generating Feature Models with UVL’s Full Expressiveness. In Pro-
ceedings of the 28th ACM International Systems and Software Product Line Conference
(Dommeldange, Luxembourg) (SPLC ’24). Association for Computing Machinery, New
York, NY, USA, 61-65. https://doi.org/10.1145/3646548.3676602

Chico Sundermann, Stefan Vill, Thomas Thiim, Kevin Feichtinger, Prankur Agarwal,
Rick Rabiser, José A. Galindo, and David Benavides. 2023. UVLParser: Extending UVL
With Language Levels and Conversion Strategies. In Proc. Int’l Systems and Software
Product Line Conf. (SPLC) (Tokyo, Japan). ACM, New York, NY, USA, 39-42. https:
//doi.org/10.1145/3579028.3609013

Thomas Thiim. 2020. A BDD for Linux? The Knowledge Compilation Challenge for
Variability. In Proc. Int’l Systems and Software Product Line Conf. (SPLC) (Montreal,
QC, Canada). ACM, New York, NY, USA, Article 16, 6 pages. https://doi.org/10.
1145/3382025.3414943

Thomas Thiim, Philippe Collet, and Mathieu Acher (Eds.). 2021. Fourth International
Workshop on Languages for Modelling Variability (MODEVARQ@SPLC 2021) (Leicester,
UK). ACM, New York, NY, USA. https://doi.org/10.1145/3461001.3473056

Thomas Thiim, Christian Kastner, Sebastian Erdweg, and Norbert Siegmund. 2011.
Abstract Features in Feature Modeling. In Proc. Int’l Systems and Software Product
Line Conf. (SPLC) (Munich, Germany). IEEE, Washington, DC, USA, 191-200. https:
//doi.org/10.1109/SPLC.2011.53

Thomas Thiim, Christoph Seidl, and Ina Schaefer. 2019. On Language Levels for Feature
Modeling Notations. In Proc. Int’l Workshop on Languages for Modelling Variability
(MODEVAR) (Paris, France). ACM, New York, NY, USA, 158-161. https://doi.org/
10.1145/3307630.3342404

Andrzej Wasowski and Thorsten Berger. 2023. Domain-Specific Languages: Effective
modeling, automation, and reuse. Springer.

Wei Zhang, Haiyan Zhao, and Hong Mei. 2004. A Propositional Logic-Based Method
for Verification of Feature Models. In Proc. Int’l Conf. on Formal Engineering Methods
(ICFEM). Springer, Berlin, Heidelberg, 115-130.

42

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

[IThe authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:

