
h

T
a
v
i
P
c

©

Journal Pre-proof

UVL: Feature modelling with the universal variability language

David Benavides, Chico Sundermann, Kevin Feichtinger, José
A. Galindo, Rick Rabiser, Thomas Thüm

PII: S0164-1212(24)00370-4
DOI: https://doi.org/10.1016/j.jss.2024.112326
Reference: JSS 112326

To appear in: The Journal of Systems & Software

Received date : 15 March 2024
Revised date : 1 October 2024
Accepted date : 18 December 2024

Please cite this article as: D. Benavides, C. Sundermann, K. Feichtinger et al., UVL: Feature
modelling with the universal variability language. The Journal of Systems & Software (2025), doi:

ttps://doi.org/10.1016/j.jss.2024.112326.

his is a PDF file of an article that has undergone enhancements after acceptance, such as the
ddition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
ersion of record. This version will undergo additional copyediting, typesetting and review before it
s published in its final form, but we are providing this version to give early visibility of the article.
lease note that, during the production process, errors may be discovered which could affect the
ontent, and all legal disclaimers that apply to the journal pertain.

2024 Published by Elsevier Inc.

https://doi.org/10.1016/j.jss.2024.112326
https://doi.org/10.1016/j.jss.2024.112326

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

UVL: Feature Modelling with the Universal Variability1

Language2

David Benavidesa, Chico Sundermannb, Kevin Feichtingerc, José A. Galindoa,3

Rick Rabiserd, Thomas Thüme
4

aDepartment of Computer Languages and Systems, I3US, Universidad de Sevilla, Av.
Reina Mercedes, Seville, 41012, Spain {benavides, jagalindo}@us.es

bInstitute of Software Engineering and Programming Languages, University of
Ulm, Albert-Einstein-Allee 11, Ulm, 89069, Germany chico.sundermann@uni-ulm.de

cCRC 1608, KASTEL – Dependability of Software-intensive Systems, Karlsruhe Institute of
Technology, Am Fasanengarten 5, Karlsruhe, 76131, Germany kevin.feichtinger@kit.edu

dChristian Doppler Laboratory VaSiCS, LIT CPS Lab, Johannes Kepler University
Linz, Altenberger Straße 69, Linz, 4040, Austria rick.rabiser@jku.at
eInstitute of Software Engineering and Automotive Informatics, TU
Braunschweig, Mühlenpfordtstr. 23, Braunschweig, 38106, Germany

thomas.thuem@tu-braunschweig.de

Abstract5

Feature modelling is a cornerstone of software product line engineering, provid-
ing a means to represent software variability through features and their rela-
tionships. Since its inception in 1990, feature modelling has evolved through
various extensions, and after three decades of development, there is a growing
consensus on the need for a standardised feature modelling language. Despite
multiple endeavours to standardise variability modelling and the creation of
various textual languages, researchers and practitioners continue to use their
own approaches, impeding effective model sharing. In 2018, a collaborative
initiative was launched by a group of researchers to develop a novel textual lan-
guage for representing feature models. This paper introduces the outcome of
this effort: the Universal Variability Language (UVL), which is designed to be
human-readable and serves as a pivot language for diverse software engineering
tools. The development of UVL drew upon community feedback and lever-
aged established literature in the field of variability modelling. The language
is structured into three levels –Boolean, Arithmetic, and Type– and allows for
language extensions to introduce additional constructs enhancing its expressive-
ness. UVL is integrated into various existing software tools, such as FeatureIDE
and flamapy, and is maintained by a consortium of institutions. All tools that
support the language are released in an open-source format, complemented by
dedicated parser implementations for Python and Java. Beyond academia, UVL
has found adoption within a range of institutions and companies. It is envisaged
that UVL will become the language of choice in the future for a multitude of
purposes, including knowledge sharing, educational instruction, and tool inte-
gration and interoperability. We envision UVL as a pivotal solution, addressing
the limitations of prior attempts and fostering collaboration and innovation in

Preprint submitted to Journal of Systems and Software January 9, 2025

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

the domain of software product line engineering.

Keywords: feature model, software product lines, variability6

1. Introduction7

Feature modelling [48], a crucial component of software product line engi-8

neering, is one of the most used approaches for representing software variability9

through the abstraction of features and their relationships [7]. A feature is de-10

fined as an increment in product functionality [8]. A software product line is11

modelled using a Feature Model (FM) where features are arranged in a tree-like12

structure with additional cross-tree constraints. FMs with thousands of features13

are reported in the literature [15, 53, 69, 85]. FMs are represented using feature14

diagrams but can also be represented using different textual notations. Tex-15

tual notations for FMs range from XML–based to tool-specific ones [11]. Over16

the past thirty years, the evolution of feature modelling has given rise to diverse17

extensions and representations [26]. However, the absence of a standardised lan-18

guage has impeded effective model sharing among researchers and practitioners,19

hindering progress in the field.20

The year 2018 marked a turning point as a collaborative initiative emerged21

intending to address the standardisation challenge. This initiative brought to-22

gether a group of researchers from different universities and research centers23

under the umbrella of the MODEVAR1 workshop series. This effort was dedi-24

cated to crafting a new textual and simple language for FMs [82]. The outcome25

of this collective effort is the Universal Variability Language (UVL), a solution26

designed to be both human-readable and a pivot language for a variety of soft-27

ware engineering tools.28

UVL’s development was not only informed by community feedback but also29

based on established literature in the field of variability modelling. The lan-30

guage is meticulously structured into three levels –Boolean, Arithmetic, and31

Type– allowing for a representation of different features and varying types of32

relationships. Furthermore, UVL embraces extensibility, permitting the intro-33

duction of additional constructs to enhance its expressiveness and accommodate34

diverse modelling needs.35

UVL is integrated into existing variability modelling tools, such as Fea-36

tureIDE [50] and flamapy [38]. All the tools that support the language are37

available in an open-source format, complemented by dedicated parser imple-38

mentations for Python and Java using ANTLR [70]2, which allows designing39

parsers for other languages. This openness paired with a structured process40

to involve the community encourages transparency, collaboration, and wider41

adoption.42

We envision an impact of UVL beyond academia, with institutions and com-43

panies recognising its potential. As an example, an importer for UVL models44

1https://modevar.github.io/
2https://www.antlr.org/

2

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

was already integrated in a commercial variant management tool [76]. UVL45

could be used as the language of choice for a myriad of applications, including46

knowledge sharing, educational instruction, and seamless tool integration. The47

broad vision for UVL is to overcome the limitations of previous standardisa-48

tion attempts, such as the Common Variability Language (CVL) [39] or ISO-49

26558 [46]. CVL [39] eventually and unfortunately failed to become a standard50

due to legal reasons [72] and ISO-26558 [46] did not reach the community and51

industry. However, as UVL is community driven, we envision UVL to foster col-52

laboration and innovation within the realm of software product line engineering.53

In this paper, we delve into the development, features, and applications54

of UVL, offering a comprehensive exploration of its significance in the evolving55

landscape of variability modelling. The contributions of the paper are as follows:56

• A tutorial presentation of UVL with a stable version of the language (Sec-57

tion 4) validated by different rounds of participation by the community.58

• An extensible language design that provides expressive language features59

while preserving simplicity with a core language divided into three major60

levels and an option to decompose large feature models.61

• A formal textual syntax and semantics of UVL (Section 5).62

• An open source implementation3 of the language with parsers for Python63

and Java using ANTLR that allows supporting new general languages such64

as JavaScript or C# in the future (Section 6).65

• A report of our experiences regarding the feasibility of the language based66

on an interactive and participated process with the community (Section 3)67

as well as the integration of UVL with different tools (Section 6).68

Regarding novelty since previous publications [34, 67, 76, 82, 87], different69

changes have been introduced and no stable version of UVL was presented so70

far. The formal syntax of this stable version of UVL as well as the parser71

implementation supporting Java and Python are new. Furthermore, this work72

includes the first formal specification and discussion on the semantics of UVL.73

The remainder of the paper is structured as follows. Section 2 introduced74

the necessary background on FMs. We outline the development process and75

the design goals of UVL in Section 3. After that, we introduce the UVL in a76

tutorial-like manner and discuss its syntax and semantics in Sections 4 and 5,77

respectively. We provide an overview of the current UVL implementation and78

existing tools integrating UVL in Section 6. We then discuss challenges and next79

steps regarding further adoption of UVL in general and in industry in particular80

in Section 7. Section 8 concludes the paper.81

2. Feature Models82

The term Feature Model (FM) was coined by Kang et al. in the well–known83

FODA report in 1990 [48]. Since then, feature modelling has been one of the84

3https://github.com/Universal-Variability-Language

3

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

main topics of research in software product lines [37, 35]. There are different85

FM dialects [81], each with different types of features or relationships, but also86

with different textual and graphical notations. In the following, we review the87

most used notations for those languages to pave the way for the presentation of88

UVL. In general, there is no FM language that can be used in all scenarios and89

adaptations are often done for concrete domains [6].90

A FM is a representation of all possible configurations of a software product91

line [35]. Given n features, with no restrictions in the combinations of them,92

2n is the number of all potential configurations. With a small n in terms of93

hundreds, the number of configurations is already very big. An FM restricts94

this number using feature relationships that represent the constraints of the95

application domain. FMs are also used in other domains than software product96

lines such as video encoding [6], biological information [17] or exam options [55]97

just to mention a few examples. One of the most used examples in the commu-98

nity is the Linux kernel FM, which has thousands of modules and configuration99

options [88]. Furthermore, large FMs from other domains, such as automotive,100

with thousands or even tens of thousands of features were reported in the liter-101

ature [53, 51, 85, 15]. Still, there might be even larger FMs used in practice as102

FMs from industry are typically not made available.103

eShop

Security

High Standard

SEO Payment

Bank Transfer Credit Card

Catalogue Platform

Mobile App Browser

Legend:

Feature

Mandatory

Optional

Or

Alternative
¬ (Banktransfer ∧ Mobileapp)

Credit Card ⇒ High

Figure 1: Running example of the online shop case study [75]

Figure 1 shows our running example of the FM for a fictitious eShop product104

line. A FM is composed of a hierarchically arranged set of features (a.k.a. feature105

diagram or feature tree) and a set of cross–tree constraints. FMs that do not have106

cross–tree constraints can exist, but they are not very common. Relationships107

among features can be of two different types [13]: i) relationships between a108

parent feature and its child features; ii) cross–tree constraints that are typically109

inclusion or exclusion statements or more complex constraints in the form of110

arbitrary (propositional) formulae.111

There are several FM dialects [81]. In this section, we will revisit the most112

used relationships in the literature and also mention some of the extensions pro-113

posed. In basic FMs, the following relationships among features are defined [13]:114

• Mandatory. A child feature has a mandatory relationship with its par-115

ent if the child is part of all configurations in which its parent feature is116

included, e.g., any configuration of an eShop has to have a Catalogue.117

• Optional. A child feature has an optional relationship with its parent if118

4

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

the child can optionally be part of all configurations in which its parent119

feature is included, e.g., a configuration of an eShop can optionally have120

SEO support.121

• Alternative. Child features have an alternative relationship with their122

parent if exactly one of them can be part of a configuration if the parent123

feature is included. In the example, the Payment of the eShop must be124

either Banktransfer or Credit card (but not both in the same configu-125

ration).126

• Or. Child features have an or relationship with their parent if one or more127

of them can be part of the configuration if the parent feature is included.128

In Figure 1, whenever Platform is selected, Mobileapp, Browser or any129

combination thereof including at least one of these two features can be130

selected.131

Note that always a child feature can only be part of a configuration if its132

parent feature is part of the configuration. Additionally, the root feature is133

included in all the configurations of the product line. A FM can also contain134

cross–tree constraints between features – basic ones are the following:135

• Requires. If a feature A requires a feature B, the inclusion of A in a136

configuration implies the inclusion of B in such a configuration. In the137

example, an eShop including Credit card must include High security138

support.139

• Excludes. If a feature A excludes a feature B, both cannot be in-140

cluded in the same configuration, i.e., there is a feature exclusion. The141

Banktransfer feature cannot be combined with a Mobileapp, i.e., these142

two features are incompatible.143

More complex cross-tree relationships are often used allowing constraints in144

the form of generic propositional formulas, e.g., “A and not B implies C” [8]. In145

some cases, there is a distinction between concrete and abstract features [90].146

Concrete features have a mapping with domain implementation artefacts in the147

solution space [7], while abstract features are used for organisation purposes and148

do not have any direct mapping to any artefact in the solution space. Often, only149

leaves of the tree are concrete features and all the other intermediate features150

are abstract [9].151

2.1. Feature Model Extensions152

There are different ways to extend FMs with different constructs. The most153

well-known families of extensions are cardinality–based and attribute–based FMs.154

These extensions include a discussion that has been going on in the community155

over the years: what are the semantics of feature cardinalities, cloning, or at-156

tributes? [18, 20, 27, 74, 80] In this section, we do not repeat such discussions in157

detail. In following sections when UVL is presented, more details on how those158

discussions are taken into account will be reported.159

5

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Cardinality–based FMs introduce two relationships that resemble those of160

the Unified Modelling Language (UML) with multiplicities in class diagrams –161

see [19, 74]. The relationships introduced in cardinality–based feature modelling162

are the following [13]:163

• Feature cardinality. A feature cardinality is a sequence of intervals164

[n..m] with n as lower bound and m as upper bound (n ≤ m). Feature165

cardinalities are also known as feature clones. The intervals describe the166

number of instances of the feature that can be part of a configuration.167

This relationship may be used as a generalisation of the original mandatory168

([1, 1]) and optional ([0, 1]) relationships defined in classical FMs described169

previously. Cloning a feature means having different instances of the same170

feature several times in a configuration.171

• Group cardinality. A group cardinality is an interval ⟨n..m⟩, with n172

being the lower and m the upper bound (n ≤ m) limiting the number173

of child features that can be included in a configuration when the parent174

feature is selected (remember that if the parent is not included in a con-175

figuration, none of its children are included). An alternative relationship176

is equivalent to a ⟨1..1⟩ group cardinality. An or–relationship is equivalent177

to ⟨1..N⟩, being N the number of features in the relationship.178

Attribute–based FMs. In certain situations, FMs include additional infor-179

mation about the features. For example, the cost or memory consumption of a180

particular feature in an eShop configuration. Such information can be included181

using feature attributes, which are designed for this specific purpose. When FMs182

are expanded by including additional information in the form of attributes, they183

are referred to as extended, advanced, or attribute-based FMs [6]. Most propos-184

als of attribute–based FMs agree that an attribute should consist at least of a185

name, a type, a domain and a value.186

3. Development Process and Design Goals of UVL187

We first describe how UVL was developed in a participatory effort in the188

SPL community and then summarise its design goals.189

3.1. Participatory Development Process190

UVL is the result of a community effort that started in 2018 as depicted191

in Figure 2. The idea began with an informal meeting at SPLC 2018 with192

around twenty key researchers from the SPL community. After a brainstorming193

session, we agreed on several action points. Among those, it was decided to run194

a workshop (MODEVAR4) to be “an interactive event where all participants195

shall share knowledge about how to build up a simple feature model language196

that all the community can agree on”.197

4https://modevar.github.io/

6

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of2019 2020 2020 2021 2022 2024

MODEVAR

UVL Tutorials

2022 2023

UVL related
papers @ SPLC

2021 2023

Textual languages survey
Language levels
Usage scenarios

Desgin decisions survey

Transformation strategies
Python analysis

FeatureIDE integration
UVL repository

pure::variants integration
First language proposal

Stable parser(Python, Java)
Stable language levels

2018

Brainstorming

Figure 2: UVL development process since 2018

In the 2019 edition [12], the main outputs were a revisited literature review198

on textual variability modelling languages [11], the proposal of having different199

language levels [91] and a set of fourteen usage scenarios of the language [14]200

described by examples. Those scenarios were the result of a systematic process,201

where members of the community gave original descriptions, which received202

feedback via a survey and expert feedback. The survey, the language levels, and203

the usage scenarios were used for the next steps in the process.204

During the 2020 VaMoS event, a survey (results later published at SPLC205

2021 [82]) aimed at informing the language’s design decisions was performed.206

This survey comprised a questionnaire administered to 20 workshop attendees.207

In the initial part of the questionnaire, participants shared their preferences208

concerning the gathered structural attributes of the language. Subsequently,209

in the latter part, attendees deliberated on which language features should be210

incorporated based on their considerations. Throughout the questionnaire, par-211

ticipants collaborated in pairs to deliberate on their viewpoints and offer more212

meticulously considered responses.213

The workshop was run again in 2020 at SPLC [2] (online due to the pan-214

demic). Transforming different variability models is a challenge, in [32] us-215

age scenarios, required capabilities and challenges for an approach for semi-216

automatically transforming variability models were presented. One of the con-217

clusions was that a pivotal common language can help to transform variability218

artifacts and underlines the necessity of UVL in this sense as a pivotal language219

for transformations. In addition, a new tool based on Python to analyse FMs220

was presented [36] with the potential of including UVL as variability language221

7

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

(see Section 6.2.3).222

In 2021 [89], two concrete integrations of UVL in different tools were pre-223

sented. First, an integration of one of the previous versions of UVL in Fea-224

tureIDE showed the feasibility of the language [84]. Second, a prototype of a225

repository to share UVL models was presented [77]. This way, some of the ob-226

jectives of the language started to materialise: tools integration and knowledge227

sharing (see Section 6).228

In 2022 [45], another integration, in this case with a commercial variant229

management tool was presented [76]. Concretely, UVL was integrated with230

pure::variants [71], one of the most well-known commercial tools in the software231

product line engineering area. In addition, a first tutorial on a previous version232

of UVL was given.233

During these years, some tools integrated different versions of UVL produc-234

ing their own parsers [38, 57, 41]. In 2023, there was an implementation effort235

to produce a common stable parser of UVL with support for Python and Java.236

This parser was briefly introduced during the MODEVAR 2024 edition at Va-237

MoS 2024 and it is one of the contributions of this paper (cf. sections 4 and238

6). Additionally, further developments around UVL and its expressiveness were239

presented [5, 43, 78].240

In 2024 a second MODEVAR edition took place [30]. This time the focus of241

the community turned towards the adoption of UVL in industry. For that, po-242

tential challenges [73] and necessary extensions [29] for UVL were discussed with243

a representative of pure::variants [71]. Additionally, a generator for UVL mod-244

els in arbitrary size and complexity was introduced, which facilities scalability245

analysis [86].246

Although MODEVAR has been the meeting point of researchers and prac-247

titioners with interest in the development of a simple, common textual feature248

modelling language, the outputs and discussions of the workshop served to pro-249

duce other artefacts outside of the workshop [52, 83]. Concretely, there were250

two tutorials at SPLC 2022 and 2023 presenting the advances of UVL as well251

as analysis and transformation capabilities. Also, there were two major papers252

at SPLC 2021 and 2023 presenting a first version of the language [82] and some253

transformation and analysis capabilities [87].254

In summary, one unique selling point of UVL is the community-driven design255

of the language [82]. With various surveys and discussions with experts of the256

community, different authors derived requirements for the design of a widely257

adopted variability language [11, 12, 14, 82, 91]. In the following, we present258

derived requirements that influenced the language design and how we address259

these in UVL.260

3.2. Design goals261

Designing a language is difficult [92]. With the participatory process de-262

scribed in the previous section, we mitigated the possibility of having a language263

that was not accepted by the community. With the inputs of the workshops264

and working sessions, we defined several design goals that are summarized as265

follows:266

8

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Simplicity. In general, UVL should be simple to use. For simplicity, we con-267

sider two dimensions: (1) UVL should be easy to use, understand (with simple268

constructs), learn and comprehend (facilitating the comprehension of the vari-269

ability in hand) for humans [14] and (2) it should not require too much effort270

to integrate UVL in variability modelling tools. For human understandability271

and comprehension, UVL should use concepts familiar to users. As potential272

users, we consider people working in the computer science field and/or using273

variability modelling. Hence, we aim to use concepts from programming lan-274

guages, modelling in computer science (e.g., grammars or meta-models), and275

existing variability languages. For easier integration, we consider the following276

requirements for UVL. First, the core language should be simple so that develop-277

ers do not have to integrate various complex constructs. Second, the language278

should reuse existing concepts from other variability languages, e.g., common279

keywords like alternative. Third, the core language should be simple to analyse280

with conventional analysis tools used in the domain, such as SAT [22, 65, 93],281

BDD [40] or #SAT solvers [53, 56, 85].282

Information Hiding. In practice, it often makes sense to only work on small283

subparts of a variability model. First, large variability models are typically284

hard to oversee [3]. Second, different stakeholders commonly do not work on285

the entire variability model but specific parts [3]. Hence, UVL should have a286

mechanism to support focusing on a subset of interest.287

Expressiveness. To be widely applicable, one of UVL’s goals is to cover many288

practical use cases. First, users of UVL should be able to specify constraints as289

needed to describe the set of valid configurations, which may include proposi-290

tional logic, constraints over numeric values, or even reasoning about content of291

strings [11]. Second, UVL should be able to describe constructs used in available292

feature modelling tools [4, 38, 61, 64].293

Extensibility. A higher expressiveness conflicts with the goal of simplicity [91],294

as more and potentially more complex language constructs need to be supported.295

As a compromise in UVL, we aim to have an extensible language design with a296

simple core language that can be easily adopted and extensions that introduce297

more expressiveness. Here, we use the concept of language levels [91] that298

encapsulate different language constructs and extend the UVL core language.299

Exchange. Models of a common variability language should be exchangeable300

between different tools [14]. For simplifying exchange, we consider two aspects.301

First, available tool support (e.g., for parsing) should be reusable for different302

users of UVL. Second, there should be a mechanism to exchange UVL models303

between tools that support different levels of expressiveness.304

9

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

4. The Universal Variability Language (UVL)305

In this section, we illustrate how to specify variability models with UVL5306

using our running example. The design of UVL consists of a simple base language307

with several language extensions, which we call language levels (cf. Section 5).308

Here, we start with a simple version and extend it iteratively to showcase more309

expressive UVL language levels. For a formal description on the language, we310

refer to Section 5.311

4.1. Language Levels312

In UVL, we use language levels to tackle expressiveness and extensibility313

while preserving a simple core language. The idea is that users of UVL can limit314

their models to specific language constructs. If a tool only supports very simple315

constructs, higher language levels can be forbidden. If more expressiveness is316

needed, additional language levels can be enabled.

Type

Type Features

Arithmetic

Numeric Constraints

Boolean

Boolean Features
Group Keywords
Boolean CTC
Feature Attributes

Group Cardinality

Feature Cardinality

Aggregate Function

String Constraints

Major Minor (optional)

Figure 3: Language Level Hierarchy in UVL

317

Figure 3 shows the language levels currently available in UVL. Each language318

level encapsulates certain language constructs. We distinguish between major319

and minor language levels. The major levels have a hierarchical order. The320

Boolean-level is the core language of UVL. The Arithmetic-level fully includes321

the major Boolean level and extends it with numeric constraints over feature322

attributes. The Type-level extends both with typed features, such as string or323

numeric features. The goal of these levels is to separate the language according324

to reasoning engines that could be used to reason about them. For instance, the325

Boolean-level can be simply encoded as a SAT problem. Minor language levels326

5We discussed different name alternatives for the proposed language and we decide to use
UVL because the intention is to make it an Universal language used by many stakeholders in
the variability modelling community.

10

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

are optional extensions of the major levels. The idea is to separate constructs327

that can be analysed with the same reasoning engine but may require further328

handling or are not always supported by available tools. They are not automati-329

cally included in higher language levels. Group Cardinality extends the boolean330

level with cardinality group relationships which enable selecting [n..m] features331

from the group. Feature Cardinality and Aggregate Functions are optional ex-332

tensions of the arithmetic level. They enable (1) selecting a feature multiple333

times and (2) aggregates, such as sums, over numerical attributes, respectively.334

String Constraints add constraints to compare strings and lengths of strings. In335

the following, we showcase the different language levels by extending our base336

example shown in Listing 1.337

4.2. Boolean Level338

Listing 1 shows our running example from Figure 1 in UVL syntax. The UVL339

model consists of two main parts: the feature tree and the cross-tree constraints.340

The tree hierarchy is represented using indentation. Keywords are used to spec-341

ify the parent-child relationship. As in Figure 1, eShop has two mandatory and342

three optional child features. Furthermore, exactly one Security option and ex-343

actly one Payment option can be selected as denoted by the alternative-keyword.344

For the feature Platform, the or -group denotes that at least one platform can345

be selected. The cross-tree constraints are used to impose further limitations on346

the features. For instance, Bank Transfer and Mobile App cannot be included347

in the same configuration, i.e., they are incompatible features. Also, a Credit348

Card requires a High security level. For the core language, the constraints are349

limited to propositional logic.350

In addition to feature dependencies, the UVL model contains some attributes351

that provide information on the respective features. In our model, we have a352

number attribute (price), a Boolean attribute (SEPA), and a string attribute353

(URL). In the core language of UVL, attributes can only be used for storing354

information about features that do not influence the validity of configurations.355

Constraints over attributes are excluded in the core language, since the reason-356

ing is considerably more complex and not straightforward to encode for many357

automated reasoning engines, such as SAT solvers. Still, attributes are rele-358

vant to (1) store tool-specific information, (2) attach general information to359

features, and (3) can be used to compute metrics for configurations based on360

user selections, such as a price.361

For further information, comments can be added either single line with //362

or multiple lines with /* <comment> */. All comments are discarded during363

the parsing process.364

Listing 2 shows an adaptation of the previous eShop but using now the365

cardinality capacity for a feature group. Another change is the include at the366

very top of the listing. The include mechanism allows users to specify explicitly367

which language constructs are supported. This can be used for (1) providing368

information on the contents of the language level and (2) ensure that users369

do not introduce constructs that are not supported by the tool using UVL. In370

the latter case, the UVL parser should provide information on the mismatch of371

11

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofListing 1: UVL Running Example: Core

1 features

eShop
3 mandatory // select all

Security
5 alternative // select exactly one

High {Price 100}
7 Standard {Price 50}

Catalogue
9 optional

SEO
11 Payment

alternative

13 ”Bank Transfer” {Price 10, SEPA true}
”Credit Card” {Price 20}

15 Platform
or // select at least one

17 ”Mobile App”
Browser {URL ’www.uvleshop.org’}

19

constraints

21 !(”Bank Transfer” & ”Mobile App”)
”Credit Card” => High

declared and used levels. By default, i.e., when no language levels are specified372

in includes, all language levels are included. Each construct in the initial eShop373

Listing 1 is part of the core language. Group cardinality is a minor level of the374

Boolean (i.e., core) language level. Including the minor level group-cardinality375

automatically includes its major level Boolean. In Section 4.3 and Section 4.4,376

we illustrate the other two major language levels in UVL, namely Arithmetic377

and Type, using our running example.378

Listing 2: UVL Running Example: Group Cardinality
379

1 include380

Boolean.group-cardinality381

3382

features383

5 ...384

Platform385

7 [2..3]386

”Desktop App”387

9 ”Mobile App”388

Browser {URL ’www.uvleshop.org’}389

11 ...390
391

Group Cardinality. In addition to the specification of included language levels,392

there are changes in the feature tree. Now, in Listing 2 the customer has three393

Platform options to choose from. In addition, the group-type changed to a394

group cardinality. The group denotes that the customer needs to select between395

two and three ([2..3]) platform features instead of at least one.396

12

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

4.3. Arithmetic Level397

In this section, we extend our FM with constructs from the Arithmetic-level398

and its minor levels. Listing 3 further enriches our eShop with an arithmetic399

constraint over the price attribute. The constraint denotes that the overall sum400

in price of all selected features should be smaller than 200. With the Arithmetic-401

level, the following operators are supported: +, -, *, /, ==, <, >, <=, and >=.402

The minor level aggregate-function also introduces sum() and avg().403

Listing 3: UVL Running Example: Arithmetic
404

1 include405

Boolean.group-cardinality406

3 Arithmetic.aggregate-function407

408

5 features409

...410

7411

constraints412

9 !(”Bank Transfer” & ”Mobile App”)413

”Credit Card” => High414

11 sum(Price) < 200415
416

Feature Cardinality. In Listing 4, we introduce feature cardinality, which is a417

minor level of the Arithmetic-level. In our example, the user can decide to have418

between one and five Catalogue features as denoted by cardinality [1..5]. A419

customer may select varying catalogues for different markets, e.g., Europe and420

North America. Note that each selected Catalogue would increase the overall421

price by 30.422

Listing 4: UVL Running Example: Feature Cardinality
423

1 include424

Boolean.group-cardinality425

3 Arithmetic.aggregate-function426

Arithmetic.feature-cardinality427

5428

features429

7 eShop430

mandatory431

9 Security432

alternative433

11 High {Price 100}434

Standard {Price 50}435

13 Catalogue cardinality [1..5] {Price 30}436

...437
438

4.4. Type Level439

Listing 5 shows the last version of our eShop with all language levels in-440

cluded. Here, we newly added the Type-level, which introduces features with441

the following types: integer, float, and string. Note that any feature can still442

be deselected even if it is not Boolean. For, instance the customer can now443

13

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofListing 5: UVL Running Example: Typed Features

include

2 Boolean.group-cardinality
Arithmetic.*

4 Type.string-constraints

6 features

eShop
8 mandatory

Security
10 alternative

High {Price 100}
12 Standard {Price 50}

Catalogue cardinality [1..5] {Price 30}
14 Integer ”Items in Basket”

optional

16 SEO {Price 40}
Payment

18 alternative

”Bank Transfer” {Price 10, SEPA true}
20 ”Credit Card” {Price 20}

Platform
22 [2..3]

”Desktop App” {Price 70}
24 Boolean ”Mobile App” {Price 80}

String Browser {Price 20}
26

constraints

28 !(”Bank Transfer” & ”Mobile App”)
”Credit Card” => High

30 sum(Price) < 200
0 < ”Items in Basket”

32 len(Browser) < 30

configure an integer feature Items in Basket, which can be used to limit the444

maximum number of items a customer can put in his basket at the same time.445

A cross-tree constraint ensures that the maximum number of items is higher446

than zero. Further, Browser is now a string feature where the URL can be447

directly configured. Another cross-tree constraint denotes that the URL may448

not be longer than 30 characters. The used len-function is part of the string-449

constraints minor level which also introduces equality checks between strings.450

Note that we also replaced the two lines for specifying both minor levels of the451

Arithmetic level with a wildcard Arithmetic.*.452

4.5. Import Mechanism453

With thousands of features and constraints in practice [58, 53, 85], FMs454

are often hard to overview. Further, stakeholders often only need to consider455

a subset of the FM. To simplify managing large FMs and focusing on parts of456

interest, UVL provides a mechanism for decomposing models into subparts that457

can then be imported in an overall model if needed.458

14

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Listing 6 showcases the import mechanism of UVL where we have the Platform459

subtree (Listing 7) and the Security subtree (Listing 8 as separate files. Those460

subtrees are imported using the imports-keyword. Imports are specified using461

a relative file path to the imported UVL model. For instance, platform refers462

to a file in the same directory named platform.uvl. Non-trivial paths can be463

specified with a Python-like dot notation (e.g., submodels.platform). Imports464

can also be given an alias with the as keyword. The submodel can then be at-465

tached to an arbitrary location in the feature tree by referencing its root feature466

(e.g., pl.Platform). In the cross-tree constraints all features of submodels can467

be referenced using the submodels’ namespace. The shown model (Listing 6)468

is equivalent to Listing 5. Semantically, the feature reference in the composed469

model is expanded to include the entire subtree. For instance, pl.Platform470

references the entire FM in Listing 7. Also, all cross-tree constraints in the im-471

ported submodels are applied for the composed model. Cross-tree constraints472

in the composed can reference features from imported submodels using the file-473

name or alias and the feature name. For example, in line 21 pl."Mobile App"474

is referenced. The import mechanism may have the following two advantages for475

our running example. First, Listing 6 is shorter and easier to overview than the476

entire model shown in Listing 5. Second, a developer only responsible for plat-477

form or security development can separately work on the submodels Listing 7478

and Listing 8, respectively.479

15

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofListing 7: UVL Running Example: Platform Submodel

features

2 Platform
[2..3]

4 ”Desktop App” {Price 70}
Boolean ”Mobile App” {Price 80}

6 String Browser {Price 20}

8 constraints

len(Browser) < 30

Listing 8: UVL Running Example: Security Submodel

1 features

Security
3 alternative

High {Price 100}
5 Standard {Price 50}

Listing 6: UVL Running Example: Import Mechanism
480

imports481

2 platform as pl482

security483

4484

features485

6 eShop486

mandatory487

8 security.Security488

Catalogue cardinality [1..5] {Price 30}489

10 Integer ”Items in Basket”490

optional491

12 SEO {Price 40}492

Payment493

14 alternative494

”Bank Transfer” {Price 10, SEPA true}495

16 ”Credit Card” {Price 20}496

pl.Platform497

18498

499

20 constraints500

!(”Bank Transfer” & pl.”Mobile App”)501

22 ”Credit Card” => security.High502

sum(Price) < 200503

24 ”Items in Basket” > 0504
505

16

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Summary. UVL provides a simple core language and an import mechanism that506

enables decomposing models into manageable small submodels to tackle its de-507

sign goal simplicity. Additional language levels provide more expressiveness508

with constructs to specify cardinalities, different constraints over numeric val-509

ues, typed features, and constraints over strings. The design of the language510

levels is extensible to allow different users to tailor their UVL models to their use511

case and tool limitations. We used this section to introduce UVL with an exam-512

ple, in Section 5 we define UVL models more formally and discuss the semantics513

of different constraints.514

5. Syntax & Semantics: Language Specification515

In this section, we discuss the syntax and semantics of UVL more formally.516

The goal is to clarify possible ambiguities and provide clear guidelines on how517

to interpret UVL and work with the language. Note that we use some concepts518

here requiring computer science background to understand.519

5.1. UVL Syntax520

Figure 4 shows a simplified view on the abstract syntax of a UVL model in521

form of a meta-model (more details on concrete parts of the meta-model will be522

elaborated later). A UVL model consists of four major parts: imports, language523

levels, feature tree, and cross-tree constraints. In the following, we explain the524

four major parts in more detail and the language constructs that can be used525

within.526

Imports. As discussed in Section 3, decomposing a feature model into smaller527

sub-parts is beneficial. Still, knowledge about cross-dependencies between those528

sub-parts needs to be maintained as they may impact the configuration space.529

With UVL, we support composition of various smaller sub-models with an import530

mechanism. Hereby, another UVLmodel can be imported via import submodel.531

Then, the submodel can be referenced at an arbitrary location in the feature532

tree with submodel.Root. Note that Root is the name of the root feature here.533

While the composed model only contains one line for adding the root feature,534

this is semantically equivalent of copying the entire sub-model at this location.535

Cross-tree constraints of the sub-model also apply for the composed model.536

Constraints between features of different sub-models can be specified using the537

same syntax as in the feature tree (e.g., submodel1.A & submodel2.B). For each538

import, an alias can be specified with the as-keyword (e.g., import submodel1539

as s1). Features can then be referenced with s1.A. Submodels in other, possibly540

nested, directories can be referenced with <dir1>.<dir2>.<uvlfile>.541

Language Levels. Language levels can be explicitly specified with the include542

keyword. The included language levels are listed in separate lines using the543

syntax <major>.(<minor>|*)?. So, one line can either specify a major level544

(<major>), a minor level (<major>.<minor>, or all minor levels (<major>.*). If545

a developer violates the language levels by adding an unsupported construct, the546

17

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

UVL Model

Imports Language Levels Feature Tree Constraints

Import
path : String
alias : String

Language Level
Major-level : String [1..1]
Minor-level : String [0..1]

Feature
name : String
lower : int
upper : int
attributes: List<Attribute>

Group

Constraint

0..1 0..1 1 0..1

1

0..*

1

0..*

1

1

parent ►
1

0..*
◄ parent
1..*

1

1

0..*

Figure 4: UVL Meta Model

18

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

parser would provide a warning or error to him. Note that using a minor level547

always includes the respective major level. By default, all language levels are548

included. Hence, not specifying any level includes enables the full expressiveness549

of UVL.550

Figure 3 shows the language levels currently supported in UVL and the lan-551

guage constructs they include. The three major levels Boolean, Arithmetic,552

Type encapsulate language constructs that can be reasoned about with a spe-553

cific reasoning engine. For instance, UVL models of the Boolean level should be554

straightforward to encode as a SAT instance (e.g., CNF)[8, 54]. In contrast, the555

Arithmetic level can be directly represented as SMT [24] or CP [47] problem,556

but requires further processing to be encoded as SAT instance.557

Group

Mandatory Or AlternativeOptional Cardinality
lower: int
upper: int

Feature
parent ►

10..*
◄ parent

0..*1

Figure 5: UVL Feature-Group Types

Feature Tree. The UVL feature tree consists of two main elements: features and558

groups. The tree requires exactly one root feature. Each feature may have an559

arbitrary number of groups which in turn may have an arbitrary number of560

features each. The relationship between features and groups are denoted with561

indentation. For a feature, its corresponding groups are indented by one line562

and vice versa for groups. A feature always requires a unique name as identifier.563

Here, the identifier needs to be enclosed by quotation marks if the used symbols564

may introduce an ambiguity in the UVL model.6 Each feature can have a feature565

cardinality [n..m], which denotes that the feature can be selected between n and566

m times. Also, a list of attributes {att1, att2, ...} can be attached. There are five567

feature group types supported in UVL as seen in Figure 5. Optional, mandatory,568

or, and alternative are part of the core (Boolean) level, while group cardinality569

is a Boolean minor level.570

Feature Attributes. For each feature, an arbitrary number of attributes can571

be attached. Generally, attributes are key-value pairs with the key being an572

identifier and the value being of one of the types shown in Figure 6. One573

exception is that it is allowed to only specify a key, which is then considered as574

Boolean attribute with true as value. The attributes of a feature are declared in575

curly brackets as follows: {<key1> <val1>, <key2> <val2>}. Nested attribute576

lists can be specified with {<key> {<key1> <val1> ...}}. Types of attributes577

6Identifiers not matching [a-zA-Z0-9]*[a-zA-Z][a-zA-Z0-9]* must be protected.

19

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

are not explicitly stated but rather inferred from the value. String constants578

(i.e., values of string attributes) are specified with single quotation marks to579

prevent ambiguities with feature names.580

Attribute

name : String
value : <Type>

FloatIntegerBoolean String AttributeList

◄ has

1

1..*

Figure 6: UVL Feature Attributes

Constraints. The constraints part of a UVLmodel consists of a list of constraints581

that can evaluate to either true or false. A valid configuration needs to satisfy582

every attached constraint. In UVL, constraints are mostly based on common583

propositional logic operators, namely ! (not), & (and), | (or), => (implies), <=>584

(equals), and brackets. These operators combine Boolean variables, Boolean585

constants (i.e., true or false), or predicates(cf. Figure 8), which each need to586

evaluate to a Boolean. The Boolean variables can refer to either a feature name587

or an Boolean-attribute key.588

Formula

Negation PredicateParenthesis Const. Reference
id : String

Binary Const.

Operator

And Or Implication Equivalance

Constraint

◄ connects
2

has ►
1

encloses ►
1

◄ negates

1 1

1

Figure 7: UVL Cross-Tree Constraint

20

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofPredicate

Operator

Equals Greater Lesser Unequals Greater Equals Lesser Equals

Term has ►
1

1

◄ connects
1

2

Figure 8: UVL Predicates

Predicates. Predicates are used in UVL to specify dependencies based on string589

and numerical values. As shown in Figure 8, each predicate has exactly one590

operator of equals (== in UVL), greater (>), lesser (<), unequal (!=), greater591

equal (>=), and lesser equal (<=). Note that each of these operators evaluates592

to a Boolean value. Those operators connect two terms, which are illustrated593

in Figure 9.594

Terms can only be used within predicates in UVL. A term can be (1) a595

reference to a variable, (2) a constant, (3) a function, or (4) a binary expression.596

The referenced variables can be either features or attributes. Constants can be597

either strings or numeric values. String constants are always enclosed with single598

quotation marks to prevent ambiguities with references. Otherwise, it would be599

impossible to distinguish between a string constant matching a feature name and600

said feature. For functions, sum, average are currently supported for numeric601

values and length for strings. The binary expression can connect two numeric602

values with simple arithmetic operators, namely add (+ in UVL), subtract (-),603

multiply (*), and division (/).604

5.2. Constraint Semantics605

In this section, we discuss the semantics of constraints in UVL considering606

on how they affect the set of valid configurations. Our goal here is to clarify607

potential ambiguities in the semantics of specific constraints. Table 1 shows a608

formal definition of the restrictions different constraints impose on the config-609

uration space V C (i.e., the set of valid, complete configurations modeled by a610

UVL model). For C = (I, E), I is the set of included features and E of excluded611

features. Further, f is a feature, p(f) the parent feature of f , s(f, C) the selec-612

tion status of f in C, card(f, C) the cardinality of f in C. The selection status is613

a function s : (feature, configuration) → {0, 1} that maps a feature selected (1)614

or deselected (0). The cardinality of a feature card(f, C) describes the selection615

of a feature as integer number. Note that features without denoted cardinality616

21

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofTerm

Constant
value : <Type>

Function
target: Reference

Parenthesis Exp. Reference
id : String

Binary Exp.

Operator

Add Subtract Multiply Division

Sum
T: Numeric

Average
T: Numeric

Length
T: String

◄ connects
2

1

has ►
1

1

encloses ►
1

1

Figure 9: UVL Terms

can only have the values 0 and 1. G is a set of features and ϕ is an arbitrary617

logical formula. The semantics of the different constraints are equivalent to the618

descriptions in Section 2.619

Feature Cardinality. The semantics of feature cardinality are not straightfor-620

ward and drive discussions in research [21]. Generally in UVL, we consider sub-621

trees induced by a cardinality as clones that can be configured separately. How-622

ever, the current syntax does not support referencing specific clones, which re-623

quires a default behaviour in handling feature cardinalities in other constraints.624

In the following, we discuss how we interpret interactions between feature cardi-625

nality and cross-tree constraints. We use Listing 9 to illustrate the interactions626

of feature cardinalities within a simple UVLmodel. The feature A can be selected627

between two and three times. As a consequence, the entire subtree including B628

and C can be configured up-to three times. However, it is not straightforward to629

interpret both cross-tree constraints. If we select A two times and also select D,630

do we need to select C for every subtree clone as consequence of the implication631

D ⇒ C? Or do we need to select at least one C? In the following, we explain on632

how we interpret feature cardinalities with UVL.633

Listing 10 shows a UVL model where we resolved the feature cardinality634

to illustrate its semantics. The feature cardinality consists of three clones of635

the original subtree within a group cardinality that ensures that [2..3] of those636

subtrees must be selected. Listing 10 also depicts three variants to interpret637

the cross-tree constraints. The first version contextual clone constraints is the638

interpretation used in UVL. Here, we have copies of the cross-tree constraints639

containing a feature from the feature cardinality subtree for each clone (i.e., A 1–640

A 3). Each of those constraints is only applied in its respective context (i.e., its641

subtree is selected). For instance, (B 2 => C 2) only needs to be satisfied when642

the second instance of A is selected. This is realised in UVL with the implication643

A 2 => (B 2 => C 2). If the constraint would always be applied (i.e., only having644

22

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Table 1: Constraint Semantics

Constraint If C = (I, E) ∈ VC this needs to hold

Feature f s(p(f), C) ≥ s(f, C)

Root f s(f, C) = 1

Mandatory f s(p(f), C) = s(f, C)

Group Cardinality [n..m] G n ≤
∑

f∈G

s(f, C) ≤ m

Alternative G
∑

f∈G

s(f, C) = 1

Or G
∑

f∈G

s(f, C) ≥ 1

Feature Cardinality [n..m] f n ≤ card(f, C) ≤ m

Cross-tree constraint ϕ SAT(ϕ ∧
∧

i∈I

i ∧
∧

e∈E

¬e)

Listing 9: Cardinality Interactions in UVL

1 features

R
3 optional

A cardinality [2..3]
5 optional

B
7 C

D
9

constraints

11 B => C
!D | (C & B)

right side of implication), the constraints would automatically apply for every645

clone. In particular, when D is selected, it would be required to select every C i646

and in consequence every A i. Hence, selecting D would enforce selecting three647

instances of A. In addition to the contextual clone constraints, we have one copy648

of constraints containing features that are part of the cardinality subtree and649

ones that are not. Here, we replace each occurrence of a cardinality feature f650

with an or over each of the clone features f1 ∨ . . .∨ fm. For an example, see the651

first cross-tree constraint in Listing 10. The idea of this constraint is to ensure652

constraints with other features are met with at least for one clone. We assume653

that this often matches the expectation for constraints such as D => C, where654

one would expect that selecting D requires to have a C.655

23

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Listing 10: Cardinality Semantics Different Versions

features

2 A
[2..3]

4 A 1
optional

6 B 1
C 1

8 A 2
optional

10 B 2
C 2

12 A 3
optional

14 B 3
C 3

16 D

18 // Contextual Clone Constraints
constraints

20 !D | ((C 1 | C 2 | C 3) & (B 1 | B 2 | B 3))
A 1 => (D & (C 1 | B 1))

22 A 2 => (D & (C 2 | B 2))
A 3 => (D & (C 3 | B 3))

24 A 1 => (B 1 => C 1)
A 2 => (B 2 => C 2)

26 A 3 => (B 3 => C 3)

24

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofCore

Group
Cardinality

Boolean

Core

Feature
Cardinality

Aggregate
Functions

Arithmetic

Core

String
Contraints

Type

Figure 10: Language Levels in UVL

5.3. Conversion Strategies656

With the extensible language design of UVL, another problem arises: the657

exchange of UVL models between tools that employ different language levels.658

If tool A supports a higher language level than tool B, feature models of tool659

A cannot be used in tool B. This may even be an issue for a single developer,660

as different variability modelling tools have different capabilities and advan-661

tages [62, 4, 64, 57].662

With UVL, we tackle the issue of exchanging models with different language663

levels by using conversion strategies. Note that we only consider translation664

between different levels of UVL here in contrast to conversions to other vari-665

ability languages as performed by tools such as TraVarT [34]. Figure 10 shows666

the current language level hierarchy of UVL and conversion strategies between667

them. A conversion takes a UVL model of a certain level and converts it to a668

UVL model of the next lower level by replacing the constructs with semantically669

equivalent constructs from the lower level. The possible conversions and their670

directions are marked in Figure 10 with dashed arrows. For a minor level, its671

next lower level is its major level (e.g., Boolean for group cardinality). For a672

major level, its next lower level is the most expressive major language level that673

is included (cf. Figure 3) by the level to translate. In Figure 10 the hierarchy674

is illustrated from right to left with the rightmost (Type) having the highest675

hierarchy. Since we have a conversion to the next lower level for every level, we676

can transitively convert higher language constructs to lower ones. Also, we only677

need to implement one additional conversion when introducing a new language678

level. Note that models may exponentially grow in size when converted.679

Table 2 shows the conversion strategies applied in UVL. The rows show the680

source level, the target level when converting the source level, an illustration of681

the construct in the source level, and the result of the respective conversion. For682

Group Cardinality and Arithmetic-level, we provide a specific example in the683

table for comprehensibility of the conversion strategy. For conversions of both684

concepts, we specify the valid partial configurations over the features involved685

according to the respective constraint. Involved are the features in the Group686

Cardinality and the features occurring in the predicate, respectively. For Feature687

Cardinality, we expand the Feature Cardinality by introducing the respective688

number of clone (cf. Section 5.2). Note that we directly convert the Group689

Cardinality according to the presented conversion strategy, since conversions do690

not rely on other minor levels. For Aggregate Functions, we expand the function691

25

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

by applying the operation on all features that have the respective attribute.692

For the Type-level, we transform the features with different types to a boolean693

feature which has an attribute according to the type of the original feature.694

Currently, we just drop the string constraints from the Type-level, since we695

found no way to represent those constraints with constructs from other levels.696

26

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

T
a
b
le

2
:
C
o
n
v
er
si
o
n
S
tr
a
te
g
ie
s

S
o
u
rc
e

T
a
rg
et

O
ri
g
in
a
l

C
o
n
v
er
te
d

B
o
o
le
a
n
.g
ro
u
p
-c
a
rd
in
a
li
ty

B
o
o
le
a
n

[2
..
3
]

(f
1
∧
f 2

∧
¬f

3
)
∨
(f

1
∧
¬f

2
∧
f 3
)

f 1
∨(

¬f
1
∧
f 2

∧
f 3
)

f 2 f 3

A
ri
th
m
et
ic

B
o
o
le
a
n

f 1
.a

+
f 2
.b

+
f 3
.c

<
2
0

¬f
1
∨
¬(

f 2
∧
f 3
)

f 1
.a

=
5
,
f 2
.b

=
1
0
,
f 2
.b

=
1
6

A
ri
th
m
et
ic
.f
ea
tu
re
-c
a
rd
in
a
li
ty

A
ri
th
m
et
ic

a
ca
rd
in
a
li
ty

[n
..
m
]

a
[n
..
m
] a
1

..
.

a
m

A
ri
th
m
et
ic
.a
g
g
re
g
a
te
-f
u
n
ct
io
n

A
ri
th
m
et
ic

su
m
(a
)

f 1
.a

+
f 2
.a

+
..
.
+

f n
.a

av
g
(a
)

(f
1
.a

+
f
2
.a

+
..
.+

f
n
.a

)
f
1
+
f
2
+
..
.+

f
n

T
y
p
e

A
ri
th
m
et
ic

In
te
g
er

f
f
{I
n
te
g
er

0
}

F
lo
a
t
f

f
{F

lo
a
t
0
}

S
tr
in
g
f

f
{S

tr
in
g
0
}

B
o
o
le
a
n
f

f

T
y
p
e.
st
ri
n
g
-c
o
n
st
ra
in
ts

T
y
p
e

f
=
=

”
F
u
n
”

D
ro
p

le
n
(f
)

D
ro
p

27

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

6. UVL Implementation and Integration with other Tools697

In this section, we introduce the reference parser implementation of the698

UVL language. Further, we outline other tools integrating the UVL for various699

purposes, including graphical editing, textual editing, analysis, configuration,700

and transformation.701

6.1. UVL Parser702

The current UVL parser [87] extends the previous implementations by the703

presented language levels discussed in the previous sections. The parser is based704

on ANTLR [70] and is available as an open-source implementation in Java and705

Python.7 Listing 11 shows the syntax of a UVL model implemented in the parser706

as a simplified grammar in an EBNF-like notation. The parser implements the707

necessary conversion strategies between Boolean, Arithmetic, and Type-level of708

UVL (cf. Table 2). A conversion only works from a higher level to the next lower709

level to allow importing more expressive UVL models in tools that only build on710

lower levels. Thus, concepts of the Type-level are converted to the Arithmetic-711

level and these concepts are then converted to the core Boolean-level. Figure 10712

shows the implemented language concepts, organised per level and highlighting713

the conversion strategies. In previous work, we implemented parsers based on714

Clojure [82] and Python [36], but both those parsers are limited to the Boolean715

level of UVL.716

6.2. Available Tooling717

Several tools, such as FeatureIDE [61, 84], flamapy [38], TRAVART [34], or718

variability.dev [43] have integrated UVL for different purposes. Most tools either719

enable graphical [43, 61, 84] or textual [57] editing, analysis [38, 43, 57, 61, 67,720

84], transformation [34, 67], or configuration [38, 43, 57, 61, 84] of UVL models.721

Some tools, such as FeatureIDE [61, 84], flamapy [38] or Nemo [67] do support722

multiple purposes at once. For instance, the UVLS [57] provides an implemen-723

tation of the language server protocol to enable easy integration into existing724

tools and additionally the configuration of UVL models. Other tools use UVL to725

facilitate variability model interoperability via the transformation of variability726

artefacts into UVL [34, 67]. Further, some tools, such as pure::variants [71, 76],727

ddueruem [42], FM Fact Label [44], or V4rdiac [28], integrated UVL or one of728

the tools supporting UVL to expand the range of supported variability artefacts729

in their respective tool. Not all tools support all language levels of UVL. In the730

following, we discuss the respective tools, their focus, and which UVL language731

level they support. Table 3 summarises the discussed tools.732

6.2.1. Graphical editing733

FeatureIDE [61, 84] is the de-facto standard for graphical editing of feature734

models. The Eclipse-based tool allows defining feature models using the core735

of the UVL Boolean-level. Thus, UVL models created in FeatureIDE may con-736

sist of optional and mandatory features, and each feature may consist of a set737

7UVL Parser – https://github.com/Universal-Variability-Language/uvl-parser

28

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Listing 11: Simplified UVL Grammar in EBNF Notation

1
featureModel: includes? NEWLINE? imports? NEWLINE? features? NEWLINE? constraints? EOF;

3
includes: ’include ’ NEWLINE INDENT includeLine* DEDENT;

5 includeLine: languageLevel NEWLINE;

7 imports: ’imports ’ NEWLINE INDENT importLine* DEDENT;
importLine: ns=reference (’as’ alias=reference)? NEWLINE;

9
features: ’features ’ NEWLINE INDENT feature DEDENT;

11
group

13 : ORGROUP groupSpec # OrGroup
| ALTERNATIVE groupSpec # AlternativeGroup

15 | OPTIONAL groupSpec # OptionalGroup
| MANDATORY groupSpec # MandatoryGroup

17 | CARDINALITY groupSpec # CardinalityGroup
;

19
groupSpec: NEWLINE INDENT feature+ DEDENT;

21
feature: featureType? reference featureCardinality? attributes? NEWLINE (INDENT group+ DEDENT)?;

23
featureCardinality: ’cardinality ’ CARDINALITY;

25
attributes: OPEN_BRACE (attribute (COMMA attribute)*)? CLOSE_BRACE;

27
attribute

29 : valueAttribute
| constraintAttribute;

31
valueAttribute: key value?;

33
key: id;

35 value: BOOLEAN | FLOAT | INTEGER | STRING | attributes | vector;
vector: OPEN_BRACK (value (COMMA value)*)? CLOSE_BRACK;

37
constraintAttribute

39 : ’constraint ’ constraint # SingleConstraintAttribute
| ’constraints ’ constraintList # ListConstraintAttribute

41 ;
constraintList: OPEN_BRACK (constraint (COMMA constraint)*)? CLOSE_BRACK;

43
constraints: ’constraints ’ NEWLINE INDENT constraintLine* DEDENT;

45
constraintLine: constraint NEWLINE;

47
constraint

49 : equation # EquationConstraint
| reference # LiteralConstraint

51 | OPEN_PAREN constraint CLOSE_PAREN # ParenthesisConstraint
| NOT constraint # NotConstraint

53 | constraint AND constraint # AndConstraint
| constraint OR constraint # OrConstraint

55 | constraint IMPLICATION constraint # ImplicationConstraint
| constraint EQUIVALENCE constraint # EquivalenceConstraint

57 ;

59 equation
: expression EQUAL expression # EqualEquation

61 | expression LOWER expression # LowerEquation
| expression GREATER expression # GreaterEquation

63 | expression LOWER_EQUALS expression # LowerEqualsEquation
| expression GREATER_EQUALS expression # GreaterEqualsEquation

65 | expression NOT_EQUALS expression # NotEqualsEquation
;

67
expression:

69 FLOAT # FloatLiteralExpression
| INTEGER # IntegerLiteralExpression

71 | STRING # StringLiteralExpression
| aggregateFunction # AggregateFunctionExpression

73 | reference # LiteralExpression
| OPEN_PAREN expression CLOSE_PAREN # BracketExpression

75 | expression ADD expression # AddExpression
| expression SUB expression # SubExpression

77 | expression MUL expression # MulExpression
| expression DIV expression # DivExpression

79 ;

29

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Tool Graphical
Editing

Textual
Editing

Config-
uration

Analysis Trans-
formation

Supported
Lang. Levels

FeatureIDE [61] ✓ ✗ ✓ ✓ ✗ Boolean
flamapy [38] ✗ ✗ ✓ ✓ ✓ Boolean
Nemo [67] ✗ ✗ ✗ ✓ ✓ Boolean
TRAVART [34] ✗ ✗ ✗ ✗ ✓ All
UVLS [57] ✗ ✓ ✓ ✓ ✗ All
variability.dev [43] ✓ ✗ ✓ ✓ ✗ Boolean

ddueruem [42] ✗ ✗ ✗ ✓ ✗ Boolean
FM Fact Level [44] ✗ ✗ ✗ ✓ ✗ Boolean
pure::variants [71] ✓ ✗ ✓ ✓ ✗ Boolean
V4rdiac [28] ✗ ✗ ✓ ✗ ✗ All

Table 3: Tools integrating UVL either directly (upper part) or indirectly (lower part).

of optional and mandatory features themselves, or a single alternative, or an738

or group. However, FeatureIDE also does not support feature and group car-739

dinalities. Constraints are limited to propositional logic constraints. Feature740

models created with FeatureIDE are usually serialised using an XML format.741

However, the serialisation can be changed to the UVL format [84], using the742

UVLFeatureModelFormat class.743

The web-based feature-modelling tool variability.dev [43]8 builds on the744

ddueruem [42] analysis wrapper and the FeatureIDE [61] library. Thus, the745

expressiveness of the created UVL models is the same as those created with746

FeatureIDE and limited to the core of the UVL Boolean-level. However, us-747

ing variability.dev, users have a low entry point for experimenting with feature748

modelling as users do not have to install a complete Eclipse-based application.749

Additionally, variability.dev allows collaborative editing of feature models. Cre-750

ated feature models can be downloaded either as a graphical image (SVG) or751

as a FeatureIDE XML file.752

6.2.2. Textual editing753

For textual editing of UVL models, Loth et al. [57] implemented the language754

server protocol for UVL in the tool UVLS. The language server protocol enables755

important language features, such as syntax highlighting, via a standardised756

interface. Thus, it can be integrated into common development environments,757

e.g., Visual Studio Code.9 The current implementation of the language server758

protocol supports all language levels of UVL and features several analysis tech-759

niques [57] to enhance the textual editing of UVL models (cf. Section 6.2.3).760

For instance, UVLS checks whether the created UVL model is syntactically and761

semantically correct, e.g., avoiding void feature models. Furthermore, UVLS762

allows the configuration of a UVL model in a simplified configuration editor,763

similar to the one provided by FeatureIDE [61, 84].764

8variability.dev – https://variability.dev/
9UVLS: https://marketplace.visualstudio.com/items?itemName=caradhras.uvls-code

30

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

6.2.3. Analysis765

FeatureIDE [61, 84] can not only be used for graphical editing of feature mod-766

els, but also for analysing them. Hence, FeatureIDE also enables the analysis of767

UVL models. However, the analysis is limited to the core of the Boolean-level,768

as this is the level supported by FeatureIDE (cf. Section 6.2.1).769

The language server protocol implementation UVLS [57] provides syntactical770

and semantical analysis capabilities. For the syntactic check of a given UVL771

feature model, UVLS utilises the tree-sitter parser generator tool.10 UVLS then772

checks if the tree-sitter parser accepts the given UVL model as a valid input.773

For the semantic analysis of a given UVL feature model, UVLS utilises the774

Z3 solver [23]. The SMT solver allows detecting if a UVL model does not allow775

valid configurations or contains any dead features or contradicting or redundant776

constraints.777

flamapy [38] is a Python-based analysis framework for feature models.11 The778

tool is plugin-based, utilising a core plugin orchestrating the execution of other779

plugins and also providing the hooks and frozen points of the framework [60].780

Besides the core plugin, flamapy provides a feature model plugin, which supports781

the core of UVLs’ Boolean-level and provides translations for PySAT, BDD782

support, and various input formats such as FeatureIDE [61] and S.P.L.O.T. [64].783

Currently, flamapy supports multiple different solvers via the support of the784

PySAT4 metasolver12, BDDs [40] and dependency graphs [59].785

Nemo [67] allows counting valid configurations of numerical feature models786

via bit blasting [66]. The tool currently supports UVL as an input and output787

format (cf. Section 6.2.4). Therefore, Nemo utilises the Boolean-level of UVL,788

including group cardinalities. Based on the bit-blasted UVLmodel #SAT solvers789

and BDD solvers [40] are executed to count the number of valid configurations790

of the resulting model.791

The online tool variability.dev [43] uses the analysis wrapper ddueruem [42]792

and the FeatureIDE [61] library to perform basic analysis on a created feature793

model. For instance, variability.dev detects dead features in a feature tree, or794

faulty configurations in the configuration editor (cf. Section 6.2.5).795

6.2.4. Transformation796

TRAVART [34] is a plugin-based variability model transformation envi-797

ronment.13 At its core, TRAVART uses UVL as the pivot model. As the tool798

builds on the current Java implementation, TRAVART supports all language799

levels of UVL. Each plugin implements transformations between one variability800

artefact type and the UVL. These transformations are usually built by mapping801

core concepts of the supported variability model type onto the core concepts of802

UVL and vice versa [31, 32, 33]. For instance, in the available plugin for the803

DOPLER [25] decision modelling approach, a decision is mapped to a feature804

in the UVL. Also, a rule in the DOPLER decision model is mapped to either a805

10tree-sitter: https://tree-sitter.github.io/tree-sitter/
11flamapy: https://flamapy.github.io/
12PySAT: https://pysathq.github.io/
13TraVarT: https://github.com/SECPS/TraVarT

31

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

feature property (mandatory), the feature model tree, or a constraint [33]. In806

the opposite direction, the hierarchy of the UVL feature model tree is captured807

via the visibility conditions of the DOPLER decision model.808

Nemo [67] translates numerical feature models into UVL feature models using809

bit blasting [66]. Therefore, the bit-blasted numerical feature model is captured810

either as a DIMACS file, from which a UVL model is created or directly as811

a UVL model. Using Nemo the created UVL model can then be analysed (cf.812

Section 6.2.3).813

6.2.5. Configuration814

FeatureIDE [61, 84] also supports the configuration of feature models. Hence,815

FeatureIDE also enables the configuration of UVLmodels which support the core816

of the Boolean-level.817

flamapy [38]14 utilises the configuration of UVL models, which support the818

core of the Boolean-level. flamapy uses the capability to validate if a config-819

uration is valid for the given UVL model or to count valid configurations via820

state-of-the-art SAT solvers.821

UVLS [57] supports configuring a given UVL model using a dedicated edi-822

tor. The configuration editor supports the configuration of UVL models of all823

language levels. Therefore, UVLS presents a decision for each feature and its824

feature attributes to configure a configuration. The editor indicates if the given825

values for these features and their attributes still provide a basis for a valid826

configuration for the UVL model.827

The online tool variability.dev [43] allows configuring created feature models828

using its configuration editor. The configuration editor supports the configura-829

tion of UVL models using the core of the Boolean-level. By default, the editor830

ensures that the selected configuration is valid, but also allows the configuration831

of invalid configurations. Configurations can be downloaded as a FeatureIDE832

configuration.833

6.2.6. Others834

UVL has also been either directly or indirectly, i.e., via one of the tools men-835

tioned above, integrated into other tools. For instance, pure::variants [71] or836

ddueruem [42] support UVL via import and export capabilities [76]. Similarly,837

FM Fact Label [44] facilitates the visualisation of feature model metrics and sup-838

ports common feature model formats, such as FeatureIDE [61], S.P.L.O.T. [64]839

or UVL. Other tools, such as V4rdiac [28], integratedTRAVART [34] to achieve840

variability model interoperability via the UVL or to facilitate the configuration841

of Cyber-Physical Production Systems [63]. The UVLGenerator can be used to842

generate UVL models whose structural properties can be customized according843

to the user’s requirements [86]. Last but not least, UVLHub an open repository844

with UVL datasets is available [79]15.845

14https://www.flamapy.org/
15https://www.uvlhub.io/

32

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

7. Discussion, Open Challenges and Future Work846

To increase the adoption of UVL, its acceptance in industry is essential. To847

achieve that, we need to address the challenges that industry is having regarding848

variability modelling.849

In 2020, Berger et al. provided some updates on industry challenges in850

SPLE [16] elicited earlier. At the SPLC 2023 Industry Challenges Workshop851

[10], 9 companies presented their challenges regarding variability management852

and systems and software product lines and discussed research opportunities.853

Addressing the challenges elicited in these recent works is essential for UVL to854

ensure adoption by industry. Of the many challenges discussed, especially the855

need to support multi product lines and system of systems product lines, effi-856

cient PL verification and validation, and tool support for integrated variability857

management across disciplines are relevant for the further development of UVL.858

The already available tooling and the extensibility of UVL should already help859

to address these challenges, however, further work needs to be done.860

A recent paper [73] described specific challenges for UVL industry adoption,861

which we include:862

• work with industry to empirically validate UVL and demonstrate it actu-863

ally works for realistic cases. Extend or adapt UVL if necessary. Create864

demonstrators.865

• develop extended tool support for modelling and configuration including866

generators for domain-specific artefacts.867

• bridge the gap between UVL models and web-based (sales) configurators868

(see initial work by Abbasi et al. [1]).869

• develop flexible mapping concept to support mapping of UVL features to870

solution space artefacts.871

• develop consistency checking support intra- and inter-UVL models as well872

as between UVL models and artefacts.873

• support the verification of UVL models and configurations874

• support the automated creation of UVLmodels based on analysing existing875

variability information and existing artefacts [49] to extract variability.876

• integrate UVL with tools used in industry such as ALM/PLM tools.877

• support product line maintenance and evolution, e.g., develop automated878

refactoring support and a proper versioning concept and integrations with879

version management frameworks.880

• work on the scalability of UVL to real-world systems. The multi-modelling881

concept of UVL thus should only be seen as a first step in this direction.882

• investigate different visualisations of UVL models and configurations.883

33

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

• provide material to train users as well as the advertise UVL.884

• define UVL design patterns and guidelines [68].885

Some of the challenges are being addressed and there are some solutions886

available. In future work, we plan to work on some of these challenges and also887

discuss them further with industry based on first case studies and demonstrators.888

We envision that this paper can also foster the community to investigate these889

challenges with further studies.890

Besides industry adoption, we also plan to increase the adoption within the891

software product line and variability modelling community and beyond to the892

general software engineering community. Visibility at the main events as well as893

demonstrators and examples, together with guidance material, are essential to894

achieve that. Including further researchers in the MODEVAR initiative can have895

a snowball effect, if the researchers also start to use UVL in their collaborations896

with academia and industry as well as for teaching.897

A key challenge to address is a more in-depth evaluation of UVL’s simplicity,898

efficiency, and applicability in real-world scenarios. We show in this paper some899

indicators about these aspects, but a formal evaluation is still missing.900

The area of teaching is yet another big opportunity to increase the adop-901

tion of UVL. The already existing documentation, example models, and UVL902

playground16 are a very good starting point, however, we also need to prepare903

specific material for teaching UVL. MODEVAR community members needs to904

start using UVL in their teaching and report experiences.905

8. Conclusions906

During the last decades, feature modelling and analysis have been one of the907

main research topics in software product line engineering. UVL is a new language908

for textually modelling variability informed by a participatory process within909

the software product line community. The language is being used in different910

existing tools and is a proposal for the community to adopt in the future. A911

single language cannot fit all the variability needs of different scenarios, unless912

the language gets more and more complex to cover more needs. That is why UVL913

is designed using different language levels and includes extension mechanisms.914

As a result, UVL consists of a simple core language and allows users to extend915

the language to their specific needs. UVL then allows users to support all UVL916

models of other levels as well. Its simplicity allows information sharing among917

researchers, and we envision that it can be used in other scenarios, not only in918

software product lines.919

Although the presented version of the language is stable, and we envision920

no major changes in the future, if UVL is widely adopted as we pursue, many921

challenges and research opportunities will appear. We plan to maintain and922

eventually enlarge a consortium of researchers who discuss the progress of the923

16https://universal-variability-language.github.io/

34

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

language and agree on the language’s evolution every year. We plan to en-924

large and maintain the tool chain supporting UVL such as modelling [43, 84],925

analysis [38] or sharing [77] capabilities. With UVL, variability modelling can be926

adopted in many application domains and can be a central point for information927

sharing, tools integration, and variability modelling learning.928

Material929

All the source code and data can be downloaded and executed from the following reposi-930

tory: https://github.com/Universal-Variability-Language931

Acknowledgements932

Partially funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-933

dation) – SFB 1608 – 501798263. It was also partially supported by FEDER/Ministry of Sci-934

ence, Innovation and Universities/Junta de Andalućıa/State Research Agency/CDTI with935

the following grants: Data-pl(PID2022-138486OB-I00), TASOVA PLUS research network936

(RED2022-134337-T) and MIDAS (IDI-20230256). The financial support by the Austrian937

Federal Ministry for Digital and Economic Affairs, the National Foundation for Research,938

Technology and Development, and the Christian Doppler Research Association is gratefully939

acknowledged. The authors thank Sebastian Krieter for insightful discussions on the lan-940

guage design of UVL and his contributions to the tools presented. Special thanks go to David941

Romero, who implemented UVLHub as a tool on top of UVL and helped us to detect some942

issues in the language. In addition, we would like to give a big thanks to all researchers who943

have contributed to the MODEVAR initiative throughout these years.944

References945

[1] Ebrahim Khalil Abbasi, Arnaud Hubaux, Mathieu Acher, Quentin Boucher, and Patrick946

Heymans. 2013. The anatomy of a sales configurator: An empirical study of 111 cases.947

In Proceedings of the 25th International Conference on Advanced Information Systems948

Engineering. Springer, 162–177.949

[2] Mathieu Acher, Philippe Collet, David Benavides, and Rick Rabiser. 2020. Third Inter-950

national Workshop on Languages for Modelling Variability (MODEVAR@ SPLC 2020).951

In Proceedings of the 24th ACM Conference on Systems and Software Product Line:952

Volume A-Volume A. 1–1.953

[3] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France. 2009. Composing954

Feature Models. In Proc. Int’l Conf. on Software Language Engineering (SLE). Springer,955

Denver, CO, USA, 62–81.956

[4] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France. 2013. Familiar:957

A Domain-Specific Language for Large Scale Management of Feature Models. Science of958

Computer Programming (SCP) 78, 6 (2013), 657–681.959

[5] Prankur Agarwal, Kevin Feichtinger, Klaus Schmid, Holger Eichelberger, and Rick Ra-960

biser. 2024. On the Challenges of Transforming UVL to IVML. https://doi.org/10.961

48550/arXiv.2403.01952 arXiv:2403.01952 [cs].962

[6] Mauricio Alférez, Mathieu Acher, José Angel Galindo, Benoit Baudry, and David Bena-963

vides. 2019. Modeling variability in the video domain: language and experience report.964

Softw. Qual. J. 27, 1 (2019), 307–347. https://doi.org/10.1007/s11219-017-9400-8965

35

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[7] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-Oriented966

Software Product Lines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/967

978-3-642-37521-7968

[8] Don Batory. 2005. Feature Models, Grammars, and Propositional Formulas. In Proc.969

Int’l Systems and Software Product Line Conf. (SPLC). Springer, Berlin, Heidelberg,970

7–20. https://doi.org/10.1007/11554844_3971

[9] Don Batory. 2020. Automated Software Design Volume 1. Lulu Press.972

[10] Martin Becker, Rick Rabiser, and Goetz Botterweck. 2024. Not Quite There Yet: Re-973

maining Challenges in Systems and Software Product Line Engineering as Perceived by974

Industry Practitioners. In Proceedings of the 28th ACM International Systems and Soft-975

ware Product Line Conference. ACM.976

[11] Maurice H. ter Beek, Klaus Schmid, and Holger Eichelberger. 2019. Textual Variability977

Modeling Languages: An Overview and Considerations. In Proc. Int’l Workshop on978

Languages for Modelling Variability (MODEVAR) (Paris, France). ACM, New York,979

NY, USA, 151–157. https://doi.org/10.1145/3307630.3342398980

[12] David Benavides, Rick Rabiser, Don Batory, and Mathieu Acher. 2019. First Interna-981

tional Workshop on Languages for Modelling Variability (MODEVAR 2019). In Proc.982

Int’l Systems and Software Product Line Conf. (SPLC). 323–323.983

[13] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. 2010. Automated Analysis of984

Feature Models 20 Years Later: A Literature Review. Information Systems 35, 6 (2010),985

615–708.986

[14] Thorsten Berger and Philippe Collet. 2019. Usage Scenarios for a Common Feature987

Modeling Language. In Proc. Int’l Systems and Software Product Line Conf. (SPLC).988

ACM, New York, NY, USA, 174–181.989

[15] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee, Martin Becker, Krzysztof990

Czarnecki, and Andrzej Wasowski. 2013. A Survey of Variability Modeling in Industrial991

Practice. In Proc. Int’l Workshop on Variability Modelling of Software-Intensive Systems992

(VaMoS) (Pisa, Italy). ACM, New York, NY, USA, 7:1–7:8. https://doi.org/10.1145/993

2430502.2430513994

[16] Thorsten Berger, Jan-Philipp Steghöfer, Tewfik Ziadi, Jacques Robin, and Jabier Mar-995

tinez. 2020. The state of adoption and the challenges of systematic variability manage-996

ment in industry. Empir. Softw. Eng. 25, 3 (2020), 1755–1797.997

[17] Mikaela Cashman, Justin Firestone, Myra B. Cohen, Thammasak Thianniwet, and Wei998

Niu. 2019. DNA as Features: Organic Software Product Lines. In Proc. Int’l Systems999

and Software Product Line Conf. (SPLC) (Paris, France). ACM, New York, NY, USA,1000

108–118. https://doi.org/10.1145/3336294.33362981001

[18] Andreas Classen, Quentin Boucher, and Patrick Heymans. 2011. A Text-Based Approach1002

to Feature Modelling: Syntax and Semantics of TVL. Science of Computer Programming1003

(SCP) 76, 12 (2011), 1130–1143. Special Issue on Software Evolution, Adaptability and1004

Variability.1005

[19] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. 2005. Formalizing1006

Cardinality-Based Feature Models and Their Specialization. Software Process: Improve-1007

ment and Practice 10 (2005), 7–29.1008

[20] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. 2005. Staged Configuration1009

Through Specialization and Multi-Level Configuration of Feature Models. Software Pro-1010

cess: Improvement and Practice 10, 2 (2005), 143–169.1011

36

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[21] Krzysztof Czarnecki and Chang Hwan Peter Kim. 2005. Cardinality-Based Feature Mod-1012

eling and Constraints: A Progress Report. In Proc. Int’l Workshop on Software Factories1013

(SF). 16–20.1014

[22] Krzysztof Czarnecki and Andrzej Wasowski. 2007. Feature Diagrams and Logics: There1015

and Back Again. In Proc. Int’l Systems and Software Product Line Conf. (SPLC). IEEE,1016

Washington, DC, USA, 23–34.1017

[23] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Tools1018

and Algorithms for the Construction and Analysis of Systems, C. R. Ramakrishnan and1019

Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 337–340.1020

[24] Leonardo De Moura and Nikolaj Bjørner. 2011. Satisfiability Modulo Theories: Intro-1021

duction and Applications. Comm. ACM 54, 9 (2011), 69–77.1022

[25] Deepak Dhungana, Paul Grünbacher, and Rick Rabiser. 2011. The DOPLER Meta-Tool1023

for Decision-Oriented Variability Modeling: A Multiple Case Study. Automated Software1024

Engineering 18, 1 (2011), 77–114.1025

[26] Holger Eichelberger and Klaus Schmid. 2015. Mapping the Design Space of Tex-1026

tual Variability Modeling Languages: A Refined Analysis. Int’l J. Software Tools1027

for Technology Transfer (STTT) 17, 5 (2015), 559–584. https://doi.org/10.1007/1028

s10009-014-0362-x1029

[27] Sascha El-Sharkawy, Adam Krafczyk, and Klaus Schmid. 2015. Analysing the KCon-1030

fig Semantics and its Analysis Tools. In Proc. Int’l Conf. on Generative Programming:1031

Concepts & Experiences (GPCE) (Pittsburgh, PA, USA). ACM, New York, NY, USA,1032

45–54. https://doi.org/10.1145/2814204.28142221033

[28] Hafiyyan Sayyid Fadhlillah, Kevin Feichtinger, Philipp Bauer, Elene Kutsia, and Rick1034

Rabiser. 2022. V4rdiac: tooling for multidisciplinary delta-oriented variability man-1035

agement in cyber-physical production systems. In Proceedings of the 26th ACM In-1036

ternational Systems and Software Product Line Conference - Volume B (Graz, Aus-1037

tria) (SPLC ’22). Association for Computing Machinery, New York, NY, USA, 34–37.1038

https://doi.org/10.1145/3503229.35470281039

[29] Hafiyyan Sayyid Fadhlillah and Rick Rabiser. 2024. Towards a Product Configuration1040

Representation for the Universal Variability Language. In Proceedings of the 28th ACM1041

International Systems and Software Product Line Conference (Dommeldange, Luxem-1042

bourg) (SPLC ’24). Association for Computing Machinery, New York, NY, USA, 50–54.1043

https://doi.org/10.1145/3646548.36765441044

[30] Kevin Feichtinger and Jessie Galasso-Carbonnel. 2024. Seventh International Workshop1045

on Languages for Modelling Variability (MODEVAR@SPLC 2024). In Proceedings of the1046

28th ACM International Systems and Software Product Line Conference (Dommeldange,1047

Luxembourg) (SPLC ’24). Association for Computing Machinery, New York, NY, USA,1048

224. https://doi.org/10.1145/3646548.36770061049

[31] Kevin Feichtinger, Kristof Meixner, Stefan Biffl, and Rick Rabiser. 2022. Evolution1050

Support for Custom Variability Artifacts Using Feature Models: A Study in the Cyber-1051

Physical Production Systems Domain. In Reuse and Software Quality, Gilles Perrouin,1052

Naouel Moha, and Abdelhak-Djamel Seriai (Eds.). Springer International Publishing,1053

Cham, 79–84.1054

[32] Kevin Feichtinger and Rick Rabiser. 2020. Towards Transforming Variability Models:1055

Usage Scenarios, Required Capabilities and Challenges. In Proc. Int’l Workshop on Lan-1056

guages for Modelling Variability (MODEVAR) (Montreal, QC, Canada) (SPLC ’20).1057

ACM, New York, NY, USA, 44–51. https://doi.org/10.1145/3382026.34257681058

37

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[33] Kevin Feichtinger and Rick Rabiser. 2020. Variability Model Transformations: Towards1059

Unifying Variability Modeling. In 46th Euromicro Conference on Software Engineering1060

and Advanced Applications. IEEE, Portoroz, Slovenia.1061

[34] Kevin Feichtinger, Johann Stöbich, Dario Romano, and Rick Rabiser. 2021. TRAVART:1062

An Approach for Transforming Variability Models. In Proc. Int’l Working Conf. on1063

Variability Modelling of Software-Intensive Systems (VaMoS) (Krems, Austria). ACM,1064

New York, NY, USA, Article 8, 10 pages. https://doi.org/10.1145/3442391.34424001065

[35] Alexander Felfernig, Andreas Falkner, and David Benavides. 2024. Feature Models: AI-1066

Driven Design, Analysis and Applications. Springer Nature. https://doi.org/10.1007/1067

978-3-031-61874-11068

[36] José A Galindo and David Benavides. 2020. A Python framework for the automated1069

analysis of feature models: A first step to integrate community efforts. In Proceedings1070

of the 24th acm international systems and software product line conference-volume b.1071

52–55.1072

[37] José A. Galindo, David Benavides, Pablo Trinidad, Antonio-Manuel Gutiérrez-1073

Fernández, and Antonio Ruiz-Cortés. 2019. Automated Analysis of Feature Models:1074

Quo Vadis? Computing 101, 5 (May 2019), 387–433. https://doi.org/10.1007/1075

s00607-018-0646-11076

[38] José A. Galindo, José Miguel Horcas, Alexander Felfernig, David Fernández-Amorós, and1077

David Benavides. 2023. FLAMA: A Collaborative Effort to Build a New Framework for1078

the Automated Analysis of Feature Models. In Proc. Int’l Systems and Software Product1079

Line Conf. (SPLC). ACM, New York, NY, USA, 16–19. https://doi.org/10.1145/1080

3579028.36090081081

[39] Øystein Haugen, Andrzej Wasowski, and Krzysztof Czarnecki. 2012. CVL: Common1082

Variability Language. In Proc. Int’l Systems and Software Product Line Conf. (SPLC)1083

(Salvador, Brazil). ACM, New York, NY, USA, 266–267. https://doi.org/10.1145/1084

2364412.23644621085

[40] Ruben Heradio, David Fernández-Amorós, José A. Galindo, David Benavides, and Don S.1086

Batory. 2022. Uniform and Scalable Sampling of Highly Configurable Systems. Em-1087

pirical Software Engineering (EMSE) 27, 2 (2022), 44. https://doi.org/10.1007/1088

s10664-021-10102-51089

[41] Tobias Heß, Tobias Müller, Chico Sundermann, and Thomas Thüm. 2022. ddueruem: A1090

Wrapper for Feature-Model Analysis Tools. In Proc. Int’l Systems and Software Product1091

Line Conf. (SPLC) (Graz, Austria). ACM, New York, NY, USA, 54–57. https://doi.1092

org/10.1145/3503229.35470321093

[42] Tobias Heß, Tobias Müller, Chico Sundermann, and Thomas Thüm. 2022. ddueruem: a1094

wrapper for feature-model analysis tools. In Proceedings of the 26th ACM International1095

Systems and Software Product Line Conference - Volume B (Graz, Austria) (SPLC ’22).1096

Association for Computing Machinery, New York, NY, USA, 54–57. https://doi.org/1097

10.1145/3503229.35470321098

[43] Tobias Heß, Lukas Ostheimer, Tobias Betz, Simon Karrer, Tim Jannik Schmidt, Pierre1099

Coquet, Sean Semmler, and Thomas Thüm. 2024. variability.dev: Towards an Online1100

Toolbox for Feature Modeling. In Proc. Int’l Workshop on Languages for Modelling1101

Variability (MODEVAR) (Bern, Switzerland). To appear.1102

[44] Jose M. Horcas, Jose A. Galindo, Mónica Pinto, Lidia Fuentes, and David Benavides.1103

2022. FM fact label: a configurable and interactive visualization of feature model charac-1104

terizations. In Proceedings of the 26th ACM International Systems and Software Product1105

Line Conference - Volume B (Graz, Austria) (SPLC ’22). Association for Computing1106

Machinery, New York, NY, USA, 42–45. https://doi.org/10.1145/3503229.35470251107

38

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[45] Jose-Miguel Horcas, Angela Villota, David Benavides, and Philippe Collet. 2022. Fifth1108

International Workshop on Languages for Modelling Variability (MODEVAR@ SPLC1109

2022). In Proceedings of the 26th ACM International Systems and Software Product1110

Line Conference-Volume A. 264–264.1111

[46] ISO/IEC 26558:2017(en) 2017. Software and systems engineering — Methods and tools1112

for variability modelling in software and systems product line. Standard. International1113

Organization for Standardization/International Electrotechnical Commission, Geneva,1114

CH. https://www.iso.org/obp/ui/#iso:std:iso-iec:26558:ed-1:v1:en1115

[47] Narendra Jussien, Guillaume Rochart, and Xavier Lorca. 2008. Choco: An Open Source1116

Java Constraint Programming Library. In Proc. Workshop on Open-Source Software for1117

Integer and Contraint Programming (OSSICP). CCSD-HAL, Lyon, France.1118

[48] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer1119

Peterson. 1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical1120

Report CMU/SEI-90-TR-21. Software Engineering Institute, Pittsburgh, PA, USA.1121

[49] Christian Kästner, Alexander Dreiling, and Klaus Ostermann. 2013. Variability mining:1122

Consistent semi-automatic detection of product-line features. IEEE Transactions on1123

Software Engineering 40, 1 (2013), 67–82.1124

[50] Christian Kästner, Thomas Thüm, Gunter Saake, Janet Feigenspan, Thomas Leich,1125

Fabian Wielgorz, and Sven Apel. 2009. FeatureIDE: A Tool Framework for Feature-1126

Oriented Software Development. In Proc. Int’l Conf. on Software Engineering (ICSE)1127

(Vancouver, Canada). IEEE, Washington, DC, USA, 611–614. https://doi.org/10.1128

1109/ICSE.2009.5070568 Formal demonstration paper.1129

[51] Alexander Knüppel, Thomas Thüm, Stephan Mennicke, Jens Meinicke, and Ina Schae-1130

fer. 2017. Is There a Mismatch Between Real-World Feature Models and Product-Line1131

Research?. In Proc. Europ. Software Engineering Conf./Foundations of Software En-1132

gineering (ESEC/FSE) (Paderborn, Germany). ACM, New York, NY, USA, 291–302.1133

https://doi.org/10.1145/3106237.31062521134

[52] Sebastian Krieter, Kevin Feichtinger, José A. Galindo, David Benavides, Rick Rabiser,1135

Chico Sundermann, and Thomas Thüm. 2023. Second Tutorial on the Universal Variabil-1136

ity Language. In Proc. Int’l Systems and Software Product Line Conf. (SPLC) (Tokyo,1137

Japan). ACM, New York, NY, USA, 273. https://doi.org/10.1145/3579027.36090021138

[53] Andreas Kübler, Christoph Zengler, and Wolfgang Küchlin. 2010. Model Counting in1139

Product Configuration. In Proc. Int’l Workshop on Logics for Component Configuration1140

(LoCoCo) (Edinburgh, UK). Open Publishing Association, Waterloo, Australia, 44–53.1141

https://doi.org/10.4204/EPTCS.29.51142

[54] Elias Kuiter, Sebastian Krieter, Chico Sundermann, Thomas Thüm, and Gunter Saake.1143

2022. Tseitin or not Tseitin? The Impact of CNF Transformations on Feature-Model1144

Analyses. In Proc. Int’l Conf. on Automated Software Engineering (ASE) (Rochester,1145

MI, USA). ACM, New York, NY, USA, 110:1–110:13. https://doi.org/10.1145/1146

3551349.35569381147

[55] Viet-Man Le, Thi Ngoc Trang Tran, Martin Stettinger, Lisa Weißl, Alexander Felfernig,1148

Müslüm Atas, Seda Polat Erdeniz, and Andrei Popescu. 2021. Counteracting Exam1149

Cheating by Leveraging Configuration and Recommendation Techniques. In ConfWS.1150

73–80.1151

[56] Jia Hui Liang, Vijay Ganesh, Krzysztof Czarnecki, and Venkatesh Raman. 2015. SAT-1152

Based Analysis of Large Real-World Feature Models Is Easy. In Proc. Int’l Systems and1153

Software Product Line Conf. (SPLC). Springer, Berlin, Heidelberg, 91–100.1154

39

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[57] Jacob Loth, Chico Sundermann, Tobias Schrull, Thilo Brugger, Felix Rieg, and Thomas1155

Thüm. 2023. UVLS: A Language Server Protocol for UVL. In Proc. Int’l Systems and1156

Software Product Line Conf. (SPLC) (Tokyo, Japan). ACM, New York, NY, USA, 43–46.1157

https://doi.org/10.1145/3579028.36090141158

[58] Rafael Lotufo, Steven She, Thorsten Berger, Krzysztof Czarnecki, and Andrzej Wa-1159

sowski. 2010. Evolution of the Linux Kernel Variability Model. In Proc. Int’l Systems1160

and Software Product Line Conf. (SPLC) (Jeju Island, South Korea). Springer, Berlin,1161

Heidelberg, 136–150.1162

[59] Germán Márquez, José A. Galindo, Ángel Jesús Varela-Vaca, Maŕıa Teresa Gómez López,1163

and David Benavides. 2022. Advisory: vulnerability analysis in software development1164

project dependencies. In Proceedings of the 26th ACM International Systems and Soft-1165

ware Product Line Conference - Volume B (Graz, Austria) (SPLC ’22). Association1166

for Computing Machinery, New York, NY, USA, 99–102. https://doi.org/10.1145/1167

3503229.35470581168

[60] Simone Nasser Matos and Clovis Torres Fernandes. 2006. Early Definition of Frozen and1169

Hot Spots in the Development of Domain Frameworks. In Fourteenth ACM SIGSOFT1170

Symposium on Foundations of Software Engineering.1171

[61] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, Thomas Leich, and1172

Gunter Saake. 2017. Mastering Software Variability with FeatureIDE. Springer. https:1173

//doi.org/10.1007/978-3-319-61443-41174

[62] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, Thomas Leich, and1175

Gunter Saake. 2017. Mastering Software Variability With FeatureIDE. Springer, Berlin,1176

Heidelberg. https://doi.org/10.1007/978-3-319-61443-41177

[63] Kristof Meixner, Kevin Feichtinger, Hafiyyan Sayyid Fadhlillah, Sandra Greiner, Hannes1178

Marcher, Rick Rabiser, and Stefan Biffl. 2024. Variability modeling of products, pro-1179

cesses, and resources in cyber–physical production systems engineering. Journal of Sys-1180

tems and Software 211 (2024), 112007. https://doi.org/10.1016/j.jss.2024.1120071181

[64] Marćılio Mendonça, Moises Branco, and Donald Cowan. 2009. S.P.L.O.T.: Software1182

Product Lines Online Tools. In Proc. Conf. on Object-Oriented Programming, Systems,1183

Languages and Applications (OOPSLA). ACM, New York, NY, USA, 761–762.1184

[65] Marćılio Mendonça, Andrzej Wasowski, and Krzysztof Czarnecki. 2009. SAT-Based Anal-1185

ysis of Feature Models Is Easy. In Proc. Int’l Systems and Software Product Line Conf.1186

(SPLC) (San Francisco, California). Software Engineering Institute, Pittsburgh, PA,1187

USA, 231–240.1188

[66] Daniel-Jesus Munoz, Jeho Oh, Mónica Pinto, Lidia Fuentes, and Don Batory. 2019. Uni-1189

form Random Sampling Product Configurations of Feature Models That Have Numer-1190

ical Features. In Proc. Int’l Systems and Software Product Line Conf. (SPLC) (Paris,1191

France). ACM, New York, NY, USA, 289–301. https://doi.org/10.1145/3336294.1192

33362971193

[67] Daniel-Jesus Munoz, Mónica Pinto, Lidia Fuentes, and Don Batory. 2023. Transforming1194

Numerical Feature Models into Propositional Formulas and the Universal Variability1195

Language. Journal of Systems and Software 204 (2023), 111770. https://doi.org/10.1196

1016/j.jss.2023.1117701197

[68] Damir Nesić, Jacob Krüger, S, tefan Stănciulescu, and Thorsten Berger. 2019. Principles1198

of feature modeling. In Proceedings of the 2019 27th ACM Joint Meeting of European1199

Software Engineering Conference and Symposium on the Foundations of Software En-1200

gineering. ACM, 62–73.1201

40

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[69] Jeho Oh, Don Batory, and Rubén Heradio. 2023. Finding near-optimal configurations in1202

colossal spaces with statistical guarantees. ACM Transactions on Software Engineering1203

and Methodology 33, 1 (2023), 1–36.1204

[70] Terence Parr. 2013. The definitive ANTLR 4 reference. The Pragmatic Bookshelf. 1–3261205

pages.1206

[71] pure::systems. 2017. pure::variants. Website: http://www.pure-systems.com/products/1207

pure-variants-9.html. Accessed: 2017-05-10.1208

[72] Rick Rabiser. 2019. Feature Modeling vs. Decision Modeling: History, Comparison and1209

Perspectives. In Proceedings of the 23rd International Systems and Software Product1210

Line Conference - Volume B (Paris, France) (SPLC ’19). Association for Computing1211

Machinery, New York, NY, USA, 134–136. https://doi.org/10.1145/3307630.33423991212

[73] Rick Rabiser. 2024. Industry Adoption of UVL: What We Will Need. In Proceedings1213

of the 28th ACM International Systems and Software Product Line Conference vol. 2.1214

ACM.1215

[74] Matthias Riebisch, Kai Böllert, Detlef Streitferdt, and Ilka Philippow. 2002. Extending1216

Feature Diagrams With UML Multiplicities. In Proc. World Conf. on Integrated Design1217

and Process Technology (IDPT).1218

[75] Jorge Rodas-Silva, José A Galindo, Jorge Garćıa-Gutiérrez, and David Benavides. 2019.1219

Selection of software product line implementation components using recommender sys-1220

tems: An application to wordpress. IEEE Access 7 (2019), 69226–69245.1221

[76] Dario Romano, Kevin Feichtinger, Danilo Beuche, Uwe Ryssel, and Rick Rabiser. 2022.1222

Bridging the gap between academia and industry: transforming the universal vari-1223

ability language to pure::variants and back. In Proceedings of the 26th ACM Inter-1224

national Systems and Software Product Line Conference - Volume B (Graz, Austria)1225

(SPLC ’22). Association for Computing Machinery, New York, NY, USA, 123–131.1226

https://doi.org/10.1145/3503229.35470561227

[77] David Romero, José A. Galindo, José Miguel Horcas, and David Benavides. 2021. A First1228

Prototype of a New Repository for Feature Model Exchange and Knowledge Sharing. In1229

Proc. Int’l Systems and Software Product Line Conf. (SPLC). ACM, New York, NY,1230

USA, 80–85. https://doi.org/10.1145/3461002.34739491231

[78] David Romero-Organvidez, Jose A. Galindo, and David Benavides. 2024. UVL Sentinel:1232

a tool for parsing and syntactic correction of UVL datasets. arXiv:2403.18482 [cs.SE]1233

https://arxiv.org/abs/2403.184821234

[79] David Romero-Organvidez, José A. Galindo, Chico Sundermann, Jose-Miguel Horcas,1235

and David Benavides. 2024. UVLHub: A feature model data repository using UVL1236

and open science principles. Journal of Systems and Software (2024), 112150. https:1237

//doi.org/10.1016/j.jss.2024.1121501238

[80] Valentin Rothberg, Nicolas Dintzner, Andreas Ziegler, and Daniel Lohmann. 2016. Fea-1239

ture Models in Linux: From Symbols to Semantics. In Proc. Int’l Workshop on Variability1240

Modelling of Software-Intensive Systems (VaMoS) (Salvador, Brazil). ACM, New York,1241

NY, USA, 65–72. https://doi.org/10.1145/2866614.28666241242

[81] Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux, and Yves Bontemps.1243

2007. Generic Semantics of Feature Diagrams. Computer Networks 51, 2 (2007), 456–1244

479.1245

41

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[82] Chico Sundermann, Kevin Feichtinger, Dominik Engelhardt, Rick Rabiser, and Thomas1246

Thüm. 2021. Yet Another Textual Variability Language? A Community Effort Towards1247

a Unified Language. In Proc. Int’l Systems and Software Product Line Conf. (SPLC)1248

(Leicester, UK). ACM, New York, NY, USA, 136–147. https://doi.org/10.1145/1249

3461001.34711451250

[83] Chico Sundermann, Kevin Feichtinger, José A. Galindo, David Benavides, Rick Rabiser,1251

Sebastian Krieter, and Thomas Thüm. 2022. Tutorial on the Universal Variability Lan-1252

guage. In Proc. Int’l Systems and Software Product Line Conf. (SPLC) (Graz, Austria).1253

ACM, New York, NY, USA, 260:1. https://doi.org/10.1145/3546932.35470241254

[84] Chico Sundermann, Tobias Heß, Dominik Engelhardt, Rahel Arens, Johannes Herschel,1255

Kevin Jedelhauser, Benedikt Jutz, Sebastian Krieter, and Ina Schaefer. 2021. Integration1256

of UVL in FeatureIDE. In Proc. Int’l Workshop on Languages for Modelling Variability1257

(MODEVAR) (Leicester, UK). ACM, New York, NY, USA, 73–79. https://doi.org/1258

10.1145/3461002.34739401259

[85] Chico Sundermann, Tobias Heß, Michael Nieke, Paul Maximilian Bittner, Jeffrey M.1260

Young, Thomas Thüm, and Ina Schaefer. 2023. Evaluating State-of-the-Art #SAT1261

Solvers on Industrial Configuration Spaces. Empirical Software Engineering (EMSE)1262

28, 29 (Jan. 2023), 38. https://doi.org/10.1007/s10664-022-10265-91263

[86] Chico Sundermann, Tobias Heß, Rahel Sundermann, Elias Kuiter, Sebastian Krieter, and1264

Thomas Thüm. 2024. Generating Feature Models with UVL’s Full Expressiveness. In Pro-1265

ceedings of the 28th ACM International Systems and Software Product Line Conference1266

(Dommeldange, Luxembourg) (SPLC ’24). Association for Computing Machinery, New1267

York, NY, USA, 61–65. https://doi.org/10.1145/3646548.36766021268

[87] Chico Sundermann, Stefan Vill, Thomas Thüm, Kevin Feichtinger, Prankur Agarwal,1269

Rick Rabiser, José A. Galindo, and David Benavides. 2023. UVLParser: Extending UVL1270

With Language Levels and Conversion Strategies. In Proc. Int’l Systems and Software1271

Product Line Conf. (SPLC) (Tokyo, Japan). ACM, New York, NY, USA, 39–42. https:1272

//doi.org/10.1145/3579028.36090131273

[88] Thomas Thüm. 2020. A BDD for Linux? The Knowledge Compilation Challenge for1274

Variability. In Proc. Int’l Systems and Software Product Line Conf. (SPLC) (Montreal,1275

QC, Canada). ACM, New York, NY, USA, Article 16, 6 pages. https://doi.org/10.1276

1145/3382025.34149431277

[89] Thomas Thüm, Philippe Collet, and Mathieu Acher (Eds.). 2021. Fourth International1278

Workshop on Languages for Modelling Variability (MODEVAR@SPLC 2021) (Leicester,1279

UK). ACM, New York, NY, USA. https://doi.org/10.1145/3461001.34730561280

[90] Thomas Thüm, Christian Kästner, Sebastian Erdweg, and Norbert Siegmund. 2011.1281

Abstract Features in Feature Modeling. In Proc. Int’l Systems and Software Product1282

Line Conf. (SPLC) (Munich, Germany). IEEE, Washington, DC, USA, 191–200. https:1283

//doi.org/10.1109/SPLC.2011.531284

[91] Thomas Thüm, Christoph Seidl, and Ina Schaefer. 2019. On Language Levels for Feature1285

Modeling Notations. In Proc. Int’l Workshop on Languages for Modelling Variability1286

(MODEVAR) (Paris, France). ACM, New York, NY, USA, 158–161. https://doi.org/1287

10.1145/3307630.33424041288

[92] Andrzej Wasowski and Thorsten Berger. 2023. Domain-Specific Languages: Effective1289

modeling, automation, and reuse. Springer.1290

[93] Wei Zhang, Haiyan Zhao, and Hong Mei. 2004. A Propositional Logic-Based Method1291

for Verification of Feature Models. In Proc. Int’l Conf. on Formal Engineering Methods1292

(ICFEM). Springer, Berlin, Heidelberg, 115–130.1293

42

Journal Pre-proof

Decla

☒ Th ips
that

☐Th ed
as po
Jo
ur

na
l P

re
-p

ro
of

ration of interests

e authors declare that they have no known competing financial interests or personal relationsh
could have appeared to influence the work reported in this paper.

e authors declare the following financial interests/personal relationships which may be consider
tential competing interests:

