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Abstract

Companies will have to establish circular production patterns in the future. Remanufacturing
is currently a niche process in which used products are remanufactured by first dismantling
them, reworking or replacing components and reassembling them into a finished product.
Visual inspection is one of the first steps in the entire remanufacturing process, in which a
used product is assessed based on its external defects to determine whether it is suitable
for remanufacturing. In most cases, visual inspection is manual and therefore expensive
due to the flexibility and adaptability required when assessing used products, which hinders
establishing remanufacturing in high-wage countries.

The adaptivity of artificial intelligence methods in combination with the flexibility of robotic pro-
duction resources can be used to automate the visual inspection process in remanufacturing.
To date, most authors in the field of remanufacturing, and more specifically visual inspection,
have only dealt with product identification, defect localization and defect classification and not
with how visual acquisition systems can acquire the data to be evaluated in a goal-oriented
manner. The view planning problem is the problem of selecting viewpoints of a visual acquisi-
tion system in such a way that a given inspection target is met with the minimum number of
acquisitions required. Particularly in remanufacturing, prior knowledge of the product variant
to be inspected or its geometry model is oftentimes not available. Analytical approaches to
solving the visual planning problem are, therefore, only applicable to a limited extent. The
present work closes this research gap by using reinforcement learning (RL) methods to learn
an inspection strategy by an RL agent independently of an existing geometry model.

The presented solution approach and methodological procedure provide a simulation frame-
work with which differently modeled RL agents can be trained to solve different visual planning
problems specific to the derived requirements of remanufacturing. The results show that the
trained RL agents have comparable performance compared to a benchmark heuristic, but
poorer performance compared to a near-optimal view plan obtained with an analytical solution
method.

The present work represents a significant contribution towards autonomous visual inspection
systems using RL algorithms to solve the view planning problem when prior knowledge
necessary for selecting or computing the analytical solution is not available.





Kurzfassung

Unternehmen müssen zukünftig zirkuläre Produktionsmuster etablieren. Das Remanufactur-
ing stellt derzeit einen Nischenprozess dar, bei dem Gebrauchtprodukte aufgearbeitet werden,
indem diese zunächst demontiert werden, Komponenten aufgearbeitet oder ausgetauscht
werden und diese zu einem Gesamtprodukt reassembliert werden. Die visuelle Inspektion
stellt einen der ersten Schritte im gesamten Prozess des Remanufacturing dar, bei dem für
ein Gebrauchtprodukt basierend auf dessen äußerlichen Mängeln beurteilt wird, ob es sich für
das Remanufacturing eignet. Zumeist ist die visuelle Inspektion aufgrund der erforderlichen
Flexibilität und Adaptivität bei der Bewertung der Gebrauchtprodukte manuell und somit teuer,
was die Etablierung des Remanufacturing in Hochlohnländern behindert.

Die Adaptivität von Verfahren der künstlichen Intelligenz im Zusammenspiel mit der Flex-
ibilität robotischer Produktionsressourcen kann genutzt werden, um den visuellen Inspek-
tionsprozess im Remanufacturing zu automatisieren. Bislang haben sich im Umfeld des
Remanufacturing und spezieller der visuellen Inspektion die meisten Autoren lediglich mit
der Produktidentifikation, Defektlokalisierung und Defektklassifizierung befasst und nicht
damit, wie visuelle Erfassungssysteme die auszuwertenden Daten zielgerichtet erfassen
können. Das Sichtplanungsproblem stellt das Problem dar Ansichtspunkte eines visuellen
Erfassungssystems so auszuwählen, dass ein vorgegebenes Inspektionsziel mit minimaler
Anzahl der hierfür erforderlichen Erfassungen erfüllt wird. Insbesondere im Remanufacturing
sind Vorwissen hinsichtlich der zu inspizierenden Produktvariante oder deren Geometriemod-
ell nicht vorhanden. Analytische Lösungsansätze zur Lösung des Sichtplanungsproblem sind
daher nur begrenzt anwendbar. Die vorliegende Arbeit schließt diese Forschungslücke, indem
Verfahren des Reinforcement Learning (RL) genutzt werden, um eine Inspektionsstrategie
durch einen RL Agenten unabhängig von einem vorliegenden Geometriemodell zu lernen.

Die vorgestellte Lösungsansatz und das methodische Vorgehen liefert ein Simulationsframe-
work, mit dem verschieden modellierte RL Agenten zur Lösung verschiedener Sichtpla-
nungsprobleme, spezifisch für die abgeleiteten Anforderungen des Remanufacturing, trainiert
werden können. Die Ergebnisse zeigen, dass die trainierten RL Agenten vergleichbare
Performanz im Vergleich zu einer Benchmarkheuristik aufweisen, jedoch eine schlechtere
Performanz im Vergleich zu einem mit einem analytischen Lösungsverfahren berechneten
nahezu optimalen Sichtplan aufweisen.

Die vorliegende Arbeit stellt insbesondere dann einen wesentlichen Beitrag in Richtung
autonomer visueller Inspektionssysteme unter Zuhilfenahme von RL Algorithmen zur Lösung
des Sichtplanungsproblems dar, wenn Vorwissen, das für eine Auswahl oder Berechnung der
analytische Lösung notwendig ist, nicht vorliegt.
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XRT ′

t,i Value of x-axis coordinates of the point i in PCRT ′

t

Y RT ′

t,i Value of y-axis coordinates of the point i in PCRT ′

t

ZRT ′

t,i Value of z-axis coordinates of the point i in PCRT ′

t
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Symbol Description

PCRT ′

t RGB-D point cloud acquired at time step t represented in the co-
rotating rotary table coordinate system CRT ′

XRT
′

t Vector of x-axis coordinates of the points in PCRT ′

t

YRT
′

t Vector of y-axis coordinates of the points in PCRT ′

t

ZRT
′

t Vector of z-axis coordinates of the points in PCRT ′

t

CA
t Color information acquired with an acquisition system at time step t

represented in coordinate system CA

RRT ′

t Vector of red channel values of the points in PCRT ′

t

GRT ′

t Vector of green channel values of the points in PCRT ′

t

BRT ′

t Vector of blue channel values of the points in PCRT ′

t

CRT ′

t Color information acquired with an acquisition system at time step t

represented in coordinate system CRT ′

∆φRT,t Relative rotation angle of the rotary table at time step t

PCRT ′,t−1
res,t−1 Point cloud model of the ongoing reconstruction process at time step

t − 1 represented in the co-rotating rotary table coordinate system
CRT ′ of the reconstruction step t − 1

CRT,t−1 Coordinate system configuration at time step t − 1
PCRT ′

res,t−1 Point cloud model of the ongoing reconstruction process at time step
t − 1 represented in the co-rotating rotary table coordinate system
CRT ′ of the reconstruction step t

T(Rz(∆φRT,t))RT
′
t−1/RT

′
tTransformation matrix resulting from the rotation of the rotary table
with ∆φRT,t

PCRT ′

t,icp Point cloud model of the ongoing reconstruction process at time step
t represented in the co-rotating rotary table coordinate system CRT ′

of the reconstruction step t and registered using ICP algorithm
PCR

f = PCR
res,t Final point cloud model of the reconstruction process represented in

the coordinate system CR

Section 5.2 Approach for semantic 3D Reconstruction of the inspection object

IC Color image acquired by an acquisition system
ID Depth image acquired by an acquisition system
φA Azimuth angle for Spherical coordinates of the acquisition system

position
θA Polar angle for Spherical coordinates of the acquisition system posi-

tion
rA Distance for Spherical coordinates of the acquisition system position
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Symbol Description

xA, yA, zA Value of x,y and z-axis coordinates of the position of the acquisition
system CA in cartesian coordinates

αA, βA, γA Euler angles specifying the orientation of the acquisition system
∆αA, ∆βA, ∆γA Offsets of the Euler angles specifying the acquisition systems orienta-

tion
CGT Segmentation label mask
H × W × C Size of the label segmentation mask with image height H, image

width W and number of classes C

I∗
C Preprocessed RGB image

I∗
D Preprocessed depth image

C∗
GT Preprocessed label segmentation mask

I
′

C Preprocessed and augmented RGB image
I

′

D Preprocessed and augmented depth image
C

′

GT Preprocessed and augmented label segmentation mask
CP Predicted label segmentation mask of the segmentation NN
U Expanded uncertainty
k Expansion factor
uC Combined standard uncertainty
ŷ Output estimate of a measurement function
f(x1, ..., xN) Measurement function
u(xi) Standard uncertainty of a input quantity
xi Input quantity of a measurement function
ci Sensitivity coefficient
yi Output of a simulated measurement
Mi ith model of a NN ensemble
DT,i ith data tuple of the test dataset
ŷ(DT,i)uv Pixel-wise prediction of a NN model ensemble
ŷT,i,j Model prediction of the jth model and the ith data tuple
σ̂(DT,i)uv Pixel-wise predictive uncertainty
D

′

T,ij jth augmentation of ith data tuple
(ŷT,ij,k)uv Pixel-wise prediction of the jth augmentation of the ith data tuple for

model k

SPCA
t Semantic point cloud

Kt Vector containing the component classification results of all points in
SPCA

t

Ki Classification of point i
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Symbol Description

Dt Vector containing the defect classification results of all points in SPCA
t

Section 5.3 View planning using reinforcement learning

SSim Simulation environment
IAgent Agent interface
APlan Planning Agent
Ψ Percentual surface coverage
VSt Viewpoint at time step t

ot Observation at time step t

at Action at time step t

st State at time step t

w Parameters of the policy of the agent
PAt Point cloud acquired at time step t in reference coordinate system CA

pA/RTt Pose of the acquisition system A in relation to the static rotary table
coordinate system CRT at time step t

pO/RTt Pose of the inspection object O in relation to the static rotary table
coordinate system CRT at time step t

pA/RTt−1 Pose of the acquisition system A in relation to CRT at time step t − 1
CO Inspection object coordinate system

X
A/RT
t , Y

A/RT
t , Z

A/RT
t Value of the x,y and z-axis coordinates of the pose pA/RTt

α
A/RT
t , β

A/RT
t , γ

A/RT
t Euler angles of the orientation of the acquisition system A in relation

to the static rotary table coordinate system CRT at time step t

TA/RTp,t Homogeneous transformation matrix of the pose pA/RTt

TA/Rp,t Homogeneous transformation matrix of the pose pA/Rt

Ruv Resolution of the acquisition system
ϑA,uv Aperture angles of the acquisition system
bnear Near bound of the acquisition system frustum
bfar Far bound of the acquisition system frustum
ϑA,C Cut-off angle of the acquisition system
PRT

′

GT Ground truth point cloud represented in the co-rotating rotary table
coordinate system CRT ′

nGT Number of points in PRT
′

GT

PRT
′

G Goal point cloud represented in the co-rotating rotary table coordinate
system CRT ′

PRT
′

t Point cloud acquired at time step t represented in CRT ′
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Symbol Description

PRT
′

cov,t Total point cloud of all acquired point clouds until current time step t

represented in pA/RTt

φRT,t Absolute rotary table angle at time step t

sG Goal state
Ψt Percentual surface coverage at time step t

ΨT Percentual surface coverage threshold
sT Terminal state
ΨE Percentual surface coverage at the end of an episode
nE Number of acquisitions needed to end an episode
PRT

′

t,m mth point of the point cloud PRT
′

t

XRT ′

t,m , Y RT ′

t,m , ZRT ′

t,m Value of the x,y and z-axis coordinates of the mth point of the point
cloud PRT

′

t

nr,t,m Radius of the normal of the mth point of the point cloud PRT
′

t

nφ,t,m Azimuth angle of the normal of the mth point of the point cloud PRT
′

t

nθ,t,m Polar angle of the normal of the mth point of the point cloud PRT
′

t

∆t,m Binary coding whether the mth point of the point cloud PRT
′

t has been
acquired with the last acquisition

st,modf,PC Model-free state containing point cloud information
st,modf,p Model-free state containing pose information
st,modb,PC Model-based state containing point cloud information
st,modb,p Model-based state containing pose information
nr,t,m Length of a normal vector in spherical coordinates
bt,m Binary/ternary encoding of the acquisition state
SX State modeling alternative X with X ∈ 1, ..., 6
at,i ith component of the action vector at
φ
A/RT
t Azimuth angle of the pose of the acquisition A in relation to coordinate

system CRT at time step t

θ
A/RT
t Polar angle of the pose of the acquisition A in relation to coordinate

system CRT at time step t

r
A/RT
t Radius of the pose of the acquisition A in relation to coordinate

system CRT at time step t

∆φRT,t Relative rotation angle of the rotary table based on the output of the
RL agent

∆pO/RTt Relative pose based on the relative rotation angle ∆φRT,t

MX Abbreviation of the integration of prior knowledge X into the action
mapping
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Symbol Description

∆α
A/RT
t , ∆β

A/RT
t Angle-based deviations of the Euler angles αRTt and βRTt determined

by the automated orientation of the acquisition system A towards the
center of the coordinate system CRT at time step t

AX Abbreviation of the action mapping alternative X

dE Overall length of travel distances of the agent in one episode
R Reward signal
f(ΨE, nE, dE) General formulation of the reward signal as a function of the percent-

age surface coverage, number of acquisitions and overall length of
travel distances

Rdense Dense reward function
Rsparse Sparse reward function
∆Ψt Percentage of additionally acquired surface points that have not been

acquired by previous acquisitions at time step t

dt Travel path length between the pose pA/RTt−1 of time step t − 1 and the
pose pA/RTt output by the agent at time step t

ncov,t Number of points acquired on the ground truth point cloud PRT
′

GT up
until time step t

ϵ Threshold distance determining if a point on the ground truth point
cloud PRT

′

GT has been acquired or not
∆ncov,t Number of surface points newly acquired in the acquisition at time

step t

Ψt,rem Percentage of remaining object surface to be covered at time step t

pRTS Auxiliary point for travel length calculation
dt,lin Linear travel path for travel length calculation
dt,sph Spherical travel path for travel length calculation
RX Reward modeling alternative X

w Parameter vector of the parameterized policy (actor) and value func-
tion approximator (critic)

wΦ Parameters of the value function approximator (critic)
wΨ Parameter vector of the parameterized policy (actor)
vg,PN Global feature vector of the PN
vg,PCN Global feature vector of the PCN
st,PC Point cloud based state being either st,modf,PC or st,modb,PC

st,p Point cloud based state being either st,modf,p or st,modb,p
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Symbol Description

Section 6.1 Results for the approaches of 3D reconstruction and semantic 3D
reconstruction

HDC→L
95 95th percentile of the Hausdorff distance

MEC→L Mean Error

Section 6.2 RL for the solution of VPPs in remanufacturing

SCPΨ Set covering benchmark algorithm focusing solely on surface cover-
age maximization

SCPΨ,d Set covering benchmark algorithm focusing on joint maximization of
surface coverage and traveling path length

SCPD1,cov
Ψ Set covering benchmark algorithm focusing solely on surface cover-

age maximization using dataset D1
SCPD1,cov

Ψ,d Set covering benchmark algorithm focusing on joint optimization of
surface coverage and traveling path length using dataset D1

SCPD2,cov
Ψ Set covering benchmark algorithm focusing solely on surface cover-

age maximization using dataset D2
SCPD2,cov

Ψ,d Set covering benchmark algorithm focusing on joint optimization of
surface coverage and traveling path length using dataset D2

SCPD1,Ins
Ψ Set covering benchmark algorithm for the IPP problem for dataset D1

SCPD2,Ins
Ψ Set covering benchmark algorithm for the IPP problem for dataset D2

SCPD3,Ins
Ψ Set covering benchmark algorithm for the IPP problem for dataset D3

F1 F1 is the harmonic meean between R and P

FDR False discovery rate
FPR False positive rate
IoUfilt Filtered IoU based on pixel uncertainty σ̂(DT,i)uv
F1,filt Filtered IoU based on pixel uncertainty σ̂(DT,i)uv
FDRfilt Filtered FDR based on pixel uncertainty σ̂(DT,i)uv
FPRfilt Filtered FPR based on pixel uncertainty σ̂(DT,i)uv

Appendix A1 General solution approach for SCP, CM and NBV

U Set of surface elements to be acquired of an inspection object
ui ith surface element containing surface sections of the overall inspec-

tion object to be acquired
G Set of all combinations of surface sections seen from all VP j (j ∈

[1, ..., m])
gj Surface sections acquirable from the jth VP



Symbols XVII

Symbol Description

gi Acquired surface sections for acquisition i via NBV planning
gR,i Estimated remaining unknown surface sections after acquisition i

gio Subset of estimated acquirable surface sections after ith acquisition
with VP o

Appendix A2 In-depth basics of coordinate transformations

α, β, γ Euler angles of a coordinate system in relation to another
X, Y ′, Z ′′ Principal axes for subsequent rotation with Caradan angles
Rx(α) Rotation matrix for Euler angle α around X-axis
Ry′(β) Rotation matrix for Euler angle β around Y’-axis
Rz′′(γ) Rotation matrix for Euler angle γ around Z”-axis
R Combined rotation matrix based on Rx(α), Ry′(β) and Rz′′(β)
r Radial distance of spherical coordinates
θ Polar angle in spherical coordinates
φ Azimuth angle in spherical coordinates

Appendix A3 Basics of the perceptron, multi-layer perceptron, and backpropagation
algorithm

xf Input feature vector of a perceptron
yf Output value of the perceptron
w Weight vector of the perceptron
Z(xf , w) Weighted sum calculated inside the perceptron based on xf and w
a(Z(xf , w)) Activation function of the perceptron
wi ith weight of the weight vector w
xf,i ith feature of the feature vector xf with xf,0 = 1
ai(Z(xf , w)) Activation value of the ith neuron in a layer of a neural network (used,

e.g., to compute
wl
i,j weight of a neuron in layer l, which forms the connection with neuron

i in the previous layer and neuron j in layer l

ŷf,i Prediction of a NN for an input xf ,i and weight vector w
yf,i Actual label for the output of input xf ,i

L Loss function
fL(ŷf,i, w, xf,i) Loss function expressed as a function of input, predicted output and

weight vector of the NN
wn Value of weight n of the weight vector w
∆wn Change of weight between iteration steps of the backpropagation

algorithm
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Symbol Description

η Learning rate
∇wnL = −η ∂L

wn
Partial derivative of the loss function L with respect to weight wn

Appendix A4 Details on point cloud transformation using TA/RT
′
and determination

of TE/A and TR/RT

TR/RT
′

Homogeneous transformation matrix of robot coordinate system CR

in relation to the co-rotating rotary table coordinate system CRT ′

TRT
′/R Homogeneous transformation matrix of the co-rotating rotary table

coordinate system CRT ′ in relation to the robot coordinate system CR

TRT/R Homogeneous transformation matrix of the rotary table coordinate
system CR in relation to the robot coordinate system CR

TCAL/R Homogeneous transformation matrix of the calibration pattern coordi-
nate system CCAL in relation to the robot coordinate system CR

TCAL/A Homogeneous transformation matrix of the calibration pattern coor-
dinate system CCAL in relation to the acquisition system coordinate
system CA

φRT,i ith of n initial absolute rotation angles calculated for rotary table
calibration

φRT,j jth of n secondary absolute rotation angles calculated for rotary table
calibration

ID,i Color image for the ith initial rotation of the rotary table for rotary table
calibration

ID,j Color image for the jth secondary rotation of the rotary table for rotary
table calibration

PRC,i Keypoints detected in the ith color image ID,i expressed in coordinate
system of the robot CR

PRC,j Keypoints detected in the jth color image ID,j expressed in coordi-
nate system of the robot CR

PAC,i Keypoints detected in the ith color image ID,i expressed in coordinate
system of the acquisition system CA

PAC,j Keypoints detected in the ith color image ID,i expressed in coordinate
system of the acquisition system CA

Appendix A5 In-depth details and foundations on the segmentation model architec-
tures and training procedure

LDice Dice loss
pc(u, v) Prediction of class membership of pixel (u, v) to class c
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Symbol Description

gc(u, v) Ground truth class membership of pixel (u, v) to class c

LFocal Focal loss
C Number of classes to be segmented
αc Class dependent balancing factor when using focal loss
pt(u, v) Quantity derived from pc(u, v) and gc(u, v)
γf Modulating factor when using the focal loss
LM−RCNN Overall loss function for the M-Nets and MD-Nets
Lbox BB regression loss of the M-Nets and MD-Nets
Lcls Classification loss of the M-Nets and MD-Nets
Lmask Segmentation loss of the M-Nets and MD-Nets

Appendix A7 Evaluation metrics for the 3D reconstruction approach

X Metric space
C Set (in this thesis points) in a metric space X

L Set (in this thesis points) in a metric space X

d95(C, L) 95th percentile of the distances between all points in point cloud C to
all points in point cloud L

d95(L, C) 95th percentile of the distances between all points in point cloud L to
all points in point cloud C

n Number of points in point cloud C

ci Point in point cloud C

d(ci, l) Distance of point ci in point cloud C to point l in point cloud L

Appendix A9 Evaluation metrics for the semantic segmentation approach using
uncertainty-based filtering

P Precision
R Recall
TP Number of true positive predictions
FP Number of false positive predictions
FN Number of false negative predictions
FDR False discovery rate
FPR False positive rate

Appendix A10 Details on the SCP benchmark algorithms used in this work

dV P Travel distance from the last selected VP to the current VP
dmax Maximum travel distance of the last VP to any VP in the set of all VP

evaluated in the set covering problem at hand
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1 Introduction

The increase in resource consumption and the scarcity of key raw materials are forcing
companies to adapt their mostly linear production strategies (Kara & Hauschild et al. 2022,
P. 505). Companies will have to deal more intensively with the conflict between economic
activity and implementing sustainable production patterns in the future (Corvellec & Böhm
et al. 2020, P. 100). The circular economy represents an economic system that can address
this conflict. It replaces the ’end-of-life’ concept with the reduction or the reuse, recycling, or
recovery of materials in production, distribution, or consumption processes (Kirchherr & Reike
et al. 2017, P. 229). Remanufacturing is a circular process that is a key factor in the realization
of the circular economy paradigm through disassembling a used product, reprocessing its
components, and reassembling it (Tolio & Bernard et al. 2017, P. 585). Remanufacturing is
considered the circular process with the highest standard in terms of quality and warranty
of remanufactured products compared to alternative methods and is also the only circular
process that can compete with a new product in these aspects (Matsumoto & Ijomah 2013,
P. 392). Despite high potential savings in terms of costs, energy, and material consumption,
as well as CO2 emissions, remanufacturing remains a niche market (Parker & Riley et al.
2015, P. 1).

1.1 Problem statement

One of the reasons for the low intensity of remanufacturing (ratio of remanufacturing to new
manufacturing) is that remanufacturing involves a large amount of manual labor across all
processes (Parker & Riley et al. 2015, P. 65). As a result, even if a company successfully
implements remanufacturing processes, they are often carried out in low-wage countries (Seitz
& Peattie 2004, P. 83). A highly relevant but not directly value-adding step is the selection
of returning used products, including the initial visual inspection by a worker, allowing a
technological and economic decision regarding the remanufacturability of the returning used
products (Schlüter & Lickert et al. 2021, P. 300). The collection of further information, such as
the external appearance, also enables the planning of subsequent process steps, such as
dismantling (Vongbunyong & Chen et al. 2015, P. 56). Automating the initial visual inspection
offers, as for automated disassembly (Tolio & Bernard et al. 2017, P. 592), a reduction
of process costs, making remanufacturing more profitable overall, especially in high-wage
countries. However, the high degree of uncertainty in remanufacturing, based on the large
number of variants (Kurilova-Palisaitiene & Sundin et al. 2018, P. 3229) of returning products,
coupled with small batch sizes (Lundmark & Sundin et al. 2009, P. 135) with varying quality
state of the returning products (Errington & Childe 2013, P. 19), still requires human flexibility
and adaptability (Seitz & Peattie 2004, P. 83).
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1.2 Research objective

An example of the needed flexibility and adaptivity is given by the challenges in inspection
resulting from the varying inspection depth due to uncertainty regarding the product’s condition.
Some defects are immediately apparent, while individual components must be inspected
in more detail to identify certain defects. Given the large number of product variants, the
returning product and its components must be visually inspected, whereas the quality flaws,
defects, and their combinations to be evaluated can occur anywhere on the product with
varying extent and composition (Kin & Ong et al. 2014, P. 191 ff.). An inspection process
is, therefore, unique for every used product, and humans can adapt to the variability in the
inspection process.

Using artificial intelligence, current research is already addressing challenges regarding the
multitude of possible defects and flaws to be detected and evaluated based on image data in
remanufacturing (Saiz & Alfaro et al. 2021,Nwankpa & Ijomah et al. 2021). The advantage of
artificial intelligence methods is that they enable problems to be solved by implicitly extracting
knowledge from data and are therefore independent of an explicit definition of human decision
rules (Domingos 2012, P. 78). This allows problems that are difficult for humans to formalize
to be solved. Alongside automated defect detection and evaluation, each product’s unique
inspection process introduces challenges in automated data collection to detect and evaluate
these defects. An inspection plan must be adapted reactively to each product since quality
flaws to be inspected in depth may occur anywhere on the returning product. Therefore,
planning an existing product’s automated visual inspection process in advance is impossible.
This thesis, therefore, deals with the overarching question of how data acquisition can be
achieved without specific pre-planning of the inspection process in remanufacturing.

To meet these requirements, the adaptivity of artificial intelligence methods can be combined
with robots as flexible production resources to enable autonomous system behavior (Salkin &
Oner et al. 2018, P. 7). Autonomy of a resource refers to the accomplishment of a goal without
external control by executing actions of an action plan generated by sensory information (Beer
& Fisk et al. 2014, P. 76). Autonomous systems, therefore, differ from rule-based automated
systems in their ability to reactively adapt their system behavior to a given situation (Endsley
2017, P. 6). This way, it is possible to autonomize the data acquisition for the initial visual
inspection by reactively solving the visual planning problem resulting from the prevailing
uncertainty at system runtime. The fundamental research objective of this dissertation is
therefore:

Enabling an autonomous robotic visual acquisition system to conduct data acquisition
for the initial visual inspection in remanufacturing under prevailing uncertainty
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1.3 Structuring questions

Based on the overarching research objective in remanufacturing, the following three structuring
questions can be derived to structure the fundamentals and systematically deduce the
research deficit:

1. Problem formalization: How can the problem of autonomous data acquisition be
formalized?

2. Solution approach: Which group of solution methods exists for solving the formalized
data acquisition problem?

3. Adaptivity: How can the adaptivity of such solution methods be ensured to deal with
the inability to plan the inspection process in advance?

1.4 Structure of the thesis

The contents of chapter 2 introducing the fundamentals are structured based on the structuring
questions. This section discusses remanufacturing and the specific challenges of initial visual
inspection in more detail. The basics of acquisition planning are introduced, and the basics
of artificial intelligence methods are examined in more detail. Answering the respective
structuring questions within the sub-chapters makes the specific discussion of the state of
research in chapter 3 possible. From this, a clear research deficit can be formulated for the
present use case. Based on the deduced research deficit, the solution approach of this thesis
is presented in chapter 4. The methodological approach to resolve the derived research
deficit and to investigate autonomous robotic visual acquisition systems for visual inspection
in remanufacturing is then presented in chapter 5. The findings based on the methodological
approach are presented in chapter 6. Chapter 7 summarizes the findings with a discussion of
these and an outlook for future research work before this thesis concludes with a summary in
chapter 8.
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2 Fundamentals

The following chapter presents the required fundamentals of this thesis. Chapter 2.1 first dives
into the fundamentals of remanufacturing and the challenges associated with the automation
of the initial visual inspection. Chapter 2.2 introduces and formalizes the basics of visual
planning problems. Finally, chapter 2.3 discusses the basics of machine learning in more
detail.

2.1 Visual inspection in remanufacturing

An overview of remanufacturing and the processes involved is given in the section 2.1.1. Sec-
tion 2.1.2 then examines the procedure and general boundary conditions for the initial visual
inspection of used products in more detail. A short overview of automated visual inspection is
given in section 2.1.3. Finally, section 2.1.4 discusses the challenges of automating the initial
visual inspection of used products.

2.1.1 The remanufacturing process

Remanufacturing is defined as a process in which a product or a subsystem is rebuilt to be
used in a new lifecycle (Seaver 1994, P. 24). Remanufacturing differs from recycling in the way
how the function of the product, subsystems, or components are retained, while recycling is
merely a form of material recovery (Tolio & Bernard et al. 2017, P. 3). Thus, remanufacturing
maintains the value added to a product at a high level by recovering a substantial proportion
of the resources incorporated in a used product in its first manufacturing (Ijomah & Childe
et al. 2004, P. 1). Remanufacturing thus distinguishes itself from repair or reconditioning, as it
is the only process that can compete with a new product in terms of quality (Matsumoto &
Ijomah 2013, P. 390). Depending on the author, further aspects are added to the definition
of remanufacturing. Ijomah & Childe et al. (2004) add restoring the functionality of the used
product to the level of the new product with a matching warranty (Ijomah & Childe et al.
2004, P. 1). Khor & Udin (2012) even mention restoring "at least" the functionality of the new
product (Khor & Udin 2012, P. 7) while others explicitly mention the possibility of functional
upgrades (Tolio & Bernard et al. 2017, P. 3, Lund & Hauser 2010, P. 1, Thierry & Salomon
et al. 1995, P. 119, Haynsworth & Lyons 1987, P. 24). The implementation of remanufacturing
within the scope of an industrial process also plays a key role when differentiating it from
other processes of the circular economy, such as repair (Tolio & Bernard et al. 2017, P. 2,
Haynsworth & Lyons 1987, P. 24). National and international institutions have also taken
up and adopted these definitions in the past (cf. Lange 2017, P. 11, BS8887-2:2009 2009,
ANSI RIC001.2-2021 2021), including the most recent one from the German Institute for
Standardization (DIN SPEC 91472:2023-06 2023).
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The type and sequence of processes involved in remanufacturing can vary to meet the
constraints and requirements of the product and the industry (Sundin & Bras 2005, P. 917). An
overview of remanufacturing process sequences for products from different industries is, for
example, given in the studies of Andrew-Munot & Ibrahim et al. (2015), Matsumoto & Umeda
(2011) and Saavedra & Barquet et al. (2013) (Andrew-Munot & Ibrahim et al. 2015, P. 19,
Matsumoto & Umeda 2011, P. 3 ff., Saavedra & Barquet et al. 2013, P. 271 ff.). According to
Bras & Hammond et al. (1996), at a more general level, the four process categories
(1) cleaning, (2) damage repair, (3) quality control, and (4) assembly and disassembly activities
can be distinguished (Bras & Hammond et al. 1996, P. 5). Often, these general categories
are further subdivided into sub-processes in the literature. Following the categorization of
Nwankpa & Ijomah et al. (2021), an overview and description of the most relevant sub-
processes is given below (Nwankpa & Ijomah et al. 2021, P. 2):

• Identification: Usually, one of the first process steps is to identify the type of product
and year of production (Lund 1984, P. 4). This is done by manually comparing products
against approved examples (Errington & Childe 2013, P. 7) or by reading out identification
labels such as Barcodes, RFID tags, or QR-Codes (Kerin & Pham 2020, P. 1212,
Schlüter & Lickert et al. 2021, P. 304). Identification of the present type of product offers
significant advantages. It allows to quickly determine the most suitable place to carry
out remanufacturing (Kerin & Pham 2020, P. 1213), for example, when the storage is
not the actual facility of remanufacturing. Additionally, this enables optimized inventory
management (Errington & Childe 2013, P. 13). Information regarding the estimated
quantity of defective and non-defective components per batch and, related to this, the
type and number of necessary new components to be supplied can be deduced.

• Inspection: Along the whole remanufacturing process, products, as well as subassem-
blies and components, are inspected to identify visible defects or wear (Lund 1984,
P. 4). This is to ensure sorting out products, subassemblies, or non-remanufacturable
components. In contrast to sampling-based methods in linear manufacturing, inspec-
tion in remanufacturing entails 100% inspection of all components during the process
(Steinhilper 1998, P. 57) to ensure that remanufactured products meet the required
specifications (Rickli & Dasgupta et al. 2014, P. 215). According to Matsumoto & Ijomah
(2013), during the initial inspection of the whole product, these are grouped into three
categories that are (1) reusable, (2) remanufacturable and (3) non-remanufacturable
(Matsumoto & Ijomah 2013, P. 400). Other authors state that products suitable for re-
manufacturing may also be further split into quality classes to optimize process planning
(cf. Aras & Boyaci et al. 2004 and Colledani & Battaïa 2016). Inspectors may use various
non-destructive techniques and equipment (e.g., ultrasonic testing or X-Ray for internal
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defects) to assess the condition of the product, its subassemblies, and its components
(Tant & Mulholland et al. 2019, P. 61, Rickli & Dasgupta et al. 2014, P. 212).

• Disassembly: Once products are identified and inspected, they are disassembled into
their subassemblies and components. This involves general-purpose tools (Andrew-
Munot & Ibrahim et al. 2015, P. 18) such as power drills, but may also include destructive
methods due to product design (Hjorth & Chrysostomou 2022, P. 9) and product condition
(Gungor & Gupta 1998, P. 162). The varying condition of the products (Andrew-Munot &
Ibrahim et al. 2015, P. 15), as well as the quality of the execution of the disassembly
process (Ferrer 2001, P. 375) also influences the percentage of disassembly yield in a
batch of products to be disassembled, as components may be damaged in the process.

• Cleaning: The components are thoroughly cleaned after disassembly. Cleaning includes
de-greasing, de-oiling, de-rusting, and freeing the parts from old paint (Matsumoto &
Ijomah 2013, P. 398). A variety of mechanical (e.g., sandblasting) or chemical (e.g.,
petrol cleaning) processes and tools may be employed for cleaning (Matsumoto & Ijomah
2013, P. 398). Based on their research, Hammond & Amezquita et al. (1998) found that
cleaning is among the costliest processes of remanufacturing (Hammond & Amezquita
et al. 1998, P. 10), which may be due to the extensive know-how needed (Matsumoto &
Umeda 2011, P. 7) to select and configure suitable processes.

• Component remanufacturing or replacing: Component remanufacturing refers to all
processes required to restore the specifications of a new product (Ijomah & Bennett et al.
1999, P. 194). Parts that are deemed unable to be remanufactured are replaced by spare
parts (Matsumoto & Ijomah 2013, P. 401). According to Kin & Ong et al. (2014), the types
of reprocessing processes that restore the condition of a defect-free component can
be classified into the categories (1) removing surface and shape defects, (2) material
addition or surface replacement, (3) restoring material properties, (4) intermediate
assembly and fastening of subassemblies and (5) surface finishing (Kin & Ong et al.
2014, P. 190 f.). Often, even for the same product type, the type and sequence of needed
processes vary based on the product condition (Andrew-Munot & Ibrahim et al. 2015,
P. 18).

• Reassembly: This step involves reassembling remanufactured components, spare
parts, and subassemblies to a remanufactured product. Often, the same tools used in
disassembling the product are used to assemble the new product (Steinhilper 1998,
P. 56).

• Functional testing: After or during assembly, each of the remanufactured products or
their subassemblies are tested to verify their functionality. Functional tests can be me-
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chanical or electrical (Ijomah & Bennett et al. 1999, P. 194). In contrast to inspection ac-
tivities, functional testing is a quantitative method since the product or its subassemblies
have to perform a specific function within specified tolerance limits (Bras & Hammond
et al. 1996, P. 6). The methods for testing thereby used are usually the same or similar
to those in manufacturing a new product of the same type (Haynsworth & Lyons 1987,
P. 4).

2.1.2 Challenges for initial visual inspection

A challenging factor in visual inspection is the product variety (Tolio & Bernard et al. 2017,
P. 5), primarily when differing product types (e.g., starter motors, generators, or turbines),
their variants, and generations are jointly inspected and sorted. While in manufacturing,
the Original Equipment Manufacturer (OEM) is mainly concerned with the production of
one or a few product generations, remanufacturers have to cope with a range of product
generations (Sundin 2004, P. 34). The problem of product diversity may be even more evident
for independent remanufacturers who do not produce the new products themselves. They
can choose to have products from different OEMs in their portfolio. In combination with the
uncertain timing of the returning products, this causes heterogeneity of the inputs to the
remanufacturing system, resulting in small batch sizes (Liu & Zhu et al. 2019, P. 4801) and
hindering the adoption of automated process execution (Tolio & Bernard et al. 2017, P. 592).
Considering initial inspection, where product identification has not been conducted, product
information deficits represent a severe barrier to the automated execution of processes. Even
if a product identification is conducted before the inspection of the used product, independent
remanufacturers often do not have access to product information (Parker & Riley et al. 2015,
P.1) such as Computer Aided Design (CAD) models (Khan & Mineo et al. 2021, P. 67).
However, when considering the automated execution of initial inspection, such information
can be relevant for planning the core inspection process to detect quality defects. This
information deficit is, among other reasons explained below, why the majority of inspections
in remanufactured are carried out visually by a human today (Steinhilper 1998, P. 50).

When performing an initial visual inspection of the returned product, an operator is assessing
the reusability of the returned product. Based on his visual inspection and, if necessary,
a haptic inspection of the product, acceptance or even quality grading of the product can
be achieved. According to DIN 31051:2019-06 (2019) and DIN EN 13306:2018-02 (2018),
inspection is defined as the testing of the conformity of the relevant characteristics of an
object by measurement, observation, or functional testing (DIN 31051:2019-06 2019, P. 5,
DIN EN 13306:2018-02 2018, P. 41). The initial visual inspection can thus be categorized as
the testing of the conformity of relevant characteristics by observation of a human being. In a
metrological sense, visual inspection, as performed along the process of remanufacturing, is
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a non-dimensional inspection method (Pfeifer & Schmitt 2010, P. 27). According to Pfeifer
& Schmitt (2010), dimensional inspection methods use gauges or quantitative measuring
equipment to obtain an objective measurement result (Pfeifer & Schmitt 2010, P. 27). In
contrast, non-dimensional inspection methods are characterized by human sensory perception
and provide a subjective inspection result.

The usage phase and handling of the product in the reverse supply chain before arriving
at the remanufacturing site is unique for every used product. Thus, in contrast to linear
production, it is impossible to accurately predict where product defects will occur (Kurilova-
Palisaitiene & Sundin et al. 2018, P. 3229). Simultaneously, the possible occurring defects
are manifold and vary from product to product (Robotis & Boyaci et al. 2012, P. 385) and
are often difficult to quantify. The uncertainty in the condition of the returned products is,
therefore, a major complexity driver in remanufacturing in comparison to linear manufacturing
(Liu & Zhu et al. 2019, P. 4798). The uncertainty in the core condition is reflected in varying
composition and extent of damage, wear, and contamination of the core. An overview of
possible quality defects is given in Figure 2.11, in which a starter motor is used as an
example to illustrate exemplary quality conditions of returning cores that must be identified
and evaluated concerning reusability and quality grades of the core.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 2.1: Illustration of exemplary quality conditions of returning cores that prevent reusabil-
ity. (a) Light corrosion on the main frame. (b) Missing parts. (c) Damage on the
main body of the core. (d) Burnt electrical connection. (e) Damaged teeth due to
corrosion. (f) Damaged solenoid. (g) Broken housing. (h) Damaged shaft.

The nature and extent of the quality defects of the returning product can be defined concerning
a (1) lack of predictability, (2) multidimensionality of the possible wear, (3) a lack of localizability,
(4) difficult quantifiability and (5) varying scales of size.

The condition of the individual products before arrival at the remanufacturing plant cannot be
predicted (1) and is characterized by a multitude of wear, contamination, and defects that may
occur (2). Furthermore, these quality defects, such as corrosion, contamination, or defects

1 Images are extracted of:
https://www.partinfo.co.uk/files/Remy%20Rotating%20Core%20Criteria%20MASTER%20QU-017.pdf
https://www.elstock.com/en/core-acceptance-criteria/starters/
accessed: 11.08.2023
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including deformation, can appear anywhere on the product (3). In addition, degradation such
as corrosion are difficult to quantify, as the question of how severe the extent also depends on
the components on which it is occurring (4). Last, these defects and quality flaws appear on
varying scales of size, and missing major components are easier to identify than, for example,
broken gear teeth (5).

Remanufacturers often specify core acceptance criteria (e.g., CoremanNet (2022)) for used
products to support initial visual inspection. The operator can use these to check whether
the returned product is remanufacturable. The core acceptance criteria vary depending on
the remanufacturer and product type. They provide information on permissible mechanical
and electrical defects, acceptable corrosion, and the permitted degree of disassembly or
missing components. However, the core acceptance criteria are qualitative, and the operators
mostly decide subjectively (Schlüter & Lickert et al. 2021, P. 302). The missing formalization
of the knowledge and expertise of operators inspecting returning products daily represents
a significant complexity factor. Experiences from previous inspections and information ag-
gregated through knowledge sharing with colleagues are implicitly used. Auxiliary resources
for comparison, such as a reference list (Schlüter & Niebuhr et al. 2018, P. 384), may also
be employed. However, direct quantification of the decisions is not possible, and thus, a
formalization of the decision problem is also complicated, which results in difficulties for tasks
to be automated.

2.1.3 Automated visual inspection

Manual visual inspection by a worker is prone to errors and can reach error rates of up to
30% (See & Drury et al. 2017, P. 262). In the last few decades, automated systems for visual
inspection have therefore been increasingly researched (Newman & Jain 1995, P. 231). In
the simplest case, such automated systems for visual inspection consist of a light source,
an acquisition system, and a processing unit (Ren & Fang et al. 2022, P. 662). In the most
straightforward case, the light source serves as a passive unit for optimal illumination of the
inspection object to ensure that the incident light intensity on the photo sensor is optimally
converted into high-contrast digital signals. In other cases, the generation of digital signals
is only possible by actively controlling the light source, such as, for example, in structured
light projection (Ren & Fang et al. 2022, P. 664). Newman & Jain (1995) distinguish between
four different types of digital signals that are provided by an acquisition system and can be
evaluated by the processing unit:

1. Binary images: Binary images in which each pixel is either black (0) or white (1). They
are often used to check the presence of objects or represent an inspection object’s
contours.
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2. Gray level images: Grayscale images use different brightness levels between black
and white to display image information. Each pixel has a gray value that indicates the
brightness of the pixel. For example, they can be used for texture inspection of surfaces
if color information is not required.

3. Color images: Color images contain information about the color values in each pixel.
They consist of three color channels (red, green, and blue) with which a large color
palette can be displayed. They are used if, for example, color differences indicate defects.

4. Depth images and point clouds: Depth images or point clouds are 3D representations
of scenes in which each point contains information about the distance or depth to the
acquisition system. They are used if geometric information of the inspection object is
required for inspection decision-making. Methods such as structured light projection
obtain three-dimensional information by projecting light patterns onto a surface (Ren
& Fang et al. 2022, P. 664). The acquisition system captures this pattern to obtain 3D
surface structure and shape information.

The acquired data in digital form provides the starting point for further processing. An overview
of processing methods in defect detection is provided by Ren & Fang et al. (2022). Early
methods worked with simple image processing methods and template matching in the spatial
domain or Fourier transformation in combination with wavelet transformation in the frequency
domain. More recent methods use feature extraction in combination with machine learning up
to deep learning using Neural Networks (NN).

2.1.4 Summary and conclusion: View planning tasks for the initial visual
inspection

When a human performs the inspection, the core acceptance criteria provide guidance on
the relevant quality criteria to which particular attention is paid during the inspection (e.g.,
CoremanNet (2022)). Due to the uncertainty regarding the quality state of the returning
products derived in chapter 2.1.2, these are inspected to detect defects on the entire prod-
uct. Furthermore, individual components or specific defects are inspected in detail. This is
necessary, for example, if a particular defect occurs frequently on a component or if a defect
is detected during the general inspection, but a more detailed inspection is required for the
final acceptance decision. In conclusion, two types of inspection processes performed by the
human can be distinguished. These can be seen in Figure 2.2.

First, to detect defects visible by general inspection, (a) overall inspection of the returning
product with full surface coverage is necessary to detect all possible defects that may
occur on the returning product. In addition, an (b) individual inspection of components
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Overall inspection of the product

Individual inspection of components and defects

a)

b)

Figure 2.2: Overview of the two distinct inspection problems addressed in this thesis. a) Over-
all inspection of a product. b) Individual inspection of components and defects.

and defects, which represent Regions of Interest (ROI) that have been determined to be
further examined by general inspection, may be necessary.

Although both subproblems a) and b) pursue two different objectives (general inspection and
individual inspection of ROI), they can be formalized in the same way, which allows answering
the first structuring question of section 1.3:

Problem formalization: How can the problem of autonomous data acquisition in
remanufacturing be formalized?

The answer is based on the fact that both inspection processes describe a procedure where
the worker implicitly solves the so-called view planning problem (VPP). The worker manually
manipulates the used product to be inspected and changes the movements of his eyes
and gaze so that the product can be inspected thoroughly (subproblem a)) or individual
components or defects can be inspected in detail (subproblem b)).

2.2 View planning for visual inspection systems

View planning refers to the problem of selecting the optimal acquisition system poses for
the targeted acquisition of a 3D scene or object (Peuzin-Jubert & Polette et al. 2021, P. 1).
View planning is a subfield of robot active vision and is, therefore, a research area at the
intersection of robotics and computer vision (Zeng & Wen et al. 2020, P. 225). This chapter
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introduces the basics of robot active vision and view planning in chapter 2.2.1 first. Different
alternatives for three-dimensional object representation to solve the VPP are presented in
chapter 2.2.2. Based on that, approaches to solving the VPP are introduced in chapter 2.2.3.
The acquisition goal, performance metrics, and algorithmic requirements are then presented
(section 2.2.4), followed by a section providing an overview of fundamentals of coordinate
systems and pose transformations (section 2.2.5). The section concludes with a summary
concerning view planning in remanufacturing (section 2.2.6), summarizing insights obtained
from sections 2.1 and 2.2.

2.2.1 Robot active vision and the view planning problem (VPP)

Robot active vision refers to the concept of actively adjusting a robot’s visual acquisition
system to obtain information for various tasks (Zeng & Wen et al. 2020, P. 225). Use cases
range from navigation, tracking, and mapping to site exploration and modeling up to object
reconstruction and inspection (Chen & Li et al. 2011, P. 1344). Zeng & Wen et al. (2020)
mention robots and visual acquisition systems as core components for an active robot vision
application. The authors further distinguish between robotic arms and mobile robots that can
freely explore their environment (Zeng & Wen et al. 2020, P. 226). Stationary robots, thereby,
often have an acquisition system attached to their end-effector. The joints then determine
the degrees of freedom of the acquisition system system. In contrast to stationary robot
arms, mobile robots can acquire scenes or larger objects. Due to occlusions and limited
working distance and field of view of visual acquisition systems, more than one view of an
acquisition system is often required. Thus, for a variety of vision tasks, planning multiple views
is necessary to achieve the overall goal (Chen & Li et al. 2011, P. 1343).

Definition of the VPP
Scott & Roth et al. (2003) define the VPP as the problem of finding the shortest view plan
consisting of a minimal number of views, which fulfills a specified reconstruction target within
an acceptable computation time for a given environment and object. To formalize the VPP,
Scott & Roth et al. (2003) introduce the imaging environment. This includes the object itself,
an acquisition system to capture the object’s shape, a system to fixate the object, and a
positioning system to move the acquisition system or the object relative to each other. In
addition, three sets are introduced (Scott & Roth et al. 2003, P. 65ff). These are the object
surface space S, the imaging workspace I, and the viewpoint space V . The object surface
space S is the set of 3D surface points sampled on the object. The imaging workspace is
the 3D region capable of being viewed by the acquisition system over the full range of the
positioning system. Finally, the viewpoint space is the set of generalized viewpoints, which was
first introduced in Tarabanis & Tsai et al. (1995, P. 73) and adopted in the definition of Scott &
Roth et al. (2003). A generalized Viewpoint (VP) V S of a system consists of the pose pA/Ref
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of an acquisition system A in relation to a reference Ref and a set of controllable acquisition
system parameters λA. This results in the tuple V S = (pA/Ref , λA). The acquisition systems
pose pA/Ref can be expressed in six-dimensional space by its position and orientation relative
to its reference Ref .

In this thesis, the above definition is extended further. The definition of Scott & Roth et al.
(2003) already mentions a positioning system that can reposition the object O between
successive views. Consequently, in addition to the acquisition system poses, the object
poses pO/Ref must also be included in the VP space V since it may change during the
acquisition cycle. A VP V S of a system then consists of pO/Ref , pA/Ref and λA (V S =
(pO/Ref , pA/Ref , λA)). Furthermore, some acquisition systems move on trajectories to acquire
measurement data (Peuzin-Jubert & Polette et al. 2021, P. 1). In this case, the definition of a
VP over a single pose of the acquisition system is insufficient. Instead, the trajectory must be
represented by a list of acquisition system poses. In this case, a trajectory to be followed by
the acquisition system is represented by a list of multiple individual poses of the acquisition
system and the object and the acquisition system parameters. With the introduced extensions,
the overall goal remains, as stated earlier, to find a suitable short view plan (Scott 2009, P. 48)
to achieve the task at hand.

Subcategories of VPP

According to Scott & Roth et al. (2003), finding a solution of the VPP involves reasoning
about the surface space S of the object, as well as the imaging workspace I and the space
V of all possible VPs. However, Scott & Roth et al. (2003) describes only reconstruction
as the overall goal of view planning (Scott & Roth et al. 2003, P. 68). The planning of a
single VP, i.e., the Next-Best-View (NBV) to obtain information about an unknown scene,
can also be considered a VPP. Also, inspection tasks with the overall goal of only acquiring
specific object surfaces to be inspected (ROI) can be formalized as VPP. An extension of the
definition is consequently given in Scott (2009), which also explicitly addresses the solution of
an inspection task as the goal of VPP (Scott 2009, P. 48). For this reason, three subcategories
of VPP based on their respective planning objective are distinguished in this thesis:

1. NBV: Banta & Zhien et al. (1995) define the Next-Best-View (NBV) as the next VP
that will extract the greatest amount of unknown scene information. One of the earliest
mentions of the term "next-best-view" is from Connolly (1985), who focuses on three-
dimensional scene modeling (Banta & Zhien et al. 1995, P. 418, Connolly 1985, P. 432).
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2. RPP: In the context of this thesis, the Reconstruction Planning Problem (RPP) refers
to the problem of finding a minimum number of VP so that the entire surface of the
inspection object can be acquired and thus reconstructed.

3. IPP: The Inspection Planning Problem (IPP) is equivalent to the RPP within the
context of this thesis, but only a partial area of the inspection object (the ROI) must be
acquired. Consequently, in contrast to RPP, a minimum number of VP must be found so
that the ROI of the inspection object are covered.

An essential difference to NBV is that a view plan, which represents a solution of RPP, does
not only contain VP that represent the next best VP concerning the previous VP. It may well
be that, as shown in Figure 2.3, the choice of NBV alters the problem in such a way that
the optimal solution of VPP cannot be found. In this Figure, the optimal view plan consists
of the acquisition indicated by numbers one, two, and three. By choosing the acquisition
"NBV", which represents the NBV after performing acquisition one, still, two acquisitions
would be needed to fully cover the surface of the triangular object. This view plan would
consist of four (in contrast to three for the optimal view plan) acquisitions. This proves that a
view plan consisting of a sequence of NBV does not always correspond to the optimal view
plan regarding the required number of acquisitions, and the consecutive solution of the NBV
problem is not equal to the solution of the RPP.

Inspection object

1

2

3

NBV

Field of vision of the VP 
of the optimal view plan

Field of vision of the NBV

Figure 2.3: Visualization of the choice of the next VP on the performance of the solution to
the VPP.

Acquisition system selection and solution complexity
Depending on the application, different acquisition systems can be used to acquire the object’s
surface. Peuzin-Jubert & Polette et al. (2021) mention laser scanners and structured light
systems, especially for the use case of object reconstruction (Peuzin-Jubert & Polette et al.
2021, P. 3 f.). According to Zeng & Wen et al. (2020), additional acquisition system principles
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such as stereo vision and time of flight can be used (Zeng & Wen et al. 2020, P. 226 f.).
The selection of an acquisition system is always closely coupled with the application and
the associated requirements. Zeng & Wen et al. (2020) propose criteria such as acquisition
distance, acquisition accuracy, depth image, and color image resolution as well as costs and
robustness against environmental influences (e.g., changing light conditions) to compare
different types of acquisition systems (Zeng & Wen et al. 2020, P. 227).

The complexity of finding a solution of the VPP based on the system used differs. Generally,
the solution of solving the VPP when considering trajectories of the acquisition system is
more complex. Using the extended definition, the solution may additionally include an altered
pose of the object relative to the previous acquisition, regardless of the acquisition system
used. In the past, it has been shown by Tarbox & Gottschlich (1995) that the view planning
problem is NP-complete (Tarbox & Gottschlich 1995, P. 90). Therefore, finding a globally
optimal solution is usually not feasible. Instead, approximate solutions that can be found
with acceptable time and computational effort are often desired (Zeng & Wen et al. 2020,
P. 228).

Reconstruction cycle
Planning the optimal view plan in advance is only possible in a model-based setting if a
model of the object of interest is available. Scott & Roth et al. (2003) therefore distinguishes
problems where an object model is available (model-based) and those for which this is not
the case (model-free) (Scott & Roth et al. 2003, P. 65). Given the case where no model of the
object is available, the next VP must be calculated based on the current incomplete model
available after each step. The solution of the VPP is then obtained by sequentially executing
the planning cycle, while the next VP is calculated iteratively in each iteration.

Scott & Roth et al. (2003) defines the classical acquisition cycle and divides its execution
into four steps (Scott & Roth et al. 2003, P. 67). These are (1) planning, (2) scanning, (3)
registration, and (4) integration. Given the case where a view plan as the solution of the VPP
is computed in advance, the sequence of VP is available before execution. These individual
VP must be approached sequentially to perform the scans. After each scan, the current scan
must be registered to all previous scans to compensate for errors in the positioning system.
Then, all previous scans are integrated into a single, non-redundant model until a termination
criterion is met.

2.2.2 Object representation alternatives for the solution of the VPP

Both for model-free methods, which compute the NBV, and for model-based solution methods,
which directly calculate the solution of the VPP, a suitable representation of the object in
the form of an object model is necessary. In a recent review article, Peuzin-Jubert & Polette
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et al. (2021) analyzed VPP solution methods and the different forms of representation of
the object model commonly used. In the following, the most important ones in the scope of
this thesis are introduced and explained in detail, using recent review articles of Gezawa
& Zhang et al. (2020), Ahmed & Saint et al. (2018), and Fahim & Amin et al. (2021) as
references. Other representation alternatives are discussed briefly. A rough distinction of 3D
representations is made by Ahmed & Saint et al. (2018) and Bronstein & Bruna et al. (2017)
into Euclidean and non-Euclidean structured representations. Fahim & Amin et al. (2021)
follow this classification and discuss representation forms that do not fall into the first two
categories. The categorization and exemplary representation alternatives for objects can be
found in Figure 2.4, in accordance to Fahim & Amin et al. (2021) and Peuzin-Jubert & Polette
et al. (2021), and are explained in the following.

Object
representation

Non-Euclidean Others

Point cloud Mesh

Euclidean

RGB-D Voxel Octree
Parametric

Surface
B-Rep

Figure 2.4: Categorization of exemplary representation alternatives of object models relevant
to VPP in accordance to Fahim & Amin et al. (2021) and Peuzin-Jubert & Polette
et al. (2021)

Point cloud representation
The primary type of non-Euclidean data is point clouds (Ahmed & Saint et al. 2018, P. 5).
Point clouds are raw data that can be collected by most existing depth acquisition systems
today (Gezawa & Zhang et al. 2020, P. 57567). A Point cloud captures the three-dimensional
object as a set of unstructured individual data points and allows it to be represented as a set
of 3D points in space (Peuzin-Jubert & Polette et al. 2021, P. 3, Gezawa & Zhang et al. 2020,
P. 57567). Each point represents a specific spatial location on the object’s surface (i.e., x,
y, and z coordinates) (Zeng & Wen et al. 2020, P. 228). Point clouds are acquired through
laser scanning, structured light projection, and many other three-dimensional measurement
principles (Gezawa & Zhang et al. 2020, P. 57567), making them useful for use cases such as
3D reconstruction, object recognition, and vehicle detection (Ahmed & Saint et al. 2018, P. 6).
Point clouds are simple and memory-efficient. However, processing them can be challenging
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since they lack connectivity information (Ahmed & Saint et al. 2018, P. 5 f., Gezawa & Zhang
et al. 2020, P. 57568, Fahim & Amin et al. 2021, P. 170). Additionally, they may require
further processing due to incompleteness, noise, or missing data after the acquisition process
(Gezawa & Zhang et al. 2020, P. 57568). Lastly, they are not able to describe unknown or
empty spaces (Zeng & Wen et al. 2020, P. 228).

Mesh representation
A mesh can represent an object’s outer surface (Peuzin-Jubert & Polette et al. 2021, P. 3). A
mesh is composed of vertices, edges, and faces (Gezawa & Zhang et al. 2020, P. 57568) to
form a polynomial network. Vertices are the three-dimensional points in space that define
points on the object’s surface. A point cloud can, therefore, serve as a starting point to
create an object mesh with suitable algorithms. Each vertice contains a connectivity list that
describes how edges connect the vertices (Gezawa & Zhang et al. 2020, P. 57568). Edges
represent the straight lines between pairs of vertices. They contribute to the mesh’s overall
shape by defining the faces’ boundaries. Faces are formed by connecting three (triangle) or
more vertices with edges. All faces of the mesh define the structure of the 3D object and
its surface appearance. Meshes are versatile and can approximate complex shapes easily.
However, the level of detail in a mesh is determined by the number of vertices, making it
memory and computationally intensive to represent volumetric data or smooth surfaces.

RGB-D representation
RGB-D data are a representation form of a 3D object by 2.5D data by providing Depth (D)
as well as color information in Red, Green and Blue (RGB) domain (Gezawa & Zhang et al.
2020, P. 57568) in the form of images (Ioannidou & Chatzilari et al. 2017, P. 1). Often, RGB-D
data are directly output by an acquisition system, allowing for the representation of the object
surface with the said depth map while additionally providing color information (Zeng & Wen
et al. 2020, P. 226, 229). Spatial information is contained in a grid-like manner by the image,
which is why RGB-D data are categorized by Ahmed & Saint et al. (2018) as Euclidean
data (Ahmed & Saint et al. 2018, P. 4). With suitable calibration, direct relationships between
the acquired color image data and the depth image can be established with such systems
(Lacher & Vasconcelos et al. 2019, P. 13). The result is a color-coded point cloud. Each pixel
of the image can then be assigned a spatial coordinate. This offers the advantage of applying
highly performant image-based machine learning techniques to the image data that has been
acquired and fusing the results with the three-dimensional acquisition results as done by
Martín & González et al. (2021)(Martín & González et al. 2021, P. 1, 2).

Volumetric representation
Voxel grids and octrees are Euclidean forms of three-dimensional volumetric data represen-
tation of objects (Ahmed & Saint et al. 2018, P. 4, 5). Voxel grids are used to represent an
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object in space by a three-dimensional regular grid dividing the object’s volume into small
cubic elements called voxels (Peuzin-Jubert & Polette et al. 2021, P. 3). In its simplest form,
each voxel can be encoded binary, whether it is inside the object or outside (Fahim & Amin
et al. 2021, P. 165). For view planning, voxels that belong to the object can, for example,
further be classified whether they are visible (on the surface of the object), not visible (inside
the object), occluded or self-occluded (Gezawa & Zhang et al. 2020, P. 57568). However,
voxel grids can be memory and computationally expensive, especially for high-resolution
object representation (Fahim & Amin et al. 2021, P. 169, Ahmed & Saint et al. 2018, P. 4).
The drawback of memory and computational intensity is improved with octrees (Fahim &
Amin et al. 2021, P. 169). An octree is a voxel grid with voxels of varying sizes, which is built
by recursively subdividing root voxels (Ahmed & Saint et al. 2018, P. 4) until a termination
criterion is met. Despite advances in memory and computational efficiency, voxel grids, as
well as octrees, are still considered to have limitations concerning the preservation of the
geometry of the object regarding the shape and smoothness of the surface (Ahmed & Saint
et al. 2018, P. 5, Gezawa & Zhang et al. 2020, P. 57568, Fahim & Amin et al. 2021, P. 169).

Other representation alternatives
According to Peuzin-Jubert & Polette et al. (2021), parametric surfaces and Boundary
Representation (B-Rep) are further variants for 3D object representation, relevant for VPP.
Parametric surfaces such as Non-Uniform Rational B-Spline (NURBS) represent complex
shapes using control points, knot sequences, and weights. Parametric surfaces are beneficial
for generating smooth surfaces. However, defining complex surfaces with parametric equations
can be challenging and computationally expensive. B-Rep are used to describe solids such
as CAD models and are therefore widely used in the industrial domain. An object represented
with B-Rep comprises several elements that form the object’s skin. Faces of said model
can be represented using analytical descriptions of a surface, such as NURBS or B-Splines.
These faces are connected by wires composed of edges and vertices. (Peuzin-Jubert &
Polette et al. 2021, P. 3)

2.2.3 Analytical solution methods for VPP

According to Scott & Roth et al. (2003), methods for the solution of the VPP can be divided
into model-based and model-free approaches (Scott & Roth et al. 2003, P. 65). Model-
based methods are based on a priori knowledge of the object’s geometry using a 3D object
representation. This enables the solution of the VPP by planning a suitable view plan even
before execution. When no a priori knowledge is available, e.g., in reverse engineering, model-
free methods that utilize an iterative approach are used (Peuzin-Jubert & Polette et al. 2021,
P. 2). In each iteration of the planning cycle introduced in chapter 2.2.1, the next optimal VP
is determined until a termination criterion is met.
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Model-based solution approaches
An early categorization of model-based algorithms for solving the VPP exists by Scott & Roth
et al. (2003). The authors distinguish between solution algorithms from the domains of Set
Theory, Graph Theory, and Computational Geometry (Scott & Roth et al. 2003, P. 74). A later
definition by Peuzin-Jubert & Polette et al. (2021) generalizes this classification. According to
Peuzin-Jubert & Polette et al. (2021), the algorithms designed to solve the model-based VPP
can be divided into only two groups. The first group is just like in the categorization of Scott &
Roth et al. (2003) from the domain of set theory, which transforms the VPP into a so-called
Set Covering Problem (SCP) and solves it using optimization algorithms. Solving the view
planning problem (VPP) using approaches to solve SCP involves discretizing and evaluating
multiple poses of the acquisition system and then sequentially selecting the smallest possible
set of poses to obtain a view plan. The number of poses of the detection system must be
selected so that the coverage of the object surface to be detected is maximized and the VPP
is solved accordingly.

The second group combines the categories of graph theory and computational geometry of
Scott & Roth et al. (2003), resulting in the solution approach via Coverage Maximization
(CM). The authors generally define these methods as approaches that do not solve the
VPP via an optimization algorithm but directly pursue the goal of maximizing the surface
coverage. Using CM methods, the surface of the inspection object is first divided into sections.
Acquisition poses that aim to maximize coverage of the surface clusters are then determined.
An exemplary grouping into sections can take place with the help of spatial proximity and
orientation of sampled points located on the surface of the inspection object. The number of
acquisitions required to achieve that goal is only considered a secondary objective, in contrast
to the solution of SCP.

Regardless of the approach used, the view plan can be generated offline, while in the
use phase, it only needs to be executed. An adapted version of the general workflow of the
acquisition cycle introduced by Scott & Roth et al. (2003) for model-based solution approaches
can be seen in Figure 2.5.

View plan
generation

Known
object model

Offline Online Reconstructed
object model

Scanning Registration Integration

Repeat for
every VP

Repeat for
every scan

Figure 2.5: Adapted acquisition cycle for model-based solution approaches in accordance to
Scott & Roth et al. (2003).
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Model-free solution approaches
In contrast to model-based solution approaches, model-free approaches cannot rely on
prior knowledge about the object’s geometry. Instead, these methods attempt to iteratively
determine the next VP with the highest information gain, the NBV, at system runtime after
an acquisition. In contrast to model-based solution approaches, no offline planning takes
place. The adapted version of the acquisition cycle introduced by Scott & Roth et al. (2003)
for model-free solution approaches can be seen in Figure 2.6.

NBV
generation

Unknown
object model

Online Reconstructed
object model

Scanning Registration Integration

Intermediate object model

Figure 2.6: Adapted acquisition cycle for model-free solution approaches in accordance to
Scott & Roth et al. (2003).

Peuzin-Jubert & Polette et al. (2021) define the procedure as follows. At the beginning of
the procedure, an initial acquisition is performed with a VP. After the initial acquisition, the
acquired surface sections are deduced, and the remaining unknown surface sections are
estimated. Based on the estimated remaining surface sections and their spatial localization,
new VPs are generated. Each of these VP gets assigned a subset of the estimated remaining
unknown surface sections that can be acquired with said VP. The NBV is then chosen as that
VP that maximizes the coverage of the estimated remaining surface sections.

Summary of analytical solution methods to the VPP
Please refer to Appendix A1 for a more detailed mathematical formulation of the analytical
approaches presented for solving VPP. Figure 2.7 shows a schematic overview of the three
solution approaches using SCP (subplot a) and CM (subplot), both of which are model-based,
as well as the model-free approach for determining the NBV (subplot c).

2.2.4 Algorithmic requirements, acquisition goal, and evaluation metrics

Depending on the application, a solution method for the VPP must fulfill different acquisition
goals and requirements. The review articles of Scott & Roth et al. (2003), Scott (2009), and
Peuzin-Jubert & Polette et al. (2021) give an overview of existing performance characteristics
and general algorithmic requirements. These are outlined and summarized in the following.

Regarding the general algorithmic requirements, an algorithm solving the VPP must be
independent of the object or acquisition system. This implies that the VP of the solution
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Figure 2.7: Schematic overview of VPP solution approaches using SCP (subplot a), using
CM (subplot b) and calculating the NBV (subplot c).

algorithm are generalized and defined in such a way that they can be used independently
of a present acquisition system or measurement principle (Scott & Roth et al. 2003, P. 71,
Peuzin-Jubert & Polette et al. 2021, P. 2 f.). Ideally, the definition of VP then follows the
definition presented in chapter 2.2.1 and only the parameter vector λA is adapted to the
acquisition system at hand (Scott & Roth et al. 2003, P. 71). Consequently, the object pose
pO/Ref and the acquisition system pose pA/Ref are always defined the same regardless of
the acquisition system and object used. Additionally, algorithms should be generalizable, i.e.,
widely applicable (Scott & Roth et al. 2003, P. 71). Peuzin-Jubert & Polette et al. (2021) further
detail this aspect. The authors state that an algorithm must take into account a variety of
constraints, such as diverse objects in size and shape, constraints on VP generation due
to the design of the imaging environment consisting of the acquisition system, positioning
system, and object as well as acquisition goals (Peuzin-Jubert & Polette et al. 2021, P. 2
f.).

Depending on the application, different evaluation metrics exist. A solution algorithm must
align its solution of the VPP based on these evaluation metrics. Based on the definition of
VPP, the main goal is first to maximize the surface area of interest (ROI) (Scott 2009, P. 48).
According to the introduced nomenclature of this thesis, this can be the entire object surface
(NBV and RPP) or one or more specific parts of the object surface (IPP) for inspection tasks.
Aspects that may also play a key role are the precision of the individual point clouds acquired
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in each acquisition as well as the required density (Scott & Roth et al. 2003, P. 49). For
reconstruction tasks, the execution time of the vision plan is of minor importance, especially
for industrial applications, but the execution time of the vision plan has to be considered.
This is associated with the requirements for the generation of a view plan, which minimizes
the number of necessary views (Scott & Roth et al. 2003, P. 72, Peuzin-Jubert & Polette
et al. 2021, P. 3). Furthermore, especially for model-free solution methods, the computation
time for calculating the NBV is an important performance characteristic. Only in this way can
the dead time between individual views be kept small and the inspection time be minimized
(Peuzin-Jubert & Polette et al. 2021, P. 3). Within this scope, an important aspect that will play
a significant role in future research, both for model-based and model-free solution approaches,
is solving the coupled problem of VPP and minimizing the travel distances between VPP to
reduce the cycle time even more (Jing & Polden et al. 2017, P. 1294). This can be done by,
for example, solving the extended SCP, where the costs of each VP correspond to the travel
costs between the current VP and the VP to be evaluated.

2.2.5 Fundamentals of coordinate systems and pose transformations

In the following, the basics of coordinate systems and pose transformations are briefly
explained using the example of a robot-guided acquisition system. For more in-depth expla-
nations, please refer to the available fundamental literature, such as Mareczek (2020, P. 54
ff.).

To move the acquisition system to the VPs determined by an algorithm that provides a
solution for the VPP, geometric descriptions of the system are necessary. This is achieved
by introducing coordinate systems and describing their geometric relationships. An example
is an acquisition system with a coordinate system CA, which is mounted on a robot with a
static base coordinate system CR. The pose pA/R of the acquisition system, as a component
of one VP in the overall VPP solution, corresponds to the translation and orientation of the
coordinate system CA with respect to CR.

The geometrical relationships between CA and CR can then be established using homo-
geneous coordinates. The pose of a coordinate system is represented in homogeneous
coordinates by a 4 × 4 transformation matrix, including rotational and translational com-
ponents. In the example of an acquisition system mounted on a robot, the 3 × 3 rotation
matrix RA/R and 3 × 1 translation vector TA/R represent the acquisition system’s orientation
and translation of the acquisition systems coordinate system CA relative to the robot base
coordinate system CR.
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The homogeneous transformation matrix TA/R is formulated as:

TA/R =
RA/R TA/R

0T 1

 2.1

Usually, translational components in Cartesian space and Euler angles to represent the
orientation in space are used to represent poses, e.g., pA/R. In this case, the translational
components correspond directly to the translation vector TA/R, whereby the rotation matrix
RA/R can be calculated using the Euler angles. An exemplary rotation matrix calculation
based on given Euler angles can be found in Appendix A2. In some cases, the translational
components of a pose are also specified in non-Cartesian coordinate systems (e.g., Spherical
coordinates). In this case, it is also necessary to convert the translational components of
the pose pA/R from the non-Cartesian coordinate system to a Cartesian representation to
calculate the translation vector TA/R. A mathematical example of this can also be found in
Appendix A2. The description of the geometric relationships of the system then allows, for
example, the calculation of the inverse kinematics, i.e., the robot’s joint angles required to
move the acquisition system to a particular pose pA/R.

In addition, the description of the geometric relationships also enables the conversion of
points represented in CA into the representation in the coordinate system CR. The point PA

in CA, is initially represented by coordinates XA, Y A and ZA. To transform PA to CR, the
homogeneous transformation matrix TA/R is used as follows:

PR

1

 = TA/R ·
PA

1

 =
RA/R TA/R

0T 1

 ·
PA

1

 =
RA/R PA + TA/R

1

 2.2

The result of this calculation is the point PR = [XR, Y R, ZR], represented in CR. For the
calculation, the vectors of the points PR and PA are each extended by one dimension with the
value 1 to enable multiplication with the 4 × 4 homogeneous transformation matrix TA/R and
to ensure the point PA is rotated by RA/R and translated by TA/R to be correctly represented
in CR.

2.2.6 Summary and conclusion: View planning in Remanufacturing

The solution of a VPP consists of finding a minimum number of VP that denote poses
or trajectories pA/Ref of the acquisition system and, if necessary, pO/Ref of the object in
order to fulfill the planning goal at hand. In this section, the three sub-problems of the
VPP, namely the NBV problem, the RPP and the IPP have been defined. The problem
formulation of autonomous data acquisition in remanufacturing, from which the subproblems
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of general inspection and individual inspection of ROI resulted, can be mapped directly to
the subproblems of VPP. This makes it possible to answer the structuring question raised in
section 1.3:

Solution approach: Which group of solution methods exists for solving the formalized data
acquisition problem in remanufacturing?

The problem of general inspection (subproblem a)) can thereby be directly mapped to the
problem formalization of RPP, while the problem of individual inspection of ROI (subproblem
b)) can be mapped to the problem formalization of IPP. Both problem types (RPP and IPP)
can be solved model-based or model-free depending on the availability of forms of object
representation of the inspection object.

Regardless of the solution approach (model-based or model-free), both approaches require
the solution of an optimization problem. The goal is to optimize the target variables (e.g.,
maximizing the surface coverage while minimizing the required number of VP). Machine
learning methods as a subfield of artificial intelligence have proven successful in solving
optimization problems, including the VPP (Peuzin-Jubert & Polette et al. 2021, P. 19). Machine
learning methods are capable of discovering patterns within data. This ability enables machine
learning models to generate effective solutions to the VPP that traditional algorithms (such
as, e.g., analytical solution methods) may not be able to address efficiently due to their high
complexity (Peuzin-Jubert & Polette et al. 2021, P. 19).

2.3 Machine learning and deep learning

The following chapter first gives a general overview of the three categories of machine
learning (section 2.3.1). Based on this, neural networks as universal function approximators
are discussed (section 2.3.2). Section 2.3.3 overviews advanced methods based on deep
learning, such as segmentation, semantic mapping, learning using point clouds, and actor-
critic reinforcement learning. The chapter closes with a summary on the application of machine
learning in view planning (section 2.3.4).

2.3.1 Overview of machine learning categories

Three types of learning can be distinguished based on their type of feedback (Russell &
Norvig 2010, P. 694). These are Supervised Learning (SL), Unsupervised Learning (USL)
and Reinforcement Learning (RL).

According to Russell & Norvig (2010), the goal of supervised learning is to approximate a
function f : X → Y , where X is the input space and Y is the output space, given a set of N
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training examples (xf,1, yf,1), ..., (xf,N , yf,N) (Russell & Norvig 2010, P. 695). A model trained
by SL thereby predicts ŷf,i given an input xf,i, where, ideally, the prediction ŷf,i equals the
true label yf,i (ŷf,i = yf,i). The approximation of the function f(·) that generated the training
samples is called the hypothesis and is denoted by h(·). In this case, learning is concerned
with searching through the space of all candidate hypothesis functions to find the one that
best suits the unknown function f(·). The accuracy of a given hypothesis is measured by its
accuracy of predicting yf,i for a given xf,i, which was not included in the training examples
(Russell & Norvig 2010, P. 696). A distinction between SL is made between classification,
where the output is one or more discrete classes, and regression, where the output is one or
more continuous variables (Bishop & Nasrabadi 2006, P. 3).

Unsupervised learning is concerned with reasoning about the input space without a corre-
sponding output space (Bishop & Nasrabadi 2006, P. 3). Based on an input space X and a
set of N training examples (xf,1, ..., xf,N), the goal is to extract knowledge of the properties
of the probabilistic function f(·) that generated those training examples (Hastie & Tibshi-
rani et al. 2009, P. 486). The learning is concerned with finding a probabilistic hypothesis
function h(xf,N+1|xf,1, ...xf,N ) which models the probability distribution of a new input xf,N+1

given the training examples (Ghahramani 2003, P. 74). The determination of the probabilistic
distribution of data within the input space is known as density estimation and can be used
for dimensionality reduction (Bishop & Nasrabadi 2006, P. 3). Another approach is to find
patterns inside said distribution, which is called clustering (Ghahramani 2003, P. 73).

In contrast to SL and USL, reinforcement learning is concerned with training an agent to solve
a sequential decision-making problem. The agent interacts with an environment through its
strategy π, which determines actions at given a state st of the environment at the time t. The
strategy π consequently is a function π : SE → ARL that maps the space of states SE of the
environment to the space of actions ARL of the RL agent (Sutton & Barto 2018, P. 58). After
interacting with the environment, the agent receives a reward rt+1 and the new state st+1. The
agent must then find an optimal strategy π∗ that maximizes the sum of all discounted future
rewards Gt (see equation 2.3), also called long-term reward, through continuous interaction
with its environment. The discount factor γRL ∈ [0, 1] represents a parameter that indicates
the farsightedness of the strategy learned by the agent. By choosing γRL = 0, the agent
only learns a policy π that chooses actions that lead to an immediate reward. When setting
γRL = 1, future rewards are not discounted, and the agent learns a farsighted strategy. (Sutton
& Barto 2018). RL methods thereby specify how the policy π is changed as a result of this
interaction to best approximate π∗ (Sutton & Barto 2018, P. 58).
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Gt = rt+1 + γRLrt+1 + γ2
RLrt+2 + ... =

∞∑
k=0

γkRLrt+k+1 2.3

According to Zhang & Yu (2020), model-based and model-free approaches can be distin-
guished. Although the designation of model-free and model-based RL is synonymous with the
designation in VPP, they differ concerning the type of model used. Model-based approaches
aim to predict the new state s+1 and the reward rt+1 given a state st and action at, i.e., learning
the environment model while interacting with the environment. Then, planning methods can
be used directly to deduce an optimal strategy π∗. In contrast, model-free approaches directly
attempt to learn the optimal policy π∗. By interacting with the environment, the agent tries to
maximize the sum of all collected future rewards based on the previously known samples by
continuously adjusting its strategy π. In the model-free case, the agent does not learn the
environment dynamics but aims to find an optimal policy π∗ by trial and error. Compared to
model-based approaches, model-free algorithms are easier to implement. Moreover, learning
an environment model can be very difficult in some circumstances. In the remainder of this
thesis, model-free approaches are focused. According to Zhang & Yu (2020), model-free
approaches are divided into value-based and policy-based approaches. These are explained
in detail in chapter 2.3.3.

As seen by the definition of SL, USL, and RL, all learning tasks involve learning a functional
mapping or functional description of the data in some sort. Often, a good hypothesis of the
model to approximate must be found without knowledge about special properties of the data
or the application (Ertel 2018, P. 194). Excellent results have been achieved with NNs, which
are universal function approximators (Arena & Fortuna et al. 1998, P. 7). NNs learn the
parameters w of a hypothesis y = h(x|w) to best estimate the function y = f(·) (Goodfellow
& Bengio et al. 2016, P. 164). NNs are introduced in the following.

2.3.2 Neural networks (NNs) as universal function approximators

NNs are strongly oriented by the structure of the human brain, which processes and transmits
information via a network of neurons (Russell & Norvig 2010, P. 727). The neurons receive
an input signal from other neurons via synapses and are either activated or disabled (Russell
& Norvig 2010, P. 11). As soon as a neuron’s stimulus exceeds a threshold value, the neuron
activates and transmits this information as a potential pulse via its output to the following
neurons. In a network of neurons, the strength of the influence of the individual neurons on
each other is responsible for the overall output of the following neurons and consequently the
overall output of the network (Russell & Norvig 2010, P. 11).
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The Perceptron is the basic building block of a simple NN and the mathematical approximation
of a human neuron. A perceptron is a simple form of a NN consisting of one neuron (Russell &
Norvig 2010, P. 22). This neuron calculates a weighted sum of its inputs, applies an activation
function to it, and outputs the result. A multilayer perceptron (MLP) extends the perceptron by
consisting of multiple layers of neurons: an input layer, at least one or more hidden layers,
and an output layer. Each neuron in one layer is connected to all neurons in the next layer,
each having a weight. The weights of a NN then essentially represent the parameters w of
the hypothesis y = h(x|w) of the NN. Nowadays, NNs are trained using backpropagation,
minimizing the error between the actual and predicted outputs of the network. During training,
the weights and biases are continuously adjusted by backpropagation and optimization
methods such as gradient descent to minimize the prediction error of the NN (Russell &
Norvig 2010, P. 733). Please refer to the Appendix A3 for a detailed introduction to the basic
mathematical concepts of the perceptron, MLPs, and the backpropagation algorithm.

Another variant of NNs is Convolutional Neuronal Networks (CNNs). They have become
established for processing image data. The development of CNNs was inspired by visual
perception (Gu & Wang et al. 2018, P. 354). To recognize an object in an image, the neural
network must be able to do so independently of translation, (small) rotations, and scaling
(different sizes) of the object (Bishop & Nasrabadi 2006, P. 267). Additionally, nearby pixels
form an object in images, and inputs should not be processed independently. MLP can
only meet these requirements to a limited extent due to fully connected input and hidden
layers. Each pixel would be processed in each input neuron independently, and the output
is fed to all neurons in the subsequent layer, representing a rather global than local data
processing. Therefore, unlike MLP, CNNs use (1) local connections, (2) weight sharing, and
(3) subsampling (Bishop & Nasrabadi 2006, P. 268). One or more convolutional kernels, also
called a filter, are applied over the entire input matrix. In doing so, a feature representation
of the input is learned. A filter represents the local connections (1) and is defined as an
nf × nf matrix whose individual values are the weights to be learned. The filter runs stepwise
along the input matrix. In most cases, a quadratic image is fed into the CNN, which makes all
the input matrixes quadratic. A quadratic input matrix with size mI × mI can be the image
itself when the convolution is the first of the NN, or the input matrix can be the output of a
filtering step of another convolution. It computes the output by multiplying the associated
values, then summing the products and applying an activation function, just like in traditional
MLP. Since the filter runs stepwise over the entire input matrix, weights are shared across
the whole input (2) using the same filter values, and significantly fewer weights have to
be learned than in a comparable MLP network. The input dimension can be increased by
defining multiple independent filters applied to the same input matrix. Pooling layers reduce
the dimension of the learned feature representations by subsampling (3). In doing so, the
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dominant features are retained. For this purpose, a rectangular window is defined in analogy
to convolution, which gradually slides over the feature matrix after a convolution. According
to the pooling operation, the value is written into the new smaller feature matrix. Popular
pooling operations are max-pooling, min-pooling, or average-pooling. Several convolutional
and pooling layers can successively be added until a MLP is stacked onto the convolutional
part of the neural network to generate the network output. A highly simplified example of this
abstraction concept can be found in Figure 2.8 using the example of binary classification.
Several layers of convolutional layers and pooling layers are connected one after the other
to continuously extract features at an increasing level of abstraction from the initial image.
These extracted features can then be used in a downstream MLP to generate the actual
network output (in this case, binary classification on whether a starter is present in the image
or not).

Convolution,

Activation

Max-Pooling

Neuron of MLP

CNN layers gradually learn complex concepts (e.g., starter 
motor) from simpler concepts (e.g., corners and contours, 
edges).

.

.

.
.
.

Convolutional part MLP

Starter, yes/no?

Features

Filter

Figure 2.8: Highly simplified example of the inner workings and abstraction concept of a CNN.

CNNs have recently coined the term deep learning in the context of intelligent image process-
ing. Many artificial intelligence tasks can be solved by designing the correct set of features
to extract for that task, using them in simple machine learning algorithms (Goodfellow &
Bengio et al. 2016, P. 3). When done manually, this step of designing a feature extractor
requires careful engineering and considerable domain expertise (LeCun & Bengio et al. 2015,
P. 436). Often, these feature extractors would fail to generalize. For example, when feature
extractors are parameterized to segment cars in daylight, these would almost certainly fail at
night due to changing light conditions. One solution is to let the machine learning algorithm
learn relevant features for the task to solve itself, which is known as representation learning
(Goodfellow & Bengio et al. 2016, P. 4). Deep learning methods are automatic representation
learning methods that transform the representation of the input data into a representation
at a higher level needed to solve the given task (LeCun & Bengio et al. 2015, P. 436). Deep
learning enables the computer to build complex concepts (concept of a person) by combin-
ing more straightforward concepts (corners and contours), which are again based on more
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straightforward concepts such as edges (Goodfellow & Bengio et al. 2016, P. 5). Goodfellow
& Bengio et al. (2016) argue that the quintessential example of a deep learning model is
the MLP. The authors state that each application of a mathematical function in a neuron
provides a new representation of the input. For them, deep learning is "the study of models
that involve a greater amount of composition of either learned functions or learned concepts
than traditional machine learning does" (Goodfellow & Bengio et al. 2016, P. 5). This is often
associated with more hidden layers in the neural network architecture. The main distinction
is that the parameterization of these layers is learned from data using a general-purpose
learning procedure (LeCun & Bengio et al. 2015, P. 236).

2.3.3 Advanced machine learning using deep learning

This chapter discusses the application of deep learning to problems relevant in this thesis.
These are semantic image segmentation and 3D semantic mapping, learning on point clouds,
and deep RL with actor-critic approaches.

Image segmentation with deep learning and 3D semantic mapping
In image segmentation, the primary task is to assign each pixel of an image to a specific
class. There are two segmentation problems to be distinguished here. The first is semantic
segmentation, and the second is instance segmentation. Semantic segmentation has the task
of segmenting objects independently. In contrast, instance segmentation must distinguish
between several objects of the same class in the image (Minaee & Boykov et al. 2021,
P. 3523).

Following the nomenclature introduced in section 2.3.1, according to Garcia-Garcia & Orts-
Escolano et al. (2018), deep semantic segmentation is defined as the assigning of a label to
each variable of an input (x1,1

f , x1,2
f , ..., xW,Hf ), which usually is a 2D image with W × H = Np

pixels. Each label L in the label space L = (l0, l1, l2, ..., lk) represents a different class or
object, where k + 1 is the size of the label space with l0 representing the background (Garcia-
Garcia & Orts-Escolano et al. 2018, P. 43). The output of the a deep semantic segmentation
NN is then given by (ŷ1,1

f , ŷ1,2
f , ..., ŷW,Hf ), where ideally, the assigned label of each pixel

ŷi,jf = l̂i,j equals the true label li,j (ŷi,jf = l̂i,j = li,j). Deep semantic segmentation is very
similar to the above example of deep binary classification. For deep semantic segmentation,
the class membership of each of the Np pixels has to be predicted, and the number of neurons
in the last layer increases solely to enable a classification for each pixel.

In contrast to semantic segmentation, deep instance segmentation is concerned with detecting
and segmenting instances of objects in an image. The critical task is not to segment every pixel
in an image but to correctly detect, classify, and segment relevant objects in an image. This is
often done by predicting a bounding box (BB) containing an object in an image, classifying
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which object is inside the BB, and simultaneously performing a segmentation of the object. In
accordance to the above definition, instance segmentation first deals with predicting a certain
amount m of object BB positions [(ŷUL,1f,B , ŷUR,1f,B , ŷLL,1f,B , ŷLR,1f,B ), ..., (ŷUL,mf,B , ŷUR,mf,B , ŷLL,mf,B , ŷLR,mf,B )]
with UL, UR, LL, LR denoting the upper left, upper right, lower lef and lower right corners of
the BBs. For each proposed BB, a predicted classification of the object in it ŷC,if,B is performed,
resulting in the classification vector [ŷC,1f,B, ..., ŷC,mf,B ]. Additionally, for each predicted BB, a
binary segmentation is performed on whether a pixel inside a BB contains the object or not,
resulting in the segmentation masks [ŷSM,1

f,B , ..., ŷSM,m
f,B ] with the size of the masks being the

size of the predicted object BBs.

Based on the different tasks, different NN architectures have been used to solve these
problems. However, all of these architectures are based on an intelligent combination of con-
volutional layers to process the images as input and individual, problem-specific adaptations
of the network architecture to achieve the objective. Well-known representatives of network
architectures for semantic segmentation use encoder-decoder architectures (e.g., U-Net),
dilated/atrous convolution (e.g., DeepLab architectures), or multi-scale feature extraction
or pyramid architectures (e.g., PSPNet) for goal achievement (Emek Soylu & Guzel et al.
2023, P. 4, ff.). Popular NN architectures, for instance segmentation, are the Mask-RCNN
(He & Gkioxari et al. 2017) and versions of the YOLO (you only look once) architecture
(Redmon & Divvala et al. 2016). The two popular variants for each category, the U-Net and
the Mask-RCNN are described in detail below and are visualized in Figure 2.9.
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Figure 2.9: Visualization of the segmentation procedure for the U-Net (semantic segmentation)
and Mask-RCNN (instance segmentation) based on the example of a starter
motor.

The U-Net by Ronneberger & Fischer et al. (2015) employs an encoder-decoder structure
consisting of stacked layers of convolution blocks and upsampling blocks. The backbone, also
called the encoder, reduces the spatial dimensions of the input image using convolutional
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blocks while extracting relevant image features. The decoding path of the U-Net is the coun-
terpart to the encoding path. It consists of upsampling blocks using a series of deconvolution
and convolutional layers that increase the spatial dimensions to yield an output with the
same size (image height and width) as the input image after the decoder. Deconvolution
layers perform said upsampling of the input feature space by learning the weights of the
upsampling operation instead of upsampling strategies with predefined filters. Between the
encoder and decoder, there are skip connections. These allow the network to directly integrate
features from the encoder to the decoder. These connections help recover fine-grained spatial
information lost while extracting high-level features during encoding and deconvolution. Skip
connections enable the fusion of global context information from the encoder using skip
connections with local details from the decoding path. One advantage of this model is that
good performance can often be achieved even with little training data using suitable image
augmentation (Ronneberger & Fischer et al. 2015, P. 240).

The Mask R-CNN, developed by He & Gkioxari et al. (2017), integrates stacked network
architectures to achieve object detection and instance segmentation. The architecture includes
a convolutional neural network as a backbone, which extracts hierarchical features from input
images. This is followed by a Region Proposal Network (RPN). The RPN determines potential
object locations as candidate object BBs in the image. The extracted features of the candidate
object BBs are then fed to neural network branches for BB classification, BB regression, and
binary object segmentation. The BB classification takes features of the BB and performs
object classification for each candidate BB. The BB regression branch predicts the offset
of the BB coordinates surrounding the object proposed by RPN to improve object detection
accuracy. The segmentation head predicts a per-pixel binary segmentation mask for each
candidate BB, indicating whether a pixel inside the mask can be associated with the object.

As stated in section 2.2.2, applying image-based machine learning techniques to the RGB
or depth image of RGB-D data enables gathering additional information about the acquired
object or scene. An application case is provided by the concept of three-dimensional semantic
mapping (3D semantic mapping). A semantic map augments spatial information by additional
information about entities that are located in space (Nüchter & Hertzberg 2008, P. 915).
Currently, these approaches are mainly used for mobile robots. An overview of existing
applications is given in Kostavelis & Gasteratos (2015). Techniques for constructing semantic
three-dimensional environment representations using deep learning approaches are at the
core of recent research. NN are used to enable the segmentation of objects in image data
(RGB image and \ or depth image) or the segmentation of objects in the acquired point clouds
(Qi & Su et al. 2017) and the transfer of the segmentation results to the three-dimensional
model (see e.g. works of McCormac & Handa et al. 2017, Sünderhauf & Pham et al. 2017,
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Martín & González et al. 2021). While 3D semantic mapping using images to segment the
3D scene can be approached by semantic or instance segmentation in images using deep
learning, working with point clouds, e.g. for segmentation, using deep learning makes other
types of NN architectures necessary.

Deep learning on point clouds
In contrast to data such as color and depth images (RGB-D data) or occupancy grids using
voxels, processing point clouds is efficient since only information on the location of the
points needs to be stored and processed. However, point clouds are non-Euclidean data that
networks cannot process using convolutional layers since these require input in a grid-like
structure. Additionally, point clouds have unique properties that pose a challenge to potential
network architectures (Qi & Su et al. 2017, P. 254):

• Point clouds are unordered. The order of points at the network input may vary. Therefore,
a network must be invariant to permutations of the input order.

• Invariance to transformations. The representations of the point cloud learned by the
network must be preserved when geometric transformations such as rotation and
translation are applied.

• Relationships of points to each other. The points have a neighborhood relationship,
defined by distance in space. The network must be able to extract features from local
structures draw conclusions concerning the global point cloud structure.

The Pointnet, presented by Qi & Su et al. (2017), is one of the first networks to apply deep
learning based on point clouds to classify and segment them. The basic idea of this network
architecture is to learn local and global features extracted from point clouds. To solve the
problem of invariance to transformations, a subnetwork called Transformation Network
(T-Net) is used. The T-Net takes the raw point cloud data and performs pose alignment by
multiplying the original point cloud by a learned 3 × 3 transformation matrix. Features are
extracted in the aligned form using a MLP. These features are aligned in feature space, using
another T-Net to obtain the local features. Local features are then processed by another
MLP, and a max pooling layer then aggregates the transformed local features of all points
into a global feature vector. The local and global features can then be used for classification,
regression, or semantic segmentation tasks by stacking further layers on top of the feature
extractor to obtain a suitable output.

Deep Actor-critic RL
Modern RL almost exclusively relies on neural networks. Successful applications of deep
RL are found in the field of games (Mnih & Kavukcuoglu et al. 2013; Silver & Schrittwieser
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et al. 2017; Berner & Brockman et al. 2019), where superhuman performance could be
achieved. Other application areas include robotics (Kober & Bagnell et al. 2013) or production
system control (Panzer & Bender 2021). Actor-critic RL is the basis of most modern RL
algorithms and combines value- and policy-based approaches. The following derivation of
the foundations of actor-critic RL is based on the work of Sutton & Barto (2018), which the
author refers interested readers to for further details.

Value-based RL approaches aim to estimate the state-value function Vπ(st) or action-value
function Qπ(st, at). The state-value function Vπ(st) represents the expected return Gt when
starting in st and following the policy π. Similarly, the action-value function Qπ(st, at) rep-
resents the expected return Gt when starting in state st, choosing an action at, and then
following the policy π. A policy π can be deduced from value-based approaches indirectly.
For approaches that estimate Vπ(st), an action is chosen that leads to the state st+1 with the
highest state value Vπ(st+1). When estimating Qπ(st, at), the action at with the highest action
value is chosen out of all possible actions in state st. The rewards rt+1 collected during these
interactions with the environment are continuously used to update the estimates V̂π(st) and
Q̂π(st, at) which also continuously updates the policy π indirectly.

In contrast, policy-based approaches directly optimize a parameterized policy π(at|st, wa)
with a parameter vector wa that directly outputs the probability of selecting action at given
state st. The goal to maximize the expected return can be expressed as an optimization
problem concerning a specific performance measure J(wa) of the policy π(at|st, wa) and its
parameters wa. The optimization problem can then be expressed as in equation 2.4 with the
learning rate η.

∆wa = η∇waJ(wa) 2.4

It can be shown that the weight update rule can be expressed as seen in equation 2.5 by
estimating the performance measure Ĵ(wa) through taking action at in state st and observing
the collected rewards, which constitute to Gt (Sutton & Barto 2018, P. 327):

∆wa = η∇waĴ(wa) = ηGt
∇π(at|st, wa)
π(at|st, wa)

2.5

Intuitively, ∇π(at|st, wa) indicates the influence of individual weights on the policy’s action
choice. The weight adjustment is proportional to the influence of the weights on the action
choice and the obtained return Gt, i.e., the performance of the policy. At the same time, it



34 Fundamentals

is inversely proportional to the probability π(at|st, wa) of action choice at, so weights that
influence actions that are not yet chosen very often, are adjusted more strongly.

A disadvantage of this estimation is that a weight update of wa is only possible after observing
a significant number of subsequent rewards and the associated estimate of the expected
return after taking action at in state st. Therefore, an alternative form of estimation exists
using equation 2.6 (Sutton & Barto 2018, P. 331).

∆wa = η(rt+1 + γRLV̂ (st+1|wc) − V̂ (st|wc))
∇π(at|st, wa)
π(at|st, wa)

2.6

In this estimation, the expected return is expressed by the so-called Advantage, which indi-
cates how good it is in a state st to perform an action at resulting in a state st+1. An estimated
state value function V̂ (·) is also needed. This is implemented by another parameterized func-
tion with the parameters wc. The parameterized function, which is optimized using equation
2.6, is called Actor, while the parameterized function, which estimates V̂ (·), is called Critic.
The optimization of Critic is performed by using the mean square error between the estimate
of the state value at time t and the successor state at time t + 1 via equation 2.7.

L = fL(V̂ (st+1|wc), V̂ (st|wc)) = (rt+1 + γRLV̂ (st+1|wc) − V̂ (st|wc))2 2.7

This utilizes the so-called Bellmann equation, which states that the value of a state is equal to
the discounted value of a successor state and the reward obtained directly after the action at

that is performed to get from st to st+1. The procedure is called Actor-Critic since the Actor
first takes action at, and the action selection policy is optimized via the Advantage estimation
with the help of the Critic.

2.3.4 Summary and conclusion: View planning enabled by machine learning

The solution methods for VPP aim to calculate a view plan with minimal length to fulfill a
planning goal. Analytical methods enable the efficient definition of successive acquisitions
at predefined VP for a pre-defined planning task. However, the planning task for a returning
used product in remanufacturing is not predefined and must therefore be performed reactively.
The insights into machine learning methods in this section enable the question raised in
section 1.3 to be answered:

Adaptivity: How can the adaptivity of such solution methods be ensured to deal with the
inability to plan the inspection process in advance?
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Due to the possibility of formalizing VPP as an optimization problem, machine learning ap-
proaches can also be applied to VPP, as they are predestined to solve optimization problems.
On the one hand, SL is suitable for this, provided a suitable training data set can be con-
structed. But RL is also suitable, as the solution of a VPP represents a sequence of VP, which
can be determined using RL as a solution method for sequential decision problems. Fur-
thermore, deep learning approaches, such as semantic segmentation, enable the additional
integration of planning knowledge by understanding and interpreting the planning scene at
hand. Integrating such approaches may, thus, enable a more intelligent and adaptive selection
of VP than analytical methods under the prevailing planning uncertainty in remanufacturing.



36 State-of-the-art literature review

3 State-of-the-art literature review

Considering the research objective, the state of research of this thesis is presented below. First,
a rough overview of existing work in the field of image-based inspection in remanufacturing is
provided (section 3.1). Based on that, the overarching delimitation criteria for differentiating
existing research work (section 3.2) relevant to this thesis are deduced. The existing works
are briefly presented in the following, focusing on the delimitation criteria introduced. Within
these sections, a brief presentation of the industrial application of analytical approaches for
solving the VPP (section 3.3) and a detailed discussion of approaches based on machine
learning (section 3.4) takes place. The degree of fulfillment of the delimitation criteria of
differentiation of existing works is then used to derive the research deficit of this work (section
3.5).

3.1 Approaches for visual inspection in remanufacturing

This section first analyses existing work in the field of image-based defect detection in
remanufacturing. Based on this, an interim conclusion is formulated.

3.1.1 Works using image-based defect detection in remanufacturing

Globisch & Thäter et al. (2019) presents a test setup for acquiring data from surfaces and
determining the type and extent of surface contamination of objects based on image data.
In remanufacturing, this can be used to determine the degree of contamination of an object
before the cleaning process. Similarly, it can be used after a cleaning process to verify the
success of the process. The system works without intelligent evaluation software based on
classic image processing methods. Depending on the size of the object to be inspected, the
camera system can be moved linearly using a motor to ensure the optimum working distance
between the object and the acquisition system for varying inspection objects. The present
experimental setup is only suitable to detect contaminations, but not to subdivide them into
different types of contaminations.

An approach that is limited solely to the detection of corrosion as part of a remanufacturing
process is that of Gibbons & Pierce et al. (2018). For this purpose, the image data is first
displayed in the LAB color space, and texture features are extracted. With the help of principal
component analysis, these features were reduced to the essential features describing the
texture, and a Gaussian Mixture Model was used to detect pixels that represent corrosion.

Nwankpa & Ijomah et al. (2021) consider an inspection process in which classification is
to take place based on image data of surfaces with and without defects. They use video
data and carry out manual pre-processing to have images with and without defects that are
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cleanly aligned. The authors use a NN architecture with a pre-trained ResNet18 backbone
as an algorithm to distinguish between surfaces with and without defects and to classify
individual defects (e.g. pitting, corrosion, cracks, ...). They demonstrate that a classification
of predefined defects with pre-recorded and pre-processed image data is possible with high
accuracy.

In contrast to Nwankpa & Ijomah et al. (2021), Zheng (2021) does not use a NN for defect
classification, but for defect localization for remanufacturing and repair tasks. Zheng (2021)
also use a pre-trained ResNet backbone, in this case the ResNet101 backbone, which has
the same architectural structure as the ResNet18 structure used by Nwankpa & Ijomah
et al. (2021), but uses more layers. This backbone is used in a Mask-RCNN that is especially
suitable for localization tasks. The authors only distinguish between damaged and undamaged
object surfaces and not between different defects. They can show that high detection accuracy
of damaged object areas can be achieved and demonstrate this on a specially constructed
data set of damaged plastic pipes.

An approach that takes up and combines the ideas of the work of Globisch & Thäter et al.
(2019), Nwankpa & Ijomah et al. (2021), and Zheng (2021) is that of Saiz & Alfaro et al.
(2021). A setup is presented that makes it possible to acquire image data that, with an
ensemble consisting of a semantic segmentation network and object detection algorithm
as an evaluation method, enables both the localization of defects and the classification into
defect-free, recyclable, and reject. This approach is evaluated using the use case of joint
cages. The approach shows better localization and classification accuracies compared to
traditional machine learning methods with manual feature extraction.

An approach to product identification is presented in the two consecutive works Schlüter &
Niebuhr et al. (2018) and Schlüter & Lickert et al. (2021). While in Schlüter & Niebuhr et al.
(2018) the product identity is determined using inherent product characteristics (weight, size,
volume, barcodes, and visual features) and used for sorting in remanufacturing, in Schlüter &
Lickert et al. (2021) only several images of the product from different perspectives are used
for identification. The work utilizes specially developed test setups that use sensor technology
(e.g., camera systems and scales) to acquire the relevant data for identification. In particular,
NN are used in both works. While in Schlüter & Niebuhr et al. (2018) these are used to extract
the visual product features, a representative of the ResNet architecture (ResNet50) is used
in the work Schlüter & Lickert et al. (2021) to directly output the object class. In Schlüter &
Lickert et al. (2021), a high level of accuracy was achieved in the identification of various
starter motors, which represent real remanufacturing products, only using image data.
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In addition to pure product identification, the localization of defects, or their evaluation, image
processing systems can also be used to support remanufacturing. One example is the work
of Khan & Mineo et al. (2021). Here, a camera system is first used to create a 3D model
with Structure from Motion. To do this, this camera system is attached to a robot arm and a
specific robot trajectory is followed around an object of interest. The 3D model generated from
the image data can then be used to create a trajectory for a robot-guided ultrasonic inspection
system. The rationale behind this approach is that the geometry of a product that is already in
the usage phase can deviate from the standard geometry of a new product and therefore the
trajectory of a robot-guided ultrasonic inspection system must be planned adaptively. This is
the only way to accurately test relevant product features using a non-contact, non-destructive
testing method.

3.1.2 Interim conclusion to existing works on image-based defect detection in
remanfuacturing

The analysis of existing work in the field of visual inspection in remanufacturing shows the
range of research activities that have taken place and are currently taking place. Ranging
from the determination of the general degree of contamination (Globisch & Thäter et al. 2019)
to the detection of individual types of contamination (Gibbons & Pierce et al. 2018) and the
differentiation of several different surface defects (Nwankpa & Ijomah et al. 2021). In addition,
there are also works focus on the localization of defects on product surfaces for targeted
reprocessing (Zheng 2021; Saiz & Alfaro et al. 2021), and product identification (Schlüter &
Niebuhr et al. 2018; Schlüter & Lickert et al. 2021).

The analysis of these works shows that they mainly focus on the processing of image data
but not on the planning of a setup that generates this image data. For example, Nwankpa &
Ijomah et al. (2021) assumes that defects in a video stream can be detected but does not
further specify how this video stream is generated. Globisch & Thäter et al. (2019), Zheng
(2021), Saiz & Alfaro et al. (2021), Schlüter & Niebuhr et al. (2018) and Schlüter & Lickert et al.
(2021) also present experimental setups that use one or more camera systems positioned
rigidly in space. Thus, a major limitation of these works is the flexibility that can be achieved
by moving the camera system in relation to the object to inspect or evaluate defects on the
entire object surface from different perspectives. Only the work of Khan & Mineo et al. (2021)
uses a robot-guided camera system to first generate a 3D model of the inspection object and
thus enable the detailed planning of the trajectory of an ultrasonic inspection system, which is
also robot-guided. However, the robot’s initial trajectory to create the 3D model is fixed and
not specifically adapted to the respective inspection object.
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A comprehensive consideration of the inspection problem in remanufacturing, therefore,
requires not only the correct evaluation of the measurement and image data but also, under
certain circumstances, targeted guidance of a flexible measuring system to be able to detect
the defects and flaws on the entire object surface or individual ROI. The present thesis deals
with the latter problem. In the following section, the relevant delimitation criteria are defined,
and the specific state of research is presented.

3.2 Derivation of delimitation criteria

The delimitation criteria of this thesis are categorized according to the structuring questions
introduced in chapter 1.3 and are used to derive the research deficits on which this thesis is
based.

1. Problem formalization: How can the problem of autonomous data acquisition be
formalized?

a) Use case
Most existing work can be divided into one of the application use cases reman-
ufacturing, metrology, object reconstruction, or active object recognition. In such
applications, a static, non-moving robotic system is used to solve the VPP. The
comparison with existing work in the field of moving robotic systems (e.g., using
driverless transport systems) is omitted. This is because the boundary conditions
are different despite the problem to be solved (VPP) being the same. In most cases,
the solution of such systems describes trajectories in unknown terrain, whereby
subproblems (e.g., simultaneous localization and mapping) that do not play a role
in the application under consideration have to be solved.

b) Inspection problem
A key differentiation criterion is which inspection problems a solution approach
solves. In particular, whether the solution approach is only evaluated for one sub-
problem (e.g., NBV, RPP or IPP) or whether several inspection problems are solved
with the approach presented in the respective works.

2. Solution approach: Which group of solution methods exists for solving the formalized
data acquisition problem?

a) Solution algorithm
A distinction is made between existing work based on the solution algorithm used
for these application use cases. A distinction is made between methods that
take an analytical approach to the problem and those with a learning component.
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Algorithms aiming for an analytical solution are mainly those presented in section
3.3. In contrast, approaches relying on learning-based algorithms use machine
learning to solve the VPP and are presented in section 3.4.

b) Use of a geometry model
Regardless of whether it is an analytical or learning approach, a distinction can
be made as to whether this approach depends on a geometry model or is only
applicable when the product to be investigated does not change its shape. A
distinction is, therefore, made as to whether the approach in question is model-
free or model-based or partly model-based. In a partly model-based setting, no
object geometry is available but only one object shape is investigated. In the case
of the model-based approach, a distinction can also be made as to whether a
geometry model of the inspection object is used to plan the inspection process
in advance (model-based-A) or whether a geometry model is first generated at
system runtime but before the actual inspection (model-based-G) is carried out and
then the inspection is completed.

c) Multicriteria optimization
The overall objective of every VPP is to acquire the surface of the inspection object
required to achieve the inspection objective with a minimum number of necessary
acquisitions. However, there are also secondary objectives (e.g., minimizing the
travel path length of the inspection system or maximizing the accuracy of the
acquired surface points for reconstructing the inspection object). A delimitation
criterion is, therefore, which and how many secondary objectives the respective
solution approach considers.

3. Adaptivity: How can the adaptivity of such solution methods be ensured to deal with
the inability to plan the inspection process in advance?

a) Integration of prior knowledge
If used, a geometry model is central prior knowledge for solving the VPP. However,
further problem-specific prior knowledge can also be used to exclude suboptimal
solutions of the VPP from the start. This concerns, for example, the restriction of
the value range of optimization variables of VPP or the analytical determination of
such variables.

b) Adaption at system runtime
Adaptivity is a fundamental prerequisite for autonomous system behavior. This
adaptivity describes a reactive adjustment of the system behavior (e.g., adjustment
of a view plan) at system runtime so that it can react to changing conditions (e.g.,
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varying ROI to be inspected). In this work, the term adaptivity at system runtime
describes the ability of a system to adapt its behavior without the system coming
to a standstill. The adaptation of the system behavior must be within the lower
single-digit second range.

The derived criteria for comparison are addressed in the following descriptions of the works
in the state of research wherever possible.

3.3 Approaches using analytical methods

In the industrial field, the majority of works solving the VPP using analytical approaches deal
with the RPP or IPP. A detailed summary of existing works is given by Peuzin-Jubert & Polette
et al. (2021). Due to the large number of works in the industrial environment and the rough
restriction of alternative solutions already carried out in the fundamentals, the derivation of the
research deficit is conducted only considering works using robot-guided acquisition systems
with static data acquisition. These works are presented briefly below.

In a series of papers, Raffaeli, Germani and Mengoni et al. present their approach to recon-
struction planning (Germani & Mengoni et al. 2009; Germani & Mandorli et al. 2010; Raffaeli
& Mengoni et al. 2013b; Raffaeli & Mengoni et al. 2013a) called Intelliscan in a metrological
application. An automated system is presented to optimize the process of verifying geometric
tolerances for mechanical components. The system includes the planning, simulation, and
control of the inspection process using a 3D acquisition system guided by a robotic arm
and the presented software tool for solving the VPP given a CAD model of the inspection
object. After determining them, a secondary goal is minimizing travel path lengths between
successive VP. However, this minimization is not part of the actual VP planning process. The
solution algorithm presented in Germani & Mengoni et al. (2009) is based on the solution
method of CM using surface normals and visibility maps, whereby a human operator is nev-
ertheless responsible for the final selection of the VP. A continuation of this work is that of
Germani & Mandorli et al. (2010). This work describes the underlying software product and
how, compared to the work Germani & Mengoni et al. (2009), further planning approaches
have been built into a knowledge base for optimal VP determination. A further extension of
the planning approach with additional sampling strategies for object geometries and rules
for determining the VP was then presented in the works Raffaeli & Mengoni et al. (2013b)
and Raffaeli & Mengoni et al. (2013a). The experimental results have shown the system’s
robustness with respect to the algorithms for position planning and the possibilities for time
and cost efficiency in pre-planning the inspection plan for checking geometric tolerances.
However, the authors also discuss in detail the problems such as occlusions, the complexity of
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the planning algorithm due to a large number of parameters, and the realism of the simulated
observations.

To enhance the realism between simulated acquisitions and real system acquisitions, Kouteckỳ
& Paloušek et al. (2016) incorporate prior knowledge in the form of a reflectance model into
their planning approach. Utilizing a provided CAD model of the inspection object, the authors
employ the concepts of CM and visibility maps to determine the optimal combination of VP for
solving the RPP in a metrological use case. Emphasizing complete surface coverage (RPP)
of the object, the primary focus of the study lies in fine-tuning the parameters of the acquisition
system, particularly the exposure time. This optimization minimizes reflectance issues and
maximizes surface coverage for each individual VP. The authors show that their approach
increases the realism in predicting object coverage while solving the planning problem.

An approach tailored to large-scale planar objects given a CAD model of the inspection
object is presented by Wu & Lu et al. (2015). As the previous works, it uses CM for VP
generation and evaluation. To achieve this, the mesh’s vertices of the approximately planar
inspection object are projected onto a 2D plane. This planar projection subdivides the mesh
into individual scan regions in the subsequent step. When calculating the view plan, the
authors not only consider the field of view of the acquisition system but the authors also
consider the need for overlaps between the individual acquisitions so that the data of the 3D
data acquisition at individual VP can be registered and full surface coverage can be achieved.
The experiments show the proposed method’s applicability to the use case of an airplane
wing model to solve the RPP for a metrological use case. However, a major drawback of
the proposed approach is that it is only effective for planar inspection objects based on the
assumptions used to deduce the acquisition strategy.

To account for pose variations of inspection objects on a conveyor belt, Jing & Goh et al. (2018)
use a Monte Carlo tree search approach to solve the RPP in a metrological application. Based
on a CAD model, an offline generation of VP takes place using prior knowledge, enabling
random sampling in the space around the CAD model. The visibility of the VP is evaluated,
and for all VP, the robot trajectories are calculated in relation to each other. During the system
runtime, the optimal inspection strategy can be learned using the robot trajectories and the
information about which object areas can be acquired via which VP and the Monte Carlo
tree search algorithm. In this work, a paradigm shift takes place for the first time. Although
a model of the inspection object is available, the view plan is generated at runtime since
the exact position and orientation of the object are unknown, enabling a view plan adaption.
Furthermore, the approach directly takes into account the travel lengths between chosen VP
to minimize them in conjunction to the surface coverage. The proposed approach is virtually
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validated, demonstrating improved performance in handling online coverage planning with
pose variation compared to NBV methods.

A similar metrological approach is taken by Wu & Lin et al. (2020). The authors freely place
known inspection objects on a conveyor belt. A robot-mounted acquisition system is used to
recognize objects on the conveyor belt. Thereafter, the pose and orientation of the inspection
objects are determined by the acquired 3D data by registering these to the known inspection
object models. This enables view plan adaption by calculating the desired end effector
positions for inline inspection of the inspection object’s predefined ROI. Like the work of Jing
& Goh et al. (2018), this work also enables a certain adaptivity in the system behavior to
solve the present IPP, but depends on a geometric model for registration of the acquired point
clouds to the available model to readjust the pose of the acquisition system.

3.4 Approaches using machine learning

The following section presents methods for solving the VPP using machine learning methods.
In addition to the previously introduced delimitation criteria, three further delimitation criteria
are introduced and defined as relevant for the following approaches based on machine
learning methods.

1. Input space
A distinction is made as to the extent to which the information relevant for predicting
the next VP is represented by the machine learning method. In the current state of
research, the object representation forms in the form of point clouds, occupancy/voxel
grids, or RGB-D data are relevant for this purpose. Additionally, the robot’s current
state, represented by the end effector’s pose or joint angles, can be utilized to plan the
subsequent VP.

2. Ouput space
Analogous to the input space, a distinction can be made as to how the output space of
the machine learning process is defined, from which a VP can ultimately be derived using
a suitable mapping. A distinction can be made if one of several predefined VP is selected
by the machine learning procedure or if the pose of the VP in the continuous space
(possibly including restrictions) is regressed independently by the machine learning
procedure.

3. Object
Finally, it is relevant whether the machine learning method is used to provide a strategy
for determining the next VP for only one object or for several different objects. Specifically,
the question is whether only data from one object was used to train the machine learning
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procedure. In this case, the corresponding procedure has been fine-tuned to this object.
If multiple objects are used, the goal of the procedure is for the respective learning
procedure to learn to make good predictions for more than just one object to determine
the VP.

3.4.1 Approaches using supervised learning

Based on image data, Ashutosh & Kumar et al. (2022) present an approach that calculates
the NBV for surface coverage maximization to enable the best possible object reconstruction.
Based on an input image, a CNN selects the NBV as one of 11 possible predefined further
acquisition system poses on a sphere (prior knowledge). The proposed method addresses
the challenge of selecting the NBV for 3D reconstruction without using preprocessed ground
truth next views and a needed object model at runtime, thus being a model-free approach.
The novelty lies in extracting a supervisory signal from the reconstruction process to drive the
training of the CNN to classify the next acquisition system pose. To this end, the acquired
image from the NBV and the image of the previous acquisition systems pose are input
to a reconstruction model to generate a 3D shape represented in voxel grids with binary
occupancy. The loss for the neural network is then calculated based on the reconstruction
quality compared to the ground truth 3D shapes. This joint classifier-reconstructor NN model
is trained end-to-end using the loss function based on the reconstruction error, enabling the
training process without needing preprocessed ground truth NBV. The proposed method
is evaluated on both synthetic and real data. Additionally, the authors present a qualitative
analysis of the selected NBV to gain insights into the process and their dependence on object
categories and shapes. The approach is suitable for training one model to handle multiple
objects simulatenousely.

In the work of Monica & Aleotti (2021), a method for planning the NBV of a depth camera for
scene exploration and scene reconstruction is proposed, leveraging a CNN in conjunction
with a probabilistic occupancy map of the environment. The proposed method is a hybrid
approach that combines the CNN for object completion and a probabilistic NBV planner to
evaluate the information gain of possible acquisition system poses. The CNN is trained to
predict environment priors and generate a probabilistic occupancy map of the environment
(thus being model-free), which is then used in the probabilistic NBV planner to compute the
optimal acquisition system pose. Therefore, a voxel grid is encoded with known, unknown,
or empty. This partially known representation of the environment is fed into an encoder-
decoder CNN to obtain a probabilistic map. This map contains occupancy probability values
for each cell in the environment, indicating the likelihood of the cell being occupied. Multiple
acquisition system poses with different orientations are sampled in each empty cell in the
environment representation. These candidate poses represent potential locations for the
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acquisition system to move to to gather more environmental information. A probabilistic
ray-casting method determines the information gain of each candidate acquisition system
pose. This involves evaluating the potential increase in information (surface coverage) of
the voxels that have not yet been acquired, allowing the system to select the optimal sensor
pose for the NBV. The experimental results indicate that the proposed method achieves
results comparable to the state-of-the-art method. Additionally, the authors present results
from experiments conducted on a real robot, demonstrating the practical applicability of their
approach. As with the work of Ashutosh & Kumar et al. (2022), the approach is suitable for
training one model to handle multiple objects simulatenousely.

An approach to defining the NBV for full object reconstruction using SL is proposed in the
joint work of Mendoza & Vasquez-Gomez et al. (2020) and Vasquez-Gomez & Troncoso
et al. (2021). In the first work, the authors train a 3D CNN that learns to predict the NBV in
each acquisition step using a previously generated dataset with annotation of the optimal VP
(Mendoza & Vasquez-Gomez et al. 2020). The generated dataset consists of voxel grids of
multiple objects as input for which acquisitions have already been performed. Information
about previously acquired voxels and voxels yet to be acquired are encoded accordingly. From
a predefined set of 14 acquisition poses, the network must then classify the NBV that will
achieve the highest possible increase in information (surface coverage) of the voxels that have
not yet been acquired. In a subsequent paper, the authors generalize the problem. In contrast
to the classification of the acquisition pose, they formulate the problem as a regression
problem (Vasquez-Gomez & Troncoso et al. 2021). In contrast to the classification of a fixed
acquisition pose, the 3D CNN used must now output a desired position of the acquisition
system in continuous space. The acquisition system’s orientation is calculated so that the
acquisition system points to the object using prior knowledge of the origin. The loss of the 3D
CNN is calculated from the error of the predicted position of the next best acquisition pose
and the best position from the 14 poses contained in the data set with multiple objects. The
authors compare different neural network architectures and can show that the regression
approach performs better than the classification approach first proposed.

In the work of Pan & Hu et al. (2022), a method for estimating multiple VP of an acquisition
system on a robot for object reconstruction tasks is proposed. The approach uses a 3D
CNN to learn prior knowledge given an object and the optimal solution of a set-covering
algorithm. The 3D CNN takes the volumetric occupancy grid as input and directly predicts all
acquisition system poses of a finite set of predefined VP needed to cover all of the object’s
surface in a one-shot manner (solution of the RPP). This is achieved by transforming the view
planning problem into a set covering optimization problem, allowing the 3D CNN to efficiently
predict the subset of views that minimizes movement cost while covering all surface areas.
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The 3D CNN training dataset is automatically labeled using the set covering algorithm (prior
knowledge). The loss function is designed to achieve high surface coverage of the objects
while simultaneously minimizing travel costs between acquisition positions. The proposed
method addresses the limitations of traditional NBV methods by enabling global path planning
for object reconstruction tasks and a one-shot solution to the VPP. It reduces inference time
and movement cost compared to search-based and data-driven RPP methods. The authors
perform comparative experiments, benchmarking the proposed approach to analytical and
learning-based algorithms such as the NBV-Net proposed by Mendoza & Vasquez-Gomez
et al. (2020) and Vasquez-Gomez & Troncoso et al. (2021).

An approach to solving the NBV problem for robotic reconstruction tasks based on point
clouds is introduced in the work Zeng & Zhao et al. (2020). The proposed method aims
to determine the NBV a robot system sensor after each acquisition, enabling solving the
VPP for 3D object reconstruction. To this end, the authors propose the PC-NBV network,
a NN that can process point clouds and determine one of 33 predefined candidate VP
sampled on a sphere (prior knowledge) that it deems will have the highest information gain
(surface coverage) concerning the reconstruction task. The PC-NBV network takes raw point
cloud data of the currently scanned object surface, and the view selection states it as input
and predicts the information gained for each candidate view. The network is trained using
simulated reconstruction processes on synthetic 3D object models (ShapeNet dataset) to
build effective training supervision. The PC-NBV network demonstrates improved efficiency
and outperforms state-of-the-art NBV methods using SL, also including the NBV-Net by
Mendoza & Vasquez-Gomez et al. (2020).

3.4.2 Approaches using reinforcement learning

Deinzer & Denzler et al. (2003) carried out early work on the optimal choice of the NBV
for object recognition. Based on a series of acquired images and camera movements, the
authors attempt to estimate the present object class and its pose. Only one object is used (a
cup) where different labels (’A’ or ’B’) on the object denote different object classes. As actions,
the RL agent outputs a relative movement of the camera (action at) based on the current
estimation of the object class and acquisition system pose (used as the state st). The object
class and object pose are then estimated using all the acquired images and the camera pose
in the current recognition process after moving the camera and taking an image. In addition,
a reward rt is returned to the agent. This reward is calculated based on the quality of the
selected camera pose expressed as the informational content of the state after performing an
action. Using collected state-space-reward transitions, the authors use Monte Carlo learning
to estimate the action-value function Qπ(st, at) for action selection. The experimental results
show that the presented approach can learn an optimal strategy for viewpoint selection
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that generates only the minimal number of images required for reliable object recognition.
The authors do not use an object model for state deduction, action selection, and reward
calculation. However, the authors only evaluate object recognition in a simple case of one
product, whose associated class depends on numbers printed on it. Prior knowledge is
integrated by restricting the camera to move on a circular path around the object.

An approach to determine the pose of the NBV by manipulating an object using a robotic
arm for object recognition is presented by Korbach & Solbach et al. (2021). In contrast to
Deinzer & Denzler et al. (2003), in this case, the camera does not move around the object but
is actively manipulated by a robotic arm. The authors use image data from the camera and a
CNN for classification. A distinction is made between 48 different objects, for which no object
model is required. The aim of the presented algorithm is to select the poses of the object in
such a way that the confidence of the classifier is maximized for the correct object class and
is evenly distributed for all other object classes. As the state st, the authors pass the pose
of the end effector and the confidence difference for classifying the object with respect to all
other objects in the data set to the agent. The agent outputs a pose of the agent consisting
of a Cartesian coordinate and orientation as a quaternion as action at. The agent receives
a reward rt based on the confidence difference of the classification. The authors choose
the SAC algorithm as a solution approach. The results of the presented approach show that
learning of NBV to maximize the confidence difference of the classification of present objects
with respect to other objects can be learned by RL using a SAC algorithm.

One of the first works to solve VPP using RL is that of Devrim Kaba & Gokhan Uzunbas
et al. (2017). The authors train one Reinforcement Learning (RL) agent for the sequential
positioning of an acquisition system for the complete acquisition of the surface for each of
the inspection objects evaluated. The authors define a fixed number of possible poses of the
acquisition system in space. The action value function Qπ(st, at) is estimated to determine the
next pose of the acquisition system. In this case, an action describes the agent’s selection of
one of the possible poses of the acquisition system. To select the next pose of the acquisition
system, the RL agent receives a binary coding of all previously performed actions and a
binary coding of the action (pose of the acquisition system) for which the action value is to be
estimated as the state st. A MLP is used for estimation of the action-value function Qπ(st, at).
As RL algorithms, the authors evaluate the SARSA, TD, and a so-called Watkins-Q algorithm.
As a reward signal, the authors choose a simple reward rt of -1 per additional acquisition
performed to detect an inspection object as quickly as possible (with as few acquisitions as
possible). The approach is evaluated on 20 different objects. The evaluated algorithms are
trained separately for each object and optimized to its geometric structure. For this purpose,
the authors do not explicitly use the geometry model of the object to deduce state information
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st provided to the agent but keep the boundary conditions (one object and its positioning of
the object) fixed to learn an acquisition strategy for solving the VPP by the agents. However,
since the agent is only trained on one object and predefined VP as well as the object surface
covered by said VP is used to determine termination criteria of episodes, it is essentially
model-based. The results show that with sufficient exploration, the algorithms perform at least
as well as a greedy algorithm in terms of surface coverage achieved.

An approach for solving the VPP for arbitrary objects is presented by Potapova & Artemov
et al. (2020). The authors use the geometry model of the objects under consideration and
use it to plan the next acquisitions to be carried out until the required surface coverage of
the entire object is achieved. The RL agent used in the work selects as action at one of
100 predefined VP on a spherical surface around the inspection object. To determine the
action, the DDQN learning algorithm and a CNN as function approximator are used, which
processes the previously voxelized geometry model of the object to be reconstructed as state
st to determine the action. The reward signal rt used consists of several components and
rewards the agent based on the surface coverage gained per acquisition, the reconstruction
error, an uncertainty measure, and a negative term. This constant negative term is intended
to incentivize the agent not to perform infinite actions if there is no benefit from additional
surface coverage or a more accurate reconstruction. The authors compare agents trained with
different weightings of the individual reward components with heuristic benchmark algorithms.
Although the authors propose an optimization of several target variables (including surface
coverage), they only evaluate the reconstruction error based on the Hausdorff distance.

The work of Landgraf & Meese et al. (2021) couples a RL agent for solving the VPP with a
robot simulation for the first time. Like Korbach & Solbach et al. (2021), the authors use the
robot’s end effector pose as the agent’s state. The authors also use a predefined sampling
procedure to define the action space. The authors evaluate two possibilities of defining the
action space. In the discrete case, the authors create a grid with a fixed grid spacing in the
robots’ working space, whereby intersection points are possible positions of the acquisition
systems’ poses. A certain number of orientations are then heuristically defined for each
position. In the continuous case, the RL agent has to output x,y, and z coordinates and angles
specifying the end effector’s orientation. In addition to this defined procedure for determining
the action space of possible actions at, the authors also use a random sampling of possible
positions and orientations of the end effector. After performing an action, the agent receives
a reward based on the additional surface area of the inspection object covered. For action
selection, the authors evaluate Q-learning, DQN, and PPO as learning algorithms and use a
MLP for the latter two to process the state st and compute the action at. Similar to Devrim Kaba
& Gokhan Uzunbas et al. (2017) and Potapova & Artemov et al. (2020), the authors learn one
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RL agent for each object. A geometry model is not assumed, but the position and orientation
of the individual objects are constant for each learning run so that the RL agents can adapt
their actions to the object shape at hand. The results show that the proposed approach is
basically suitable for training RL agents to solve VPP. However, the authors also discuss
in depth the challenges associated with the modeling due to the lack of complete object
coverage of the considered objects by the evaluated RL agents. In particular, the complexity
resulting from a large and continuous action space and the associated optimization in local
minima are discussed and related to possible future research.

Zeng & Zaenker et al. (2022) presents another method using a robot simulation to solve a
visual planning problem. In contrast to the previous work, this work solves a search problem
for the automatic exploration of an unknown environment. The use case is an agricultural
problem in which the objects to be picked must first be located before a picking operation can
be carried out. The authors use the recording system’s history of acquisition poses and a
so-called observation map as state st. The action selection takes place via a neural network
with two heads (CNN for processing the observation map and MLP for processing the pose
history of the acquisition system). As an action at, this network outputs how the acquisition
system should move in space (left, right, up, and down) and whether it should reorient itself
(pitch up/down and yaw left/right). The reward of the RL agent is based on the newly found
ROI and newly found occupied and free voxels of the space to be explored. The DDQN is
used as the learning algorithm. The results, evaluated in two different learning environments,
show the applicability of the proposed approach and a better performance compared to a
state-of-the-art method.

An approach for VPP solution based on RL taking into account illumination optimization is
proposed by Wang & Peng et al. (2023). The approach addresses challenges in capturing high-
quality images due to occlusions and lighting issues, particularly for complex products. For a
fixed given inspection object, the authors perform offline evaluation of a multitude of virtual
acquisitions with different lighting conditions. The RL algorithm used aims to optimize the
selection of VP to ensure comprehensive coverage and visibility of product surfaces to acquire.
This is realized by developing a visibility estimation method and applying the Asynchronous
Advantage Actor-Critic (A3C) RL approach. The agent iteratively adds acquisition system
positions and lighting source positions to the scene, until the inspection object is fully acquired.
Similar to Devrim Kaba & Gokhan Uzunbas et al. (2017) the state is compromised of a
binary vector, whether a specific acquisition system position and lighting source has been
already placed. Similarily, the output is compromised of a binary vector, which acquisition
system and lighting system position to take next. The method’s effectiveness is validated
through experiments with varying inspection object models, while an RL agent has to be
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trained for each inspection object separately (similar to e.g., Landgraf & Meese et al. (2021)).
The experiments show, that the RL approach outperforms a particle swarm optimization
(PSO) method. However, the approach is not benchmarked against a deterministic analytical
solutions.

3.5 Derivation of the research deficit

Based on the existing work presented in the state-of-the-art, the deficits of analytical methods
and methods based on machine learning can be derived. An overall research deficit for
the autonomous view planning in remanufacturing is derived. Table 3.1 summarizes the
approaches and shows the fulfillment of the delimination criteria for the solution method
derived in section 3.2.

Deficit specific to analytical approaches
So far, current approaches to solving the VPP in the industrial environment have mainly
focused on traditional, model-based methods. These use a previously known geometry model
of the inspection object to calculate a view plan to solve the VPP. This calculation occurs
upstream, whereby the resulting view plan is implemented in the production environment.
The objects are always identical (based on the available geometry model) and always have a
fixed orientation in space (e.g., via a zero-point clamping system). Adaptive behavior of such
systems is not required or considered in the work that considers industrial use cases. The
only exceptions are the works of Jing & Goh et al. (2018) and Wu & Lin et al. (2020), which
consider a variable positioning of objects on conveyor belts but also assume the geometry
models as given. Analytical planning approaches are therefore not applicable for two reasons.
First, the availability of geometry models during inspection cannot be guaranteed, especially
for independent remanufacturers. Second, the planning task in remanufacturing may vary so
that variable ROI on the product has to be inspected. Analytical approaches have planning
times in the seconds to minutes range, which leads to long cycle times in an industrial
environment, limiting the overall system’s profitability. This is since in most cases, multiple
potential VP have to evaluated regarding their suitability to be selected as the next VP, which
is computationally intensive. This is not the case for machine learning methods, as they
implicitly learn to predict the next VP to be selected based on a given input. This calculation
is usually in the sub-second range.

Deficit specific to SL approaches
In contrast to analytical methods, the analyzed machine learning methods offer the possibility
of performing a real-time capable calculation of the next best VP even with varying plan-
ning tasks due to their short calculation time. This applies to the methods of both SL and
RL. However, SL approaches have two major disadvantages. First, just like the analytical
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approaches, most of the methods presented depend on the knowledge of a geometric model
of the inspection object. Furthermore, these approaches are trained based on a training data
set that must be generated in advance. In the application, such approaches therefore offer
at most the possibility of performing just as well as the algorithm that generated the training
pairs consisting of input data and the corresponding VP.

Deficit specific to RL approaches
In contrast, RL methods offer the possibility of achieving better performance compared to a
human through self-learning behavior by trial and error. However, most of the approaches
also assume knowledge of the inspection object and learn an inspection strategy specifically
for each object category. Furthermore, a detailed analysis of existing works in the field of view
planning using RL reveals that the approach for problem formulation and modeling varies
greatly. Many RL solutions in existing works are strongly tailored to the specific problem.
In particular, the modeling of the state and action space (input and output space) and the
definition of the reward signal, which defines the agent’s objective, vary and are widely
limited. As in the case of SL, strong simplifications of the problem are made. The majority
of existing works are simplified with respect to the input, e.g., by using voxelization (see
Mendoza & Vasquez-Gomez et al. (2020), Vasquez-Gomez & Troncoso et al. (2021), Monica
& Aleotti (2021), and Pan & Hu et al. (2022)) or the output, e.g., in the form of classification
on predefined viewpoints (see Mendoza & Vasquez-Gomez et al. (2020), Monica & Aleotti
(2021), Pan & Hu et al. (2022), and Zeng & Wen et al. (2020)). A general problem solution
where point clouds as the direct unprocessed output of a 3D sensor are directly mapped to a
sensor pose in continuous space without discretization by a learned RL inspection strategy
does not exist in the literature so far. The use of simplifications of the input space, such as a
voxelization or of the output space, by discretizing the continuous set of possible poses of the
acquisition system, allows a proof-of-concept of the presented approaches but offers only
approximate solutions for real problems.

General research deficit for autonomous view planning in remanufacturing
Overall, no approach to date addresses the specific challenges of automated initial visual
inspection of used products in remanufacturing. As part of this thesis, the necessary inspection
steps have been broken down into relevant sub-problems of VPP. It has been shown that
due to the high variance in the used product condition of the returned used products and
the associated uniqueness of the inspection process to be carried out, a high degree of
flexibility of the inspection system and adaptivity of a planning algorithm to be used is
required. For this task, RL offers a uniform methodological framework for solving the individual
relevant sub-problems of VPP to realize an autonomous visual inspection in remanufacturing.
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However, there are still deficits that need to be resolved, especially for the use case of
remanufacturing.

1. Research deficit 1: Missing evaluation of differently modeled RL agents
In the current state of research, there is no derivation and discussion of different modeling
variants of the RL agent system, which consequently does not allow any statement to
be made as to which modeling variants are best suited for the present subproblems of
VPP.

2. Research deficit 2: Dependence on available object geometries at system runtime
Existing approaches for determining sequential poses by means of RL currently only
address the VPP with explicit knowledge of the object model (e.g., the triangle mesh,
see Deinzer & Denzler et al. (2003), Korbach & Solbach et al. (2021), and Landgraf
& Meese et al. (2021)). However, knowledge of an object model cannot be assumed
in remanufacturing since remanufacturers are often not manufacturers of the original
product and, thus, have no or only difficult access to such information. Therefore, deriving
the sequential order of poses must not depend on an available three-dimensional object
model or knowledge of the product type to specifically adapt the inspection routine to
the present product at runtime.

3. Research deficit 3: Missing investigation of varying planning tasks
The existing state-of-the-art approaches have not been evaluated with changing plan-
ning tasks (e.g., inspecting any ROI located on the object to be inspected or varying
object categories). Overall, there is no systematic and general approach to the solu-
tion of the VPP (NBV, RPP and IPP) with consideration of the specific challenges of
remanufacturing as a use case and RL as a solution method.
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Table 3.1: State of research based on the derived elimination criteria
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4 Overview of the solution approach

Based on the research deficit derived in chapter 3, this chapter 4 outlines the approach
developed in this thesis for the application of RL for autonomous view planning for visual
inspection in remanufacturing.

Assumptions and boundary conditions
Before the solution approach is explicitly discussed in the following, the assumptions and
boundary conditions made for this thesis are introduced and explained below.

1. Product group under consideration: The product group of starter motors will serve as
an example in this thesis. The approach to be developed for autonomous view planning
is to be applied to different variants of this product group and evaluated for these variants.
Starter motors are real remanufacturing products that are available on the market in a
large number of variants. The most common use case is considered where there is no
prior knowledge of the product or its geometry model at the start of the inspection.

2. Research setting: An inspection station consisting of a robot-guided acquisition sys-
tem and a clamping system mounted on a rotary table for clamping and subsequently
inspecting a starter motor variant (inspection object) is considered the research environ-
ment. Upstream handling processes for clamping the inspection objects are not part
of the research in this thesis. Similarly, the evaluation and decision-making process for
accepting or rejecting the starter motors based on the data acquired at the inspection
station is not the subject of this thesis. This is due to the fact that the task of detecting
and evaluating defects is already a multi-layered and complex endeavor due to the
variety of defects present in remanufacturing and requires independent research work.

3. Subject of research: Based on the fundamental research objective and the research
deficits derived in section 1 and section 3 respectively, this thesis mainly focuses on
the methodical development and implementation of a solution approach to realize
autonomous robot-based data acquisition for visual inspection in remanufacturing. At
the core of this research is the development, implementation, and evaluation of a
software architecture for the control of the inspection system by a RL agent with a given
hardware setup to solve the sub-problems of the VPP relevant for remanufacturing. It is
assumed that the hardware structure fulfills the essential requirements for evaluating the
approaches to be developed. Due to the prevailing procedure for training and evaluating
approaches of RL in simulative environments, a detailed digital representation of the
existing inspection station is set up in this thesis and used to train the RL agents.
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Schematic explanation of the exemplary inspection procedure
An exemplary inspection process at the inspection station can proceed as follows. Initially, an
arbitrary variant of a starter motor is clamped. First, the problem of the general inspection,
i.e., the (a) overall inspection of the starter motor with full surface coverage, must be solved
to identify all possible defects on the product. The RL agent must solve the RPP at inspection
time without prior knowledge of the geometry of the starter motor variant in question. The
RGB-D acquisition system mounted on the inspection system is used. The RGB and depth
data captured with this acquisition system enable the detection and evaluation of defects on
the starter motor (out of scope for this thesis and subject of further research). Furthermore,
the data collected during the general inspection (RGB and depth data as well as point clouds)
offer the possibility to create an information basis for the further planning procedure of the
RL agent. On the one hand, this concerns the planning procedure within a problem-solving
process (e.g., RPP or IPP). When considering the RPP as an inspection problem, the next
VP can be selected based on the surface points detected so far in such a way that the surface
of the starter motor not yet covered by the next VP is maximized (model-free inspection
problem). On the other hand, it is also possible that the information acquired during the
general inspection is processed to be used for the problem of the (b) individual inspection.
A concrete example is creating a three-dimensional semantic model of the starter motor as
an inspection object during the general inspection, which can then be used downstream
for the individual inspection (model-based inspection problem). Not only does this three-
dimensional semantic model contain geometry information of the starter motor, but it also
contains information about where on this generated geometry model which ROI (components
or defects to be inspected in more detail) are located that need to be inspected in more detail
by means of the individual inspection.

Structure of the methodical solution approach of this thesis
Based on the schematic explanation of this thesis’s solution approach, a methodical approach
can be derived, which is presented in the following. The methodical solution approach is
divided into three work packages to investigate the specific challenges of autonomous view
planning for visual inspection in Remanufacturing. These three work packages correspond
directly to the three main sections detailed in chapter 5. A visualization can be found in Figure
4.1. The main work packages are briefly explained below.

1. Section 5.1: In this section, the modeling of the inspection system is presented in
detail. First, the process of generating a digital representation of the inspection station
is discussed. Furthermore, the result of modeling the kinematic relationships at the
inspection station is used to develop an approach for continuously reconstructing and
updating a three-dimensional model of the inspection object using the three-dimensional
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Figure 4.1: Overview of the overall solution approach of this thesis.

data (point clouds) acquired at the inspection station during the acquisition process. This
intermediate three-dimensional model can be used to further plan the current inspection
process (e.g., a) the overall inspection) or as an input for a further inspection process
(e.g. b) the individual inspection after the overall inspection).

2. Section 5.2: This section discusses how the approach developed in section 5.1 for the
three-dimensional reconstruction of the inspection object can be extended to include se-
mantic information. Specifically, a procedure is presented on reconstructing a semantic
three-dimensional model with the help of semantic segmentation and/or instance seg-
mentation methods using the superordinate approach of semantic mapping. In addition
to geometric information, this model also contains information about the assignment of
individual object surfaces to inspection-relevant product features as ROI (e.g., gear to be
always inspected individually to detect broken gear teeth). These ROI might need to be
inspected more closely, and the three-dimensional semantic model contains information
on where on the inspection object they are located. This three-dimensional semantic
model of the starter motor as an inspection object, generated for example in the overall
inspection step, can then serve as input for the inspection process of the individual
inspection.

3. Section 5.3: The concepts presented in section 5.3 form the core of this thesis. The
results of the thesis presented in section 5.1 and section 5.2 are combined to en-
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able and evaluate the RL based autonomous view planning for visual inspection in
remanufacturing. This section’s center is the RL simulation framework, which has been
conceptualized, implemented, and evaluated as part of this thesis. This framework uses
the virtual representation of the inspection station generated in 5.1 to train RL agents
to solve the subproblems of VPP considered in this thesis. The main research focus
here is on the modularity of the RL simulation framework to generate different modeling
variants of the RL agents and to evaluate their performance. The agent modeling must
be designed in such a way that overall inspection, considered as RPP where initially no
geometry information of the inspection object is available, as well as individual inspec-
tion, considered as IPP with the availability of a semantic three-dimensional model of
the inspection object, can be handled equally.
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5 Autonomous view planning for visual inspection in
Remanufacturing

The individual sections already introduced in the chapter 4 on the methodical realization of
the solution approach are discussed below in detail. A detailed explanation of the approach to
solving the respective problems in the individual sections and the structuring of the approach
can be found at the beginning of each section.

5.1 Setup, modeling, and control of the inspection station and 3D
reconstruction of the inspection object

This section first addresses the hardware setup of the inspection station, the acquisition
process, and the data obtained by an acquisition of the acquisition system (section 5.1.1).
This is followed by a description of the virtual representation of the inspection station (section
5.1.2), including all kinematic relationships (section 5.1.3). Using the virtual model of the
inspection station and the kinematic relationships, virtual trajectory planning of the robot and
3D reconstruction of a starter motor during an acquisition process becomes possible (section
5.1.4). Furthermore, the virtual representation of the inspection station is used in section 5.3
to build up the RL simulation framework. A visual overview is found in Figure 5.1

5.1.1 Hardware setup of the inspection station

5.1.2
Virtual model and control approach of the inspection station

Kinematic modeling and calibration of the inspection station
5.1.3

5.1.4 3D reconstruction of the inspection object

Figure 5.1: Overview of the approach to trajectory planning using a virtual station model and
3D reconstruction of the inspection object.

5.1.1 Hardware setup of the inspection station and acquisition process

Figure 5.2 depicts the hardware setup of the inspection station on the left side (subfigure
a)). It comprises a collaborative UR10e robot from Universal Robots 1 with a gripper and an

1 Link to the product website:
https://www.universal-robots.com/products/ur10-robot/
accessed: 04.06.2024
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acquisition system on its end effector. The gripper handles starter motors, the exemplary
products considered in this thesis. The gripper is the 2F140 from Robotiq 1. The acquisition
system is a Zivid One+ S. The technical data of the Zivid One+ S were extracted from the
technical datasheet2 and can be found in Table 5.1. A key advantage of this acquisition
system is the high-resolution acquisition of color-coded point clouds.

Table 5.1: Technical data of the acquisition system Zivid One+ S extracted from the technical
datasheet.

Characteristic Value or Description

Resolution 1920 x 1200 Pixels
Output 3D (XYZ) & Color (RGB)
Optimal working distance (OWD) 500 mm
Point precision 25 µm
Field of view 350 mm x 220 mm at OWD
Spatial resolution 0.18 mm at OWD

Each point PAt,i of the acquired point cloud PCA
t = [XAt , YAt , ZAt , RA

t , GA
t , BA

t ] at time t of
acquisition is represented by three-dimensional coordinates PAt,i = [XA

t,i, Y A
t,i , ZA

t,i] (points in
space) as well as color information CA

t,i = [RA
t,i, GA

t,i, BA
t,i]. The set of three-dimensional points

PAt contained in PCA
t is initially represented in the acquisition systems’ coordinate system CA.

PCA
t is extracted from RGB-D data, i.e. an acquired color image IC,t and a depth image ID,t.

IC,t, ID,t as well as PCA
t are directly output by the software of the Zivid One+ S, where the

indices of the color image directly correspond to the indices of PAt . Thus, a three-dimensional
coordinate can be assigned to each pixel in IC,t. These relationships are also shown in Figure
5.2, where each point of PCA

t also contains the color information of IC,t.

To perform an acquisition, the acquisition system has to be parameterized concerning its
exposure time, aperture, gain, and the illumination intensity of the projector. The predefined
capture assistant of the Zivid One+ S software defines these parameters of the individual
acquisitions. Given a maximum capture time, this capture assistant combines acquisitions
of different parameters optimized by the system to provide a High Dynamic Range (HDR)

1 Link to the product website:
https://robotiq.com/products/2f85-140-adaptive-robot-gripper
accessed: 04.06.2024

2 Link of datasheet:
https://www.zivid.com/hubfs/Zivid%20One%20Plus%20Datasheet%20(1).pdf?hsCtaTracking=f6b119a4-
7444-47ac-83a3-44d4840aa429%7Ccabb4557-32f2-4851-9612-99fe7552235b
accessed: 24.08.2023
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image1. Ideally, all image pixels are exposed optimally in a HDR image. Thus, these HDR
images cover a higher dynamic range than individual exposures (Reinhard & Heidrich et al.
2010, P. 148).

The starter motors are clamped by a specially developed clamping system for data acquisition.
So-called needle pads from Matrix GmbH2, which can be locked pneumatically, are used.
This enables them to clamp any geometries and thus cover the wide range of variants and
generations of starter motors. The clamping system is mounted on a rotary table to enable
the rotation of the starter motor. The rotary table and the clamping system can be controlled
via a serial interface using the high-level programming language Python. The programming
of the functionalities (e.g., relative rotation of the rotary table by a certain angle or opening
and closing of the clamping system) has been realized in this way. These functionalities are
detailed in section 5.1.2. A separate control system has been developed for the clamping
system with the aid of an Arduino microcontroller. Further information on the clamping
system’s design, structure, and functionality and the rotary table can be found in the master
thesis of A_Schnaberich 2022, supervised by the author of this thesis. Using the proposed
setup, the inspection system can perform multiple sequential acquisitions of the starter motor
utilizing varying end-effector poses and, thereby, the acquisition system and varying rotations
of the clamped starter motor.

Collision model of the
acquisition system

Collision model 
of the robot

Collision model of 
the rotary table

Collision model of the 
inspection object

𝑷𝑪𝒕
𝑨

𝑰𝑪,𝒕

𝑰𝑫,𝒕

a) b)

Figure 5.2: Illustration of the inspection station. a) shows the hardware structure of the
inspection station, including exemplary output data of the acquisition system. b)
shows the virtual station model/ planning scene of MoveIt, including all collision
models.

1 Link to documentation:
https://support.zivid.com/en/latest/academy/camera/capture-tutorial.html#capture-assistant
accessed: 28.08.2023

2 Link to company website:
https://www.matrix-innovations.com/
accessed: 04.06.2024
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5.1.2 Virtual model and control approach of the inspection station

The inspection station consisting of the robot, acquisition system, and rotary clamping system
is controlled via the ROS (Robot Operating System) framework (Stanford Artificial Intelligence
Laboratory et al. 2018). The robot’s motion planning is realized with the help of the MoveIt
motion planning framework (Coleman & Sucan et al. 2014).

ROS is an open-source software framework for building and controlling robotic systems. It
follows a modular architecture, where software components, known as nodes, can commu-
nicate via data transfer on topics or provide specific services to other nodes. Nodes are
individual software components in ROS, possibly written in multiple programming languages,
that perform specific tasks. (Stanford Artificial Intelligence Laboratory et al. 2018)

MoveIt is a widely used motion planning framework built on ROS. It provides a set of libraries,
tools, and interfaces to enable robot arm and manipulation planning, control, and execu-
tion. MoveIt simplifies planning and visualizing motion trajectories, considering specified
constraints (e.g., joint constraints) and collision avoidance. (Coleman & Sucan et al. 2014)

The rotary table and clamping system functionalities are implemented in ROS nodes using
Python and specific services. The advantage of ROS and its open-source policy is evident
in the fact that packages containing nodes to operate their hardware are already provided
by the manufacturers of and for the Zivid One+ S as well as the UR10e offers extensive
software packages for its robots to integrate them into ROS but also to enable the interaction
with MoveIt. These have also been used and integrated to set up the control system for the
inspection station.

An overview of the nodes and services available and implemented for the control of the inspec-
tion station and a description of their functionality can be found in Table 5.2. The clamping
system is generally controlled via opening and closing services, and services provide rotary
table control for performing a reference drive and relative and absolute rotations. The Zivid
node provides services for finding the optimal parameter configuration of a HDR acquisition
and performing the acquisition. The acquired data (IC,t, ID,t, and PCA

t ) are published on
their respective topics and can be accessed by other code, e.g., self-written scripts. The
move_group node of MoveIt enables the planning of robot trajectories and their execution
with the respective services. Last, the UR_driver node provides information on the current
pose pA/Rt of the acquisition system in relation to the robot base via the Robot Pose topic.

A simplified visual overview of these relationships is shown in Figure 5.3. An inspection
script can use the available services and topics to control the individual components of
the inspection station. The Table also shows that all nodes are embedded in the so-called
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Table 5.2: Overview of nodes and their provided services used in the control of the inspection
station

Node: Pneumatics
Service or Topic Description

Service Open Request opening the clamping system.
Service Close Request closing the clamping system.

Node: Rotary Table

Service or Topic Description

Service Reference Drive Request performing a reference drive where the goal state is
the rotary table in zero position.

Service Rotate Absolute Request a rotation to an absolute position expressed in degrees.
Service Rotate Relative Request a rotation in degrees relative to the current rotation of

the rotary table.

Node: Zivid

Service or Topic Description

Service Suggested Settings Request the optimal parameter configuration for HDR acquisition
of a given scene (test acquisitions are performed by the Zivid
One+ S to obtain the optimal parameter configuration.

Service Capture Request an acquisition of the Zivid One+ S with specified pa-
rameter configuration.

Topic RGB Image After an acquisition at timestep t, the Zivid node publishes the
RGB image IC on the RGB Image topic.

Topic Depth Image After an acquisition at timestep t, the Zivid node publishes the
depth image ID on the Depth Image topic.

Topic XYZRGB After an acquisition at timestep t, the Zivid node publishes the
color-coded point cloud data PCA

t on the XYZRGB topic.

Node: MoveIt move_group

Service or Topic Description

Service Plan Path Request the planning of a path of the specified robot from a
given start state (robots’ joint state) to a goal state (robots’ joint
state or pose pA/Rt in space) with the possibility of including
intermediate states.

Service Execute Path Request executing a planned path on the specified robot.

Node: UR_driver

Service or Topic Description

Topic Robot Pose The node provided by Universal Robots for the used robot
UR10e publishes the robots pose pA/Rt on the topic Robot Pose.
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Figure 5.3: Simplified visualization of how an inspection script interacts with the nodes pro-
vided by the ROS master via services and topics and how planning tasks for
trajectory planning are accomplished using MoveIt.

ROS master. This coordinates the communication between individual nodes and provides a
parameter server in which a wide range of information, such as the current angle of the rotary
table, but also descriptions of the robot used or configuration files are stored. This information
is then available to the nodes and can be used by them. An example is MoveIt, which uses the
URDF (Universal Robot Description Format) and SRDF (Semantic Robot Description Format)
files of the UR10e used from the parameter server to carry out collision-free path planning.
For collision-free path planning with the Planning Interface, MoveIt also uses the so-called
Planning Scene. This virtual representation of the objects present in reality is defined in
advance using CAD files and primitives (cuboids, spheres, etc.) to build up the planning scene.
A visualization of the planning scene built in this thesis can be seen on the right side (b)) in
Figure 5.2.

For further information on the software implementation for clamping the starter motor, control-
ling the robot, and acquiring RGB-D data at the station, please refer to A_Scheiger 2022, a
master thesis supervised by the author of this thesis.

5.1.3 Kinematic modeling and calibration of the inspection station

Natively, MoveIt only offers the option of planning with defined coordinate systems (e.g.,
that of the end effector) of the robot used. Using an acquisition system mounted on a robot,
however, it is essential to plan with the coordinate system of the acquisition system to align
it with the object to be inspected. In addition, images from different poses of the acquisition
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system and the rotary table, and thus of the inspection object, must be correlated to each
other to enable the three-dimensional modeling and, thus, reconstruction of the inspection
object. A kinematic description of the entire system is therefore necessary.

𝑪𝑹

𝑪𝑬

𝑪𝑨

𝑻𝑬/𝑨 |
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Figure 5.4: Simplified depiction of the inspection station and its kinematic relationships.

For the description of the kinematic relationships of the inspection station, the coordinate
systems and transformation matrices are shown in Figure 5.4. First, all relevant coordinate
systems and the transformation matrices that describe the relationships of the coordinate
systems to one another are introduced. Second, the procedure for transforming point clouds
between the introduced coordinate systems using the established kinematic relationships is
detailed. Last, the procedure for determining the transformation matrices is laid out.

Coordinate systems
During an acquisition, the robot’s end-effector is in a particular pose. The acquisition system
with coordinate system CA is mounted on the robot end-effector with the coordinate system
CE. The robot base coordinate system is denoted with CR. CR is a static coordinate system
that never changes its translation or orientation in space. The rotary table has two coordinate
systems. The first is CRT , which is also static. The second is the rotated coordinate system
CRT ′, which has the same origin as CRT but is rotated in relation to CRT with some absolute
rotation angle φRT . To enable the three-dimensional reconstruction of the inspection object
by continuously fusing acquired point clouds, each point cloud has to be expressed in the
same reference coordinate system. CRT ′ is chosen as an intermediate reference system to
registrate and fuse the acquired point clouds during acquisition process.

Transformation matrices between coordinate systems
The static global coordinate system CR, which is located in the center of the robot’s base, can
be described in relation to the coordinate system CE of the end-effector via the homogeneous
transformation matrix TR/E. The kinematic relationship between the camera coordinate
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system CA, which is defined by the focal point of the acquisition system’s camera sensor,
and the coordinate system of the end-effector can be described via the homogeneous
transformation matrix TE/A. In addition to the kinematic relation of the acquisition system
concerning the global coordinate system, the kinematic relation of the global coordinate
system CR to the coordinate system of the rotary table CRT can be described via the
homogeneous transformation matrix TR/RT . Additionally, the transformation between CRT

and CRT ′ due to rotation of the rotary table with absolute rotation angle φRT is described with
the Matrix TRT/RT

′
. TRT/RT

′
is a homogeneous transformation matrix with no translational and

just rotational components since the rotary table only has one rotational degree of freedom.

Coordinate transformation of acquired point clouds using kinematic relationships
The rules for transforming the acquired point clouds between the mentioned coordinate
systems can be deduced assuming the knowledge of all transformation matrices above. Each
point PAt,i = [XA

t,i, Y A
t,i , ZA

t,i] of an acquired point cloud PCA
t is initially represented in the acqui-

sition system’s coordinate system CA. For transforming the point cloud to the intermediate
reference coordinate system CRT ′, the transformation homogeneous transformation matrix
TA/RT

′
is used. The computation of the coordinate transformation is performed for all points

of the point cloud according to equation 5.1 to yield points in the reference coordinate system
PRT

′

t,i = [XRT ′

t,i , Y RT ′

t,i , ZRT ′

t,i ].

PRT
′

t,i = TA/RT
′
PAt,i ∀ PAt,i ∈ PCA

t 5.1

This results in a transformed point cloud PCRT ′

t = [XRT
′

t , YRT
′

t , ZRT
′

t , RRT ′

t , GRT ′

t , BRT ′

t ] where
now the points are represented in the rotating coordinate system of the rotary table. At the
same time, the color values remain unchanged (CA

t = CRT ′

t = [RRT ′

t , GRT ′

t , BRT ′

t ]). A detailed
mathematical derivation of the components of the homogeneous transformation matrix TA/RT

′

can be found in the Appendix A4.

5.1.4 3D reconstruction of the inspection object

Based on the kinematic relationships derived in section 5.1.3, a workflow can be defined that
allows three-dimensional modeling of the inspection object. This workflow is based on the
reconstruction cycle of Scott & Roth et al. (2003) and is shown in Figure 5.5. It is detailed in
the following.

• View generation (1) and scanning (2): Regardless of whether the VPP solution
approach is a model-based or non-model-based approach, the robot is moved with the
pose of the acquisition system being pA/Rt . The rotary table is rotated with a relative
rotation angle ∆φRT,t and the acquisition system acquires the clamped object with
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Figure 5.5: Flowchart for 3D reconstruction at the inspection station, following the formaliza-
tion of Scott & Roth et al. (2003).

suggested HDR settings. The result is a point cloud PCA
t represented in the coordinate

system CA.

• Registration (3): The acquired point cloud PCA
t is transformed into the coordinate

system CRT ′ using equation 5.1 to yield PCRT ′

t . The current point cloud model PCRT ′,t−1
res,t−1

which combines the point clouds from previous steps (PCRT ′

0 , ..., PCRT ′

t−1 ) is still rep-
resented in the moving coordinate system CRT ′,t−1 of the rotary table of the previ-
ous acquisition step. It is therefore also transformed into the moving coordinate sys-
tem CRT ′ to account for the relative rotary table rotation ∆φRT,t, yielding PCRT ′

res,t−1.
This is achieved by calculating an intermediary homogeneous transformation ma-
trix T(Rz(∆φRT,t))RT

′
t−1/RT

′
t around the z-axis of CRT ′,t−1 that enables calculation of

PCRT ′

res,t−1 = T(Rz(∆φRT,t))RT
′
t−1/RT

′
t PCRT ′,t−1

res,t−1 . PCRT ′

t and PCRT ′

res,t−1 are now expressed
in the same coordinate system CRT and can be registered (e.g., using an iterative clos-
est point (ICP) algorithm). Registration algorithms iteratively estimate a transformation
(translation and rotation) to optimally align PCRT ′

t with PCRT ′

res,t−1. The ICP is used in
this thesis to account for various geometric inaccuracies in the system, such as robot
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positioning, rotary table positioning, and calibration errors. By using the result of the
ICP, the transformed point cloud PCRT ′

t,icp and PCRT ′

res,t−1 are merged by stacking to obtain
PCRT ′

res,t.

• Integration (4): Voxel downsampling with predefined functions1 provided by the python
package Open3D are applied to the current point cloud model PCRT ′

res,t. Voxel downsam-
pling provides a point cloud with equal density distribution and enables reducing the
size of a point cloud to a fixed number of points. The downsampled point cloud model is
filtered to remove noise. Predefined filtering functions2 from Open3D are used.

• Postprocessing (5): In postprocessing, the three-dimensional model is ultimately pro-
cessed after acquisition. Although downsampling is already carried out during the
continuous model generation of the three-dimensional inspection object, it may be
necessary to repeat the downsampling to an even smaller point cloud size after the final-
ization of the acquisition process. Furthermore, the three-dimensional model PCRT ′

res,t is
ultimately transformed into the static robot coordinate system CR to obtain the final three-
dimensional model of the inspection object PCR

f = PCR
res,t. An optional postprocessing

step not conducted in this thesis is a surface reconstruction (e.g., meshing).

5.2 Approach for semantic 3D reconstruction of the inspection object

In the previous section 5.1, the structure and modeling of the inspection station and the
approach to the three-dimensional reconstruction of the starter motor as an inspection object
have been discussed in detail. This section now deals with how the derived three-dimensional
reconstruction approach can be enriched with semantic information. This is done with the
help of the concept of semantic mapping and the use of deep learning methods for semantic
and/or instance segmentation. To realize a semantic 3D reconstruction approach using
segmentation, the generation of the data set and its preprocessing are first discussed (section
5.2.1). This is followed by the description of segmentation approaches (section 5.2.2) and the
derivation of an approach for determining the uncertainty of the segmentation result (section
5.2.3). The section concludes with the approach for 3D reconstruction of the inspection
object, extended by the component of semantic segmentation (section 5.2.4). It should be
noted that the approach to semantic 3D reconstruction in this work is carried out using the
example of segmenting starter motor components. The methodology can be directly applied

1 Link to voxel downsampling documentation in Open3D:
http://www.open3d.org/docs/0.6.0/python_api/open3d.geometry.voxel_down_sample.html
accessed: 28.08.2023

2 Link to noise removal documentation in Open3D:
http://www.open3d.org/docs/latest/tutorial/Advanced/pointcloud_outlier_removal.html
accessed: 28.08.2023
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to segmenting defects, whereby in this case individual defects that require more detailed
inspection must be segmented instead of the motor components. A visual overview is found
in Figure 5.6

5.2.4 Semantic 3D reconstruction of the inspection object

5.1.4 3D Reconstruction of the 
inspection object

5.2.3 Uncertainty estimation 
for segmentation results

5.2.2                  5.2.1

Segmentation model

3D reconstruction approach

Dataset generation and data preprocessing

Segmentation using deep learning

Work package flow Information flow Work package result

Figure 5.6: Overview of the approach for semantic 3D reconstruction of the inspection object

5.2.1 Dataset generation and data preprocessing

The following section details the process of dataset generation and data preprocessing. In
the remainder of this section, the "time" index t for color images IC,t and depth images ID,t

is omitted. This is because the acquisition time does not matter for training a segmentation
model.

Data acquisition
A suitable dataset containing training and test data is necessary to train deep-learning
semantic and instance segmentation models in a supervised manner. Most deep-learning
semantic segmentation approaches use images as input to obtain semantic segmentation
results. However, approaches using additional depth images exist. Therefore, a training
dataset consisting of HDR color images IC and depth images ID are acquired at the inspection
station. To acquire a suitable dataset for training and testing the deep learning semantic
segmentation models, 42 different starter motors returning from a usage phase are used.
These are fixed using the clamping system. For each starter motor, 15 poses of the acquisition
system and, therefore, coordinate system CA and varying rotary table rotation are used to
acquire IC and ID. Due to the stochastic output of the adaptive view planning, random poses
of the acquisition system and the rotary table are sampled in a permissible value range.



Autonomous view planning for visual inspection in Remanufacturing 69

The positions of the acquisition system are sampled on a spherical surface in spherical
coordinates with azimuth angle φA (φA ∈ [45◦, 90◦]) and polar angle θA (θA ∈ [45◦, 90◦]) and
varying distance rA (rA ∈ [400 mm, 600 mm]) from the center of the sphere. The center of the
sphere is the center of the coordinate system of the rotary table CRT . The coordinates φA, θA

and rA are then transformed to cartesian coordinates xA, yA and zA. The orientation of CA is
represented by Euler angles αA, βA, and γA and is calculated so that the acquisition system
always faces the sphere’s center. Offsets ∆αA, ∆βA, ∆γA (∆αA ∈ [−10◦, 10◦], ∆βA ∈ [−10◦,
10◦], ∆γA ∈ [−10◦, 10◦]) are added to αA, βA, γA respectively to increase image variety. Due
to the pose sampling on a spherical surface and to increase the variety even further, the rotary
table was rotated to a random absolute angle φRT (φRT ∈ [0◦, 360◦)) before each acquisition.
This process ensures that the starter motors are acquired from different perspectives and
under different lighting conditions due to differing reflections caused by varying poses of the
acquisition and rotary system. After sorting out unusable RGB and depth images due to the
incomplete acquisition of starter motors in some images, this resulted in 584 distinctive RGB
and depth images. In addition to the RGB and depth images IC and ID, the point clouds
PCA

t acquired were saved. Furthermore, the poses pA/Rt of the acquisition system and the
homogeneous transformations TA/R in relation to the robot base coordinate system as well
as absolute rotation angles φRT of the rotary table were also saved for each acquisition.

Label mask generation
To enable supervised segmentation using Deep Learning, a segmentation label mask CGT in
the form of a labeled class image is necessary. Manual labeling of components, which are
different classes in the images, is performed using the graphical annotation tool labelme1.
According to Füvesi & Kovács et al. (2010), the structure of a starter motor consists, on a
higher level, of the four main components: Housing, Solenoid, Carrier, and Gear (Füvesi &
Kovács et al. 2010, P. 2). In this thesis, the electrical connection is additionally introduced as
a class to be segmented. Using the tool labelme, different image segments are first encoded
with different colors. This color-coded ground truth must be processed further depending on
the segmentation method.

For semantic segmentation tasks, it is common to transform the color encoding into a so-called
label segmentation mask CGT with the dimensions H × W × C. Thereby, H corresponds to
the image height, W to the image width, and C to the maximum number of possible classes,
including the background. Each pixel is thus encoded one-hot, with the non-zero entry at the
index to which class the pixel belongs. An exemplary color encoding of a starter motor with

1 Link to tool:
https://github.com/wkentaro/labelme
accessed: 28.08.2023
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Figure 5.7: Visual representation of the starter motor and all components to be segmented
and the label segmentation mask CGT derived from the color-coded ground truth
segmentation mask.

all relevant components, as well as the label segmentation mask of the image and a binary
coding of the carrier, can be found in Figure 5.7.

The resulting label segmentation mask can be used directly as a ground truth label when
using semantic segmentation methods. For use in instance segmentation methods, so-called
bounding boxes (BB) and features describing these rectangular bounding boxes (corner
positions and area) must also be extracted for each object present in the image. Furthermore,
a binary segmentation mask is extracted based on the label segmentation mask and the
knowledge of the position of the BB. An illustration can be found in Figure 5.8.
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Figure 5.8: Visual representation of the BB features and segmentation mask of the individual
components derived from the label segmentation mask CGT

Image data preprocessing
Due to the specific acquisition properties of the acquisition system used, the resulting color
images are underexposed. Preliminary experiments in a master thesis supervised by the
author of this thesis have shown the benefit of brightness increase prior to segmentation
(A_Hollinger 2022, P. 66). Therefore, brightness is increased by a fixed value for all color
images IC of the acquired data.
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The acquired image data of the Zivid One+ S have a 1920 × 1200 pixels resolution. Segmen-
tation algorithms usually operate on square image data. Thus, the aspect ratio is adjusted
in the next step. Cropping is the first traditional approach to resize the image data without
introducing distortion into the image (Vaquero & Turk et al. 2010, P. 5). Another way is padding
the original image with black pixels to obtain the final output resolution (Vaquero & Turk et al.
2010, P. 5). Both of these methods are applied in this thesis. 50% of the image data are
cropped and 50% are padded. For cropping the color and depth images, it is assumed that,
due to the orientation of the acquisition system to the origin of the clamping system, the object
is located approximately in the center of the acquired color and depth images. Therefore, a
rectangular window is placed in the center of the original color and depth images to obtain
square image data with size 1200×1200. For padding, the color and depth images are padded
with black pixels of size 1920 × 360 at the top and bottom to obtain square image data with
size 1920 × 1920. The resulting square image data can then be resized to arbitrary sizes
using algorithms such as nearest neighbor interpolation. This results in the preprocessed
dataset of images I∗

C , I∗
D and C∗

GT

5.2.2 Semantic and instance segmentation with deep learning

The following section introduces the data augmentation and standardization carried out
during the training of the segmentation networks. The network architectures and the training
procedure are presented, considering the integration of depth images. In addition, transfer
learning and the backbones used for feature extraction of the network architectures used are
discussed.

Data augmentation and data standardization
Due to the manual effort involved in labeling, the generated dataset is small compared to
existing benchmark datasets for semantic segmentation. To artificially increase the size
of the data set, increase the amount of information extracted from the dataset, and thus
reduce overfitting, data augmentation is standard (Shorten & Khoshgoftaar 2019, P. 3). The
successful use of data augmentation in a semantic segmentation with a small dataset has
been shown, for example, by Ronneberger & Fischer et al. (2015) using a U-Net. In this
thesis, augmentation techniques based on basic image manipulations, which are described
in the work of Shorten & Khoshgoftaar (2019), are applied (Shorten & Khoshgoftaar 2019,
P. 7, ff.). These are geometric transformations, color transformations, and filtering operations.
Geometric transformations include operations such as flipping, rotation, scaling, translation,
and cropping of the images. Blank spaces created by geometric transformations are filled
with black pixels. Color transformations include changes in brightness, contrast, and color
saturation as well as modifications of the images in various color domains (e.g., RGB color
domain). In addition, other augmentation methods are often used to increase noise, enhance
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contrast (for example, using Contrast Limited Adaptive Histogram Equalization (CLAHE)), or
induce blurring.

Preliminary work has shown that the learning success and the resulting segmentation quality
depend, among other things, on the choice of augmentation methods and the augmentation
intensity (please refer to the master thesis of A_Hollinger 2022 supervised by the author of
this thesis). The augmentation methods and their parameterizations used in this thesis have
been determined based on the mentioned preliminary work and are considered fixed in the
remainder of the present thesis. An overview can be seen in Table 5.3.

All transformations are applied to the color images I∗
C . Geometric transformations are ad-

ditionally applied to depth images I∗
D and masks C∗

GT to prevent a discrepancy between
color images I∗

C and depth images I∗
D, as well as segmentation masks C∗

GT . This results
in the augmented color and depth images I ′

C and I ′
D and ground truth mask C ′

GT . A visual
illustration can be found in Figure 5.9.

Original image 𝑰𝑪
∗ Augmented image

𝑰𝑪
′

Original depth image
𝑰𝑫
∗

Augmented depth
image 𝑰𝑫

′
Color encoding of 

𝑪𝑮𝑻
′

Figure 5.9: Overview of the data used for training. Original and augmented images (I∗
C , I∗

D, I ′
C

and I ′
D) as well as ground truth color encoding (C ′

GT ) of a real motor with padding.

The images are augmented during the training and evaluation of the model. As a result, new
or slightly modified images are continuously passed to the model. This online augmentation
allows a significant saving of the required storage space compared to an offline augmentation
(Shorten & Khoshgoftaar 2019, P. 40). All images are augmented with a probability of 50 %, so
that half of the images remain unchanged. Each previously described augmentation method is
applied with a defined probability on the other half of the images. Thus, the augmentation of the
images occurs with a different, random combination of the previously described methods.

In most cases, data standardization is also performed in addition to data augmentation.
Depending on the NN model used, standardization of the image data used for learning is
helpful to increase the learning speed and performance of the model (García & Luengo et al.
2015, 46 f.). This includes the adjustment of the color channels (e.g., switch from RGB to
BGR) and processing methods like zero-centering, scaling, and normalization of the data to
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Table 5.3: Tabular representation of the augmentation methods used in this thesis. The
operand indicates whether all transformations are carried out with a certain prob-
ability (AND) or whether one of the transformations (OR) is selected with a fixed
probability.

Geometric transformations
Augmentation type Operand Probability Description

Flip

AND

50% Flip the input horizontally and vertically.
Perspective 20% Random four-point perspective transform.

Shift 100% Random translational shift.
Scale 100% scaling, i.e., zooming in or out.
Rotate 100% rotation of the input.

Color space transformations
Augmentation type Operand Probability Description

Color jitter

AND

50% Change brightness, contrast, saturation.
RGB shift 50% Shift values for each RGB channel.

Grayscale conversion 25% Convert the RGB image to grayscale.
HSV shift 50% Change hue, saturation, and value.

Noise
Augmentation type Operand Probability Description

ISO noise
OR 50%

Apply camera sensor noise.
Gaussian noise Apply Gaussian noise.

Blurring using kernel operations
Augmentation type Operand Probability Description

Random blur
OR 50%

Blur using a random kernel.
Gaussian blur Blur using a random Gaussian kernel.

Contrast enhancement
Augmentation type Operand Probability Description

CLAHE
OR 50%

Apply CLAHE.
Gamma Apply gamma correction.
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map them from one range of values (e.g., [0, 255] in the case of RGB) to another (e.g., [0, 1]
or [−1, 1]).

Segmentation model architectures and transfer learning strategy
The following section provides a rough overview of the network architectures and transfer
learning training strategy evaluated in this thesis. Please refer to Appendix A5 for a detailed
description of the concepts used. For semantic segmentation and instance segmentation, this
thesis compares two of the best-known basic architectures that have achieved good results in
various use cases in the past. These are:

• The U-Net by Ronneberger & Fischer et al. 2015 is a commonly used base architecture
for semantic segmentation.

• The Mask-RCNN (in the following called M-Net) by He & Gkioxari et al. (2017) is a
commonly used base architecture for object detection and instance segmentation.

In this thesis, pretrained backbones are used when constructing the NN, the U-Net, and
the M-Net. Two well-known pre-trained backbone NN representatives, the VGG161 and
the ResNet342, are compared with each other. A recent overview of available pre-trained
backbone architectures can be found in Elharrouss & Akbari et al. (2022) and a detailed
introduction to both backbone variants can be found in Appendix A5. The choice of these
architectures can be justified by their simplicity, widespread use, and availability of pre-trained
weights. With these pre-trained weights, it is possible to considerably shorten the training time
using transfer learning to achieve good results. Transfer learning involves using a model with
pre-learned weights instead of initially randomizing and relearning the weights of a model.
These pre-trained weights already enable good feature extraction from the input image data
at the start of training and do not have to be learned from scratch. This feature extraction is
then merely refined during training. Often, the weights of the backbone are also frozen in the
early training phase of the NN so that initially, only the late layers of NN, whose weights have
been randomly initialized, are trained.

Therefore, this thesis implements and compares three alternatives for the segmentation
approach. Given a NN for semantic/ instance segmentation consisting of a backbone and
additional layers,

1 Link to online documentation:
https://pytorch.org/vision/main/models/generated/torchvision.models.vgg16.html
accessed: 15.06.2024

2 Link to online documentation:
https://pytorch.org/vision/main/models/generated/torchvision.models.resnet34.html
accessed: 15.06.2024
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1. no pre-trained backbone is used, i.e., the structure (e.g., a VGG-16 backbone) is used,
but the weights are initialized randomly before training.

2. the pre-trained weights of the backbone used are first frozen, and the NN is trained with
a comparably high learning rate. Only the segmentation model architecture weights that
are not part of the backbone are adjusted. After a certain amount of training, the weights
of the backbone are unfrozen, and all layers of the NN are trained.

3. no freezing of the pre-trained NN weights is applied and the NN is fine-tuned directly.

The integration of depth data is based on the current state of research. An overview of
common information fusion methods in semantic segmentation can be found in Zhang &
Sidibé et al. (2021). A rough distinction is made between early, intermediate, and late fusion
methods, which are examined in this thesis. The U-Net and M-Net architectures integrating
depth data are called UD-Net and MD-Net in the following. The fusion approaches are shortly
summarized in the following. A visualization of the fusion approaches of the UD-nets and
MD-nets examined in this thesis can be found in Figure 5.10.

• Early fusion option: RGB and depth data are combined before entering the respective
network. This is done by stacking the individual channels (R, G, and B) of the color
image with the depth channel of the depth image.

• Intermediate fusion option: The intermediate features of the individual layers of the
backbones (VGG-16 or ResNet34) for RGB and depth data are first fused and then used
as input to the subsequent layer of the backbone of RGB data is used. Two options for
feature fusion are explored. With addition, the features of a layer of the backbones of
RGB and depth data are added element-wise. The other option is a fusion NN using a
convolutional layer to get features that can be used as input for the subsequent layer of
the RGB backbone. See Appendix A5 for more information on the two alternatives.

• Late fusion option: For the MD-Net, separate feature extraction and subsequent
fusion of RGB and depth data takes place. The UD-Net must use the skip connections
to implement the late data fusion. For this purpose, the intermediate features of the
individual layers are either added or processed by an intermediate network and fed into
the decoder.

Segmentation model training and evaluation
With the knowledge of the available data pipeline (augmentation and standardization) and
the network architectures used, the procedure for training and evaluating the segmentation
networks is explained below.
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Figure 5.10: Overview of the fusion approaches for the UD-Nets and MD-Nets evaluated in
this thesis.

The data set acquired at the real station with 584 RGB and depth images and label masks
as ground truth segmentation is split into a training, validation and test data set. The split
used for this is chosen according to common practice at 80%, 10%, and 10% for the training,
validation, and test data, respectively.

The segmentation networks are trained in several epochs. Each epoch, the training data set
is propagated through the respective network configuration and the weights are continuously
adjusted based on the error of the segmentation of the segmentation network. The learning
behavior is validated with the validation data set after each episode. This involves using
data not used for training to check whether the respective segmentation network learns a
generalizing segmentation and does not overfit. Finally, the trained segmentation network is
tested using the test data set.

While training, a distinction of the loss functions used is made between loss functions for
semantic segmentation (variants of U-Net and UD-Net) and the loss function used for instance
segmentation (variants of M-Net and MD-Net). The loss function for training a semantic
segmentation model is calculated using the augmented ground truth label segmentation
mask C ′

GT and the model’s prediction CP . In contrast, the loss function used for the instance
segmentation model variants comprises multiple different loss functions. These are the
loss functions for the (1) localization of the object in the image using the bounding box,
(2) assignment (classification) of the object to a class, and (3) predicted segmented object
mask.
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Two standard loss functions for semantic segmentation are dice loss and focal loss. The
dice loss is based on the overlap between the predicted and true masks of the classes in
an image. It aims to optimize the similarity between these class masks by increasing the
overlap of all class masks (Jadon 2020, P. 2). The focal loss is based on a pixel’s prediction.
It introduces a modulating factor that dynamically adjusts the loss contribution of each pixel.
This factor decreases the contribution of well-classified pixels and increases the contribution
of misclassified pixels. The focal loss enables the model to learn more effectively by putting
more emphasis on challenging examples, thus performing well in tasks with class imbalance
(Jadon 2020, P. 2) (see also Appendix A5).

After successful segmentation model training and while training in the segmentation model
validation, evaluation metrics based on the classification quality of individual pixels or region-
based metrics can be used to evaluate the segmentation quality of the approaches used. The
pixel accuracy calculates the percentage of correctly classified pixels in the entire image to
be segmented. It is a simple and intuitive measure of overall segmentation accuracy but does
not account for class imbalances. Region-based metrics (e.g., intersection over union - IoU)
consider the similarity of the resulting segmentation masks. The IoU calculates the ratio of the
area of overlap between the predicted class mask and ground truth mask for a class to the
area of their union. It is used in this thesis as a standard metric used in segmentation tasks to
evaluate the accuracy of semantic segmentation and instance segmentation including object
localization, class prediction and class segmentation.
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Figure 5.11: Overview of the training, validation and test procedure for the segmentation
networks.

A visual representation of the training process can be found in Figure 5.11. The training or the
weight updates of the respective NN (in this Figure, for example, a UD-Net with intermediate
fusion of the depth images) takes place by means of the loss of the training data set. After



78 Autonomous view planning for visual inspection in Remanufacturing

each epoch, the IoU of the validation dataset is calculated using the validation dataset to
evaluate the training success and progress. After successful training, the IoU is calculated on
the test data using the training data set. It should be noted that the data is augmented for
model training and validation, whereas the data is not augmented for the model test to test
the performance of the network configurations with data that corresponds exactly to data that
will be acquired in the real case.

5.2.3 Uncertainty estimation for segmentation results

Due to the stochasticity of the selected viewpoints, it is unavoidable that the same object areas
are segmented in successive viewpoints. Due to the possibility of incorrect segmentation, a
confidence or uncertainty measure regarding the segmentation result helps evaluate possible
ambiguities in segmenting overlapping object areas. It improves the process of semantic
modeling of the product.

In metrology, the framework of GUM (Guide to the expression of uncertainty in measurement)
exists to express the uncertainty in measurements (ISO/IEC Guide 98-3 2008). The gener-
alized approach of GUM is based on expressing the expanded uncertainty U = k · uC(ŷ),
which describes an interval ±U around the output estimate ŷ of a measurement function
ŷ = f(xi, ..., xN). The combined standard uncertainty uC(ŷ) thereby results out of the stan-
dard uncertainties u(xi) of a certain number of N input quantities xi(i = 1, ..., N) by the
formula uc(ŷ) =

√∑n
i=1(ciu(xi))2. The sensitivity coefficients ci specify how the variable ŷ to

be determined changes with small changes in the input variables xi.

For measurement uncertainty analysis according to GUM, for which, for example, the sensitiv-
ity coefficient cannot be determined or can only be determined with difficulty, or for which the
influence of input quantities on the output quantity is highly nonlinear, the GUM supplement 1
is available (ISO/IEC Guide 98-3-1 2008). This supplement describes the simulation-based
determination of the expanded uncertainty U by simulated, random drawing of many concrete
values of input quantities. The estimated value ŷ of the target variable is then obtained by
averaging using ŷ = 1

n

∑n
i=1 yi of the n simulations with outputs yi(i = 1, ..., n). The standard

uncertainty uC(ŷ) is then obtained via
√

1
n−1

∑n
i=1(yi − ŷ)2.

Considering the general definition of machine learning procedures and procedures of segmen-
tation as a functional mapping, it can be noted that they are similar to the general definition of
GUM. In this case, the NN represents the highly nonlinear measurement function. Thus, it
is possible to apply existing approaches for uncertainty estimation of NN, by the principles
of the GUM supplement 1, to the segmentation approach presented in this thesis. However,
a significant difference lies in the scope of consideration of the performed uncertainty anal-
ysis. According to GUM, measurement uncertainty analysis is traditionally performed for a
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given, fixed measurement system and measurement object or measurand by repetition of the
measurement setup and measurement execution followed by statistical analysis of the mea-
surement results according to GUM. The measurement uncertainty analysis is measurement
system and measurement object dependend.

In the present thesis, however, no predefined measurement object or measurand exists. The
segmentation mask as a measurement result is composed of the classification of all individual
pixels to a component of a measurement object, which can vary with respect to its type. Since
the pose of the inspection object can also change, a ground truth can never be assigned
to a pixel. This depends on the object’s type and the acquisition system’s pose. Thus, a
measurement uncertainty analysis of the segmentation has to be done for each individual
image and pixel in the image. The measurement uncertainty analysis according to GUM
pursued in this thesis must, therefore, be carried out in a data-bound manner.

An overview article on the basic approaches to determining uncertainty in deep learning
methods is provided by Gawlikowski & Tassi et al. (2023). The authors distinguish between
(1) deterministic methods, (2) Bayesian methods, (3) ensemble methods, and (4) test-time
augmentation methods. All these approaches have in common that they enable a prediction ŷ

and, at the same time, provide a predictive uncertainty σ̂ as a combination of model uncertainty
(systemic) and data uncertainty (aleatory) (Gawlikowski & Tassi et al. 2023, P. 4, 10).

This approach is adopted in this thesis. Several models are trained as an ensemble to estimate
the model and data uncertainty. In contrast to existing GUM-compliant approaches, estimating
the probability distribution of the color values of individual pixels is not directly possible for
a single image. However, the test-time augmentation approach proposed in Gawlikowski &
Tassi et al. (2023) can be used to account for variance in the input data. Figure 5.12 shows a
schematic illustration of the proposed method.

First, n models M1, ...Mn with varying compositions of the training dataset are trained to solve
the segmentation task. In the context of this thesis, n = 10 is chosen due to the large time
requirements for training the derived network architectures. Given a data tuple DT,i of the test
dataset, the pixel-wise prediction ŷ(DT,i)uv is first derived by averaging all model predictions
{ŷT,i,1, ..., ŷT,i,n}uv for the given data tuple (ensemble prediction).

The predictive uncertainty σ̂(DT,i)uv is obtained by randomly augmenting the data tuple
DT,i m times to obtain D′

T,i1, ..., D′
T,im and then performing the pixel-wise prediction of all

augmented data tuples with all trained models. The standard deviation for each pixel of the
data tuple is then calculated based on the individual model predictions {ŷT,i1,1, ..., ŷT,im,1}uv,
..., {ŷT,i1,n, ..., ŷT,im,n}uv of the augmented data tuples. Using this uncertainty estimation, it
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Figure 5.12: Overview of ensemble model prediction and uncertainty estimation procedure.

is possible to specify the pixel-wise prediction ŷ(DT,i)uv as well as a pixel-wise predictive
uncertainty σ̂(DT,i)uv, which is a combination of systemic and aleatory uncertainty.

5.2.4 Semantic 3D reconstruction of the inspection object

With the additional use of segmentation, the workflow presented in section 5.13 can be
extended. After the view generation and acquisition (1 & 2) and before the registration (3), the
segmentation of the acquired point cloud PCA

t takes place with the help of the color image
IC and depth image ID. As described in section 5.1.1, a unique relationship between pixels
of IC and ID and the spatial coordinates of these pixels is provided by the Zivid One+ S
in the form of the point cloud PAt . The semantic point cloud SPCA

t can thus be generated
from the results of the segmentation (segmentation map St), which assigns a class to each
pixel (i.e., the assignment of a pixel to a motor component) in IC and ID. The semantic point
cloud SPCA

t = [XAt , YAt , ZAt , Rt, Gt, Bt, Kt] thus extends the point cloud PCA
t with additional

information about the class assignment Ki of the individual points in PCA
t .

It should be noted that several segmentation models can be used in parallel for the semantic
3D reconstruction of the inspection object. In addition to a segmentation model for component
segmentation, a segmentation model can also be used for defects to be inspected in more
detail, as mentioned at the beginning but not considered in this work. In this case, for example,
SPCA

t would be extended by a further column vector Dt, which, in addition to assigning
individual pixels to components, also encodes an assignment to defects located on the surface
of the inspection object. In this case, SPCA

t = [XAt , YAt , ZAt , Rt, Gt, Bt, Kt, Dt] applies.
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Figure 5.13: Flowchart for semantic 3D reconstruction of an inspection object at the inspection
station using segmentation algorithms.

It should also be mentioned that the approach derived in Section 5.2.3 to determine the
predictive uncertainty must be applied separately for all segmentation models used. This pre-
dictive uncertainty can then be used in the following to adjust the semantic 3D reconstruction
of the inspection object in that, in the case of a high predictive uncertainty of individual pixels
for certain segmentations, these pixels are not taken into account for the reconstruction.

5.3 View planning using reinforcement learning

The results obtained in sections 5.1 and 5.2 can be used to build a simulation framework
as a learning environment for RL agents. The problems to be solved for RL agents are the
VPP specific to remanufacturing. The main methodological approach for solving the VPP
presented in this section has already been presented and used in previous publications Kaiser
& Koch et al. (2024), Kaiser & Gäbele et al. (2024) and Koch & Kaiser et al. (2024) by the
author of this thesis. This chapter combines the methodology for the RPP presented in Kaiser
& Gäbele et al. (2024) with the methodology for the IPP presented in Kaiser & Koch et al.
(2024). For the RPP, Koch & Kaiser et al. (2024) introduces the extension of the methodology
to include robot-based view planning. In this section, the planning goals (NBV, RPP and IPP)
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are therefore first formalized for a RL agent (section 5.3.1). This is followed by an overview of
the RL simulation framework (section 5.3.2). The individual components of this framework are
then presented. These are the scan simulation environment SSim (section 5.3.3), the agent
interface IAgent (section 5.3.4) and the RL planning agents APlan used in this thesis (section
5.3.5). A visualization can be found in Figure 5.14.

5.3.2
Overview of the RL simulation framework

Formalization of view planning goals
5.3.1

VP Observation Agent action Information state

5.3.3 Scan simulation environment 𝑆𝑆𝑖𝑚 5.3.5 Agent 𝐴𝑃𝑙𝑎𝑛

5.3.4 Agent interface 𝐼𝐴𝑔𝑒𝑛𝑡Inspection 
object RL simulation framework

Figure 5.14: Overview of the approach for RL agent training for solving VPP in Remanufac-
turing

On a higher level, SSim handles all operations related to the virtual acquisition and processing
of point clouds given an inspection object, sensor model and VP. The acquisition results are
transferred to IAgent. IAgent serves as interface between SSim and APlan and handles all the
necessary steps to convert the actions issued by APlan into a form that can be used by SSim.
Additionally, it converts the current information status with regard to the current acquisition
progress into a form that can be interpreted by APlan.

5.3.1 Formalization of view planning goals

The planning goal of the RL agents trained in this thesis is fulfilling the specified inspection
task. These inspection tasks are either the overall inspection (subproblem a) of section 2.1.4)
of the inspection object or the individual inspection of certain components or ROI (subproblem
b) of 2.1.4). To do so, they must solve the respective view planning problem. As already
introduced in 2.2.1, these differ in whether the entire surface (NBV, RPP) or only a subset of
it (IPP) must be acquired. A visualization of this can be found in Figure 5.15.

The surfaces of the inspection object that are ideally covered by the acquisition process are
shown in black. This corresponds to the entire object surface in NBV and RPP. As explained,
for the IPP, this only corresponds to a subset of the entire object surface. These are the
ROI. They can be located anywhere on the object. In remanufacturing, these are defects
that were detected during the overall inspection and for which a closer inspection is required
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Surface area to be inspected Surface area not to be inspected

Figure 5.15: Overview of the planning problems to be solved by the RL agent and the object
surfaces to be inspected using the example of a starter motor.

to allow an inspection decision to be made. Another possibility is the specific inspection of
individual components (e.g., the pinion of a starter motor in Figure 5.15 on the right side),
which must always be inspected in order to assess the suitability of the starter motor for
remanufacturing.

In terms of VPP, the planning task is to achieve the highest possible percentual surface
coverage Ψ of the target surface of the inspection object for the respective planning problem
in a minimum number of acquisitions.

5.3.2 Overview of the simulation framework using a reinforcement learning
agent APlan,RL

Figure 5.16 depicts the modular simulation framework developed in this thesis. The framework
is modularly structured so that different agent types can be easily integrated. This includes
the use of RL agents (APlan then becomes APlan,RL) but also agents that use predefined
rules and analytical solution methods for the considered problems of NBV, RPP, and IPP. In
the following, the basic functions of the individual modules are explained.

The scan simulation environment SSim consists of two modules. The planning module and
the scanning module. Before each acquisition cycle, an inspection object model is loaded
as a stereolithography file (STL file). Multiple acquisitions are performed in an acquisition
cycle using a parameterized sensor model. A VP VSt is passed to the planning module to
realize one acquisition process. The planning module then performs a reachability check of
the issued pose and subsequent trajectory planning if the pose is reachable. After that, an
acquisition is simulated using the scanning module. The current information status of the
current acquisition progress, which results from all previous acquisitions in an acquisition
cycle, is saved in the observation ot. The observation ot represents a processed form of the
current and all previous observations.
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Figure 5.16: Overview of the RL simulation framework for RL agent training.

The observation ot is processed by the agent interface IAgent, which consists of three modules.
The action module, the state module and the reward module. The action module maps actions
at, which the agent outputs, to the VP VSt . The state module uses the observation ot to
create a state st that the agent can interpret. The reward module uses the observation ot to
derive a reward rt for the agent APlan,RL based on its action.

When using a RL agent, at a higher level, APlan,RL consists of a policy and an optimizer. The
policy defines the next action at to be performed, based on the current state st. The optimizer
then adjusts the parameters w of the policy given the tuple (st, at, rt) so that a strategy is
learned that maximizes the long-term return (see 2.3.3).

The proposed and implemented structure allows the easy interchangeability of individual
modules to analyze different modeling alternatives and the learned strategies of the defined
RL agents to solve the visual acquisition planning problems. This is based on the fixed,
standardized variables (VSt , ot, at, st, and rt) that are passed between the individual compo-
nents of the simulation framework. As long as the interface definition between the individual
components is adhered to with the standardized variables to be passed between each other,
modules with varying internal functionality can be used. This also enables the straightforward
replacement of the scanning module with the real acquisition system at a later stage when
deployed on the real inspection station.

5.3.3 Modelling of the scan simulation environment SSim

In each acquisition step t of the agent with the environment, SSim receives a VP VSt . After a
reachability analysis and trajectory planning simulates an acquisition using the object and
sensor model with the scanning module to obtain a point cloud PAt . The acquisition results
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are aggregated and provided as an observation ot. An overview of the working principles of
SSim can be seen in Figure 5.17.
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Figure 5.17: Visualization of the inner workings of the scan simulation environment SSim.

Planning process in the planning module
As introduced in section 2.2.1, VSt is a tuple. It consists of the poses pA/RTt , pO/RTt and the
acquisition parameters λA. It is possible that a VP, which is determined based on the action
output by the agent, cannot be reached. This is because the acquisition system is mounted
on a robot. Not every pose can be reached due to possible collisions of the robot with itself or
its surroundings based on the trajectory from pA/RTt−1 (current pose of the acquisition system)
to pA/RTt (desired pose as the output of the agent). Furthermore, certain poses in working
space can not be reached due to preset constraints, e.g., restrictions of joint angles.

Both poses, pA/RTt of the acquisition system and pO/RTt of the object with its coordinate
system CO are expressed in relation to the static rotary table coordinate system CRT . This
convention has been chosen, amongst other reasons, as the agent is allowed to influence the
rotation angle φRT of the rotation table around the z-axis of CRT and therefore CRT is suitable
as a static reference system. However, CR is also a conceivable alternative, whereby in theory,
all possible coordinate systems can be selected whose kinematic relationships (described via



86 Autonomous view planning for visual inspection in Remanufacturing

homogeneous transformation matrices) to the spatially fixed coordinate systems CR or CRT

are known at all times.

The pose pO/RTt of the object in relation to CRT is composed of a fixed, initial pose of the
object expressed in relation to CRT at the beginning of the acquisition process and the variable
rotational part based on the rotation angle φRT due to rotations of the rotation table between
successive acquisitions. The rotation of the rotary table takes place before the trajectory
planning using MoveIt to update the planning scene with all collision models (see section
5.1.2).

The pose pA/RTt = [XA/RT
t , Y

A/RT
t , Z

A/RT
t , α

A/RT
t , β

A/RT
t , γ

A/RT
t ] of the acquisition system

is a vector. For X
A/RT
t , Y

A/RT
t , and Z

A/RT
t , Cartesian coordinates indicate the position of

the acquisition systems coordinate system CA in the rotary table coordinate system CRT ,
while α

A/RT
t , β

A/RT
t , and γ

A/RT
t are Euler angles, representing the rotation of the frustum.

For reachability analysis and trajectory planning, pA/RTt must first be expressed in the static
robot coordinate system CR. pA/RTt is first transformed to its equivalent homogeneous trans-
formation matrix TA/RTp,t and then expressed in CR (TA/Rp,t = TA/RTp,t TRT/R). The reachability
check, trajectory planning, and execution use the virtual station model (see section 5.1.1),
including all deduced kinematic relationships. Based on the two poses pA/RTt−1 and pA/RTt ,
which represent the start and end pose of the desired trajectory, a virtual reachability analysis
is carried out using MoveIt. This ensures that the calculated pose pA/RTt can be reached and
the resulting trajectory is collision-free.

Sensor and object model
Using a real acquisition system, an acquisition with the acquisition parameters λA (e.g.,
defined via the service Suggested Settings of the Zivid One+ S, see section 5.2) would
take place. In SSim, the sensor model reproduces the functionality and properties of such
three-dimensional acquisition systems. The relevant configuration options of the simulated
acquisition system result from modeling the field of view as a frustum and the specification of
the resolution. In addition, a cut-off angle between the acquisition system and the normal of
a surface point of the object must be defined, above which a point is not considered to be
acquired. Therefore, the sensor model used in this thesis is formally described by the:

• Resolution of the acquisition system Ruv that determines the number of surface points
acquired per acquisition.

• Aperture angles ϑA,uv of the frustum (field of view)

• Near and far bounds bnear and bfar of the frustum (operating range of the acquisition
system).
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• cut-off angle ϑA,C .

The object model used in the simulated environment is specified via the stereolithography
(STL) format. Thereby, the object is represented only by its surface in triangular facets.
The representation of the object with triangular facets enables a computationally efficient
ray tracing procedure, which the scanning module uses. A visualization of the raytracing
procedure, taking into account the characteristics of the sensor model, can be seen in Figure
5.17.

Acquisition process in the planning module
The scanning module connects the sensor model and the object model utilizing the Python
package trimesh (Dawson-Haggerty et al. 2019). Trimesh is used to enable efficient ray
tracing to emulate the three-dimensional acquisition of the object. The virtual acquisition
system is positioned using the pose pA/RTt based on the output of the previous step of
trajectory planning. Afterward, an acquisition is simulated. Depending on the resolution and
aperture angles of the sensor model, rays are defined starting from the focal point. The
coordinate of each first intersection point of the rays with the object defines a point in space
in the static coordinate system CRT . After simulating the acquisition of the object with the
scanning module based on the acquisition system pose pA/RTt , the point cloud PAt , as a sum
of all intersection points of the rays with the object, is returned. Given a pose pA/RTt where
the object does not lie in the frustum of the acquisition system (i.e., the sensor faces away
from the object), PAt is empty.

Observation update in the planning module
The scanning module bundles all information relevant to the agent through observation ot. ot
represents all information of the acquisition process up until the current interaction step t.

At the beginning of each acquisition process, the object model (STL model) to be inspected is
fed into SSim and stored in the observation data. Additionally, at the beginning of an acquisition
process, the ground truth point cloud PRT

′

GT is calculated and stored in the observation data
as well. PRT

′

GT is generated by evenly sampling nGT ground truth points on the object model
using a uniform sampling1 approach and transforming these points to CRT ′. On top of the
ground truth point cloud, the target point cloud PRT

′

G , which is the point cloud of points that
must be inspected based on the inspection goal, is stored in ot. Depending on the inspection
goal, PRT

′

G is either subset a of the object surface and thus of PRT
′

GT (for IPP) or equals PRT
′

GT

(for NBV and RPP).

1 Link to uniform sampling documentation in Open3D:
https://www.open3d.org/docs/0.7.0/python_api/open3d.geometry.sample_points_uniformly.html
accessed: 06.01.2024
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During an acquisition process, the scanning module collects all information gathered by the
simulated sequential acquisitions until interaction step t and stores them in the ot. Thereby,
PAt is first transformed into the co-rotating rotary table reference system CRT ′ obtaining PRT

′

t .
The total point cloud PRT

′

cov,t is then calculated based on the point cloud PRT
′

t acquired at step
t and all acquired point clouds PRT

′

1 , ..., PRT
′

t−1 up until step t − 1. Here, the approach for 3D
reconstruction, introduced in section 5.1.4, is used to continuously update PRT

′

cov,t and keep
it updated in the co-rotating rotary table coordinate system CRT ′. Furthermore, the ground
truth point cloud PRT

′

GT and goal point cloud PRT
′

G are also continuously updated during the
acquisition process to be represented in the same co-rotating rotary table coordinate system
as PRT

′

cov,t. This makes a comparison of the point clouds possible to check, e.g., coverage.

In summary, the following information given in the list below is computed and stored in the
observation data ot as well as updated after each acquisition:

• Object model (triangle mesh) of the object to be inspected in the current acquisition
process.

• Ground truth point cloud PRT
′

GT with predefined number of points.

• Target point cloud PRT
′

G as a subset of PRT
′

GT . The target point cloud contains all points
of PRT

′

G that need to be inspected in the current acquisition cycle. For NBV and VPP,
PRT

′

G = PRT
′

GT applies, while for IPP PRT
′

G ⊂ PRT
′

GT applies.

• Number of acquisitions t in the current acquisition process.

• List of acquisition system poses pA/RT1 , ..., pA/RTt of the current acquisition process and
the corresponding acquired point clouds PRT

′

1 , ..., PRT
′

t as well as the absolute rotary
table angles φRT,1, ..., φRT,t for each acquisition.

• Total point cloud PRT
′

cov,t acquired in an acquisition process up to interaction step t. This
point cloud is obtained by merging all the acquired point clouds PRT

′

1 , ..., PRT
′

t and
performing subsequent uniform downsampling to obtain a uniformly distributed point
cloud PRT

′

cov,t.

• Total point cloud PRT
′

cov,t−1 acquired up to interaction step t − 1.

This observation is then used in the agent interface IAgent to derive the state st+1 given to
the agent to select the following action at+1 at the interaction step t + 1. However, before
the agent is triggered to select the next action at+1 based on st+1, it is checked whether the
current acquisition process can be considered finished.
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Episode design
The check on whether an acquisition process must be terminated is based on ot. The
acquisition process in RL is called an episode. In RL, an episode is a state, action, and
reward transition sequence. Ideally, an episode ends in a goal state sG where the agent’s
task is considered completed. It is also possible to terminate an episode (i.e., an acquisition
process) based on predefined rules (e.g., exceeding a maximum permissible amount of agent
interactions with the environment).

A goal state sG is reached when the percentage surface coverage Ψt in inspection step t

exceeds a threshold value ΨT (e.g., 90%). The calculation rule for the percentage surface
coverage Ψt based on the point clouds PRT

′

G and PRT
′

cov,t is presented in 5.3.4.3. If the agent
does not reach sG after a certain number of interactions with the environment (acquisitions),
it enters a terminal state sT . This convention is reasonable due to the industrial context since
the agent should not be able to inspect an object indefinitely. For this reason, exceeding a
maximum permitted number of 10 acquisitions forces the episode to end without reaching a
sG.

After the end of an episode, either by reaching sG or sT , the reached surface coverage ΨE and
the required number of acquisitions nE is known. A new episode is then started by resetting
the complete environment (loading a new inspection object, resetting ot).

5.3.4 Modelling of the agent interface IAgent

The agent interface transfers information provided by the scan simulation environment into
a representation that can be interpreted by the agent (see section 5.3.4.1). Furthermore, it
translates selected agent actions into an acquisition step interpretable for the scan simulation
environment (see section 5.3.4.2). Besides, the agent interface also calculates the rewards
for the learning agent (see section 5.3.4.3).

5.3.4.1 State module

In the state module, the information stored in the overall observation data ot is used to deduce
the state st given to the agent to determine the acquisition system’s next pose pA/RTt+1 . To
ensure the transferability of the simulated system to a real scenario where no object model is
available, it is important that only data that is also available to the agent in the said scenario
is integrated into the calculation of the state st. Two base cases have to be distinguished.

1. STL model of the inspection object is not available (model-free):
If the object model does not exist at the time of inspection, the state st must only contain
information that has been collected up to time t − 1. This includes all information stored
in the observation ot−1. This implies that, for example, after an initial acquisition, only
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the point cloud PRT
′

0 or the pose pA/RT0 of this acquisition may be used to deduce state
s1 and passed to the agent. This effectively allows the agent to only be provided with
information about object surfaces already acquired or poses that have already been
approached. Further information that can be extracted from the object model a-priori
(e.g., the shape) cannot be used to model the state.

2. STL model of the inspection object is available (model-based):
If the model of the inspection object is known at the time of the inspection, it is permissible
to model the state st in such a way that information about object surfaces that the agent
has already inspected and additionally, those that still need to be inspected can be
passed.

When modeling st, special attention must therefore be paid to which information is passed
to the agent in which form based on an inspection goal under given boundary conditions
(model-based and model-free). Modeling the state vector st is thus a fundamental task to
provide the agent with all the information needed to select the next action.

In this thesis, the components of the state vector st are defined as generally as possible.
To realize this, we employ point clouds to represent the state. In contrast to low-resolution
occupancy grids, point clouds can represent object geometries in greater detail. Regardless
of whether a model-free or model-based inspection goal is being pursued, a combination of
the following information can be passed to the agent.

• Information of the current acquisition state, i.e., the acquired surface points of the object
(model-free) until interaction step t or information about acquired surface points until
interaction step t and still to be acquired surface points of the object (model-based).

• Surface orientation (normal) of already acquired (model-free) or already acquired and
still to be acquired surface points (model-based).

• The current pose pA/RTt of the acquisition system.

• Information about the surface points acquired with the last pose pA/RTt−1 of the acquisition
system.

The modeling approaches are explained below depending on the availability of the object
model.

State modeling for model-free inspection problems
For model-free inspection, the agent is only provided with information based on the surface
points of the object that acquisitions have already acquired until interaction step t.
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Therefore, the model-free option for state coding presented in this thesis is based on the total
point cloud PRT

′

cov,t acquired up to the current interaction step t of the agent with the environment.
Thereby, XRT ′

t,m , Y RT ′

t,m and ZRT ′

t,m denote the coordinates of a point PRT
′

t,m of the point cloud PRT
′

cov,t.
The first three columns of the state st,modf,PC (see equation 5.2) thus capture the available
information about the objects surface points already acquired during previous acquisitions.

st,modf,PC =


XRT ′

t,1 Y RT ′

t,1 ZRT ′

t,1 nφ,t,1 nθ,t,1 ∆t,1

... ... ... ... ... ...

XRT ′

t,2048 Y RT ′

t,2048 ZRT ′

t,2048 nφ,t,2048 nθ,t,2048 ∆t,2048

 and st,modf,p = pA/RTt

5.2

Since PRT
′

cov,t is generated based on point clouds of several consecutive acquisitions, a voxel
downsampling is carried out before calculating st,modf,PC. This has two key advantages. First,
voxel downsampling provides a point cloud PRT

′

cov,t with equal density distribution. Second, voxel
downsampling enables reducing the size of the point cloud to a fixed value. This is necessary
since the agents employ neural networks (see subsection 5.3.5) that require a fixed state
size st as inputs. In the present thesis, PRT

′

cov,t is therefore reduced to a size of 2048 points.
The number of points was chosen to correspond to a size that is also frequently chosen as a
reference in other works, such as in, for example, Achlioptas & Diamanti et al. (2018), Wang
& Ma et al. (2020) and Wen & Li et al. (2020). It has to be noted that there is no general rule
in choosing the number of points in the point cloud. The number of points should be chosen
as low as possible to reduce the calculation time of the agent but as high as necessary to
preserve the object’s shape.

Based on the high-resolution point cloud PRT
′

cov,t, the normal vector can be calculated for each
point. In contrast to the representation in Cartesian coordinates, the normal vectors of the
surface points are encoded in st,modf,PC in spherical coordinates, resulting in nφ,t,m, nθ,t,m.
This is because the required parameters expressing the points orientation can be reduced
from three to two, when leaving out the third component of the spherical normal vector of
a point nr,t,m. This can be done since the radius nr,t,m as the length of the normal vector
in spherical coordinates only plays a subordinate role for the actual orientation since it only
serves as a normalizing factor to ensure the length of the normal vector is 1. The mathematical
formulations for calculation of the normal vector in spherical coordinates given a point PRT

′

t,m

can be found in Appendix A2.

Finally, the binary coding ∆t,m ∈ [0, 1] can be used to specify whether this surface point
was acquired with the last acquisition of the acquisition system with the pose pA/RTt . Said
pose is also passed to the agent with state by st,modf,p, making the final state a tuple
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st,modf=(st,modf,PC,st,modf,p). Thus, in theory, it is possible for the agent to explicitly learn
the relationships between the pose pA/RTt passed to it by st,modf,p of the last acquisition and
the surface points acquired with this pose that are coded accordingly in st,modf,PC.

State modeling for model-based inspection problems
For model-based inspection, the agent is provided with information based on which surface
points have already been acquired until interaction step t and which surface points still need
to be acquired in the rest of an episode to fulfill the inspection goal. As in the model-free
case, the state st,modb=(st,modb,PC,st,modb,p) is a tuple. In contrast to model-free state modeling,
in which the current state is based on the point cloud PRT

′

cov,t, in the model-based case, the
state is calculated based on the ground-truth point cloud PRT

′

GT . The encoding of the current
acquisition state can then be carried out using an additional column with the entries bt,m. The
normal vectors nφ,t,m, nθ,t,m and the binary coding ∆t,m ∈ [0, 1] are determined analogously
to the model-free case. The complete state vector can be found in equation 5.3.

st,modb,PC =


XRT ′

t,1 Y RT ′

t,1 ZRT ′

t,1 bt,1 nφ,t,1 nθ,t,1 ∆t,1

... ... ... ... ... ... ...

XRT ′

t,2048 Y RT ′

t,2048 ZRT ′

t,2048 bt,2048 nφ,t,2048 nθ,t,2048 ∆t,2048

 , st,modb,p = pA/RTt

5.3

Two cases must be distinguished in the case of VPP as an inspection target. Either the re-
spective point PRT

′

t,m depicted in the state has already been acquired in the previous acquisition
process and is therefore contained in PRT

′

cov,t or not. In the case of VPP as an inspection target,
the following therefore applies with m ∈ {1, ...2048}:

bt,m =


1 PRT

′

t,m ∈ PRT
′

cov,t

0 PRT
′

t,m /∈ PRT
′

cov,t

5.4

For the inspection target IPP, only a subset of all surface points must be inspected (PRT
′

G ⊂
PRT

′

GT ) and PRT
′

G ≠ PRT
′

GT applies. Therefore, in the case of IPP as an inspection target, in
addition to checking whether a surface point has already been acquired or not (PRT

′

t,m ∈ PRT
′

cov,t),
it must also be checked whether it should be acquired at all (PRT

′

t,m ∈ PRT
′

G ) in order to fulfill
the inspection target. In this case, the following applies with m ∈ {1, ...2048}:

bt,m =


1 PRT

′

t,m ∈ PRT
′

cov,t and PRT
′

t,m ∈ PG

0 PRT
′

t,m /∈ PG

−1 PRT
′

t,m /∈ PRT
′

cov,t and PRT
′

t,m ∈ PG

5.5
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Implemented state modeling alternatives
The presented model-based and model-free states correspond to the complete information
available to the agent in each acquisition step. The variants of state modeling shown in Table
5.4 are implemented in the simulation framework to enable an evaluation of the extent to
which state modeling offers a learning advantage.

Table 5.4: Overview of the model-free (S1 − S3) and model-based (S4 − S6) state modeling
alternatives.

Model-free state modeling alternatives
Abbreviation st,modf,PC st,modf,p

S1


XRT ′

t,1 Y RT ′

t,1 ZRT ′

t,1
... ... ...

XRT ′

t,2048 Y RT ′

t,2048 ZRT ′

t,2048


cov

-

S2


XRT ′

t,1 Y RT ′

t,1 ZRT ′

t,1 nφ,t,1 nθ,t,1
... ... ... ... ...

XRT ′

t,2048 Y RT ′

t,2048 ZRT ′

t,2048 nRT
′

φ,t,2048 nRT
′

θ,t,2048


cov

-

S3


XRT ′

t,1 Y RT ′

t,1 ZRT ′

t,1 nφ,t,1 nθ,t,1 ∆t,1
... ... ... ... ... ...

XRT ′

t,2048 Y RT ′

t,2048 ZRT ′

t,2048 nφ,t,2048 nθ,t,2048 ∆t,2048


cov


X
A/RT
t

...

γ
A/RT
t


Model-based state modeling alternatives
Abbreviation st,modb,PC st,modb,p

S4


XRT ′

t,1 Y RT ′

t,1 ZRT ′

t,1 bt,1
... ... ... ...

XRT ′

t,2048 Y RT ′

t,2048 ZRT ′

t,2048 bt,2048


GT

-

S5


XRT ′

t,1 Y RT ′

t,1 ZRT ′

t,1 bt,1 nφ,t,1 nθ,t,1
... ... ... ... ... ...

XRT ′

t,2048 Y RT ′

t,2048 ZRT ′

t,2048 bt,2048 nφ,t,2048 nθ,t,2048


GT

-

S6


XRT ′

t,1 Y RT ′

t,1 ZRT ′

t,1 bt,1 nφ,t,1 nθ,t,1 ∆t,1
... ... ... ... ... ... ...

XRT ′

t,2048 Y RT ′

t,2048 ZRT ′

t,2048 bt,2048 nφ,t,2048 nθ,t,2048 ∆t,2048


GT


X
A/RT
t

...

γ
A/RT
t



The modeling alternatives S1 and S4 represent the simplest model-free and model-based
modeling variants. Here, only the point information (XRT ′

t,m , Y RT ′

t,m , ZRT ′

t,m ) based on PRT
′

cov,t (model-
free state) or PRT

′

GT (model-based state), as well as the coding bt,m in the model-based case are
used in the respective state modelings. Further modeling variants include the integration of
the normal vectors (S2 and S5) in the model-free and model-based case. Furthermore, S3 and
S6 each represent the complete, already introduced, state modeling variants. In addition to the
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information ∆t,m, these modeling variants also contain the pose st,modf,p (in the model-free
case) or st,modb,p (in the model-based case) as input. It should be noted that the poses in the
model-free and model-based case do not differ (st,modf,p = st,modb,p)

a) RPP 𝑆1

Already acquired point cloud

Points on the model not acquired so far

Point cloud of state modeling 𝑆1

Points of state modeling 𝑆4 already 
acquired

b) RPP 𝑆4

Already acquired point cloud

Points on the model not acquired so far

Points of state modeling 𝑆4 not acquired

c) IPP 𝑆4

Points of state modeling 𝑆4 needed to be 
acquired and have been acquired

Points of state modeling 𝑆4 needed be acquired 
but have not been acquired so far

Already acquired 
point cloud

Points on the model 
not acquired so far

Points not of 
interest for IPP

Figure 5.18: Visualisation of selected modelling variants of the state.

A visualization of the process of generating the state st can be found in Figure 5.18. The
Figure shows how the state S1 is derived in the case of RPP (model-free case in subfigure
a) with knowledge of all points acquired so far. In this case, only all previously acquired
points on the surface of the inspection object (green) are sampled down to a fixed size. In
contrast, the state generation process is shown in the model-based case for the RPP with
state definition S4 (subfigure b). Since knowledge of the object model can be assumed in this
case, information can also be included regarding which surface points have already been
acquired (green) and which have not (red). This color coding corresponds to the variable
bt,m introduced in the text. In the case of RPP, this assumes the values 1 (a surface point
already acquired) and 0 (a surface point not yet acquired). Similarly, the state modeling S4

is used in the model-based case for the IPP. In this case, only a third coding type (bt,m = 0)
is introduced for points that are not to be acquired and are shown in black in subfigure c of
Figure 5.18.

5.3.4.2 Action module

Based on a state st ∈ [st,modf , st,modb], the action module generally receives an n-dimensional
action vector at as the agent’s output based on st in each interaction step with the environ-
ment. To ensure consistency of interaction between IAgent and APlan, it is defined that each
component of the action vector at in equation 5.6 contains values in the range between -1
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and 1. This is due to the fact, that the NN, that will output the action vector at, are limited
in the value range due to the activation functions used in the last layer of the NN. For more
information on the NN used in this thesis, see section 5.3.5 for an in-depth explanation.

at = (at,1, ..., at,n) at,i ∈ [−1, 1] with i = {1, ...n} 5.6

The action module then maps the action vector at to a VP V S
t = (pA/RTt , pO/RTt , λA) of the

acquisition system and object. The need for an action module arises due to the following
reasons:

• A mapping between output values of the action vector at and their relationship to the
components of the poses pA/RTt and pO/RTt of the acquisition systems coordinate system
CA and objects coordinate system CO must be established.

• Due to the restriction of the value ranges of the components at,i (between -1 and 1) of
the action vector at, an adjustment of these value ranges to the real working range of
the inspection station (robot and rotary table) has to be carried out.

• The action module allows for the integration of additional prior knowledge.

The tasks of the action module listed above are explained in detail below.

Coordinate system mapping
As explained in section 5.3.3, the pose pA/RTt is a vector with the components X

A/RT
t , Y

A/RT
t ,

Z
A/RT
t , α

A/RT
t , β

A/RT
t and γ

A/RT
t . Furthermore, the pose pO/RTt of the inspection object

depends on the rotation angle φRT,t of the rotary table. In the most straightforward case, the
values of the action vector at = (at,1, ..., at,n) are mapped directly to the components of the
poses pA/RTt and pO/RTt . This results in an action vector with seven entries. Three for the
Cartesian coordinates X

A/RT
t , Y

A/RT
t , Z

A/RT
t , three for the Euler angles α

A/RT
t , β

A/RT
t and

γ
A/RT
t and one entry for the relative rotation angle ∆φRT,t of the rotary table. The agent can,

therefore, not influence the absolute angle φRT of the rotary table but only the relative rotation
based on the current absolute angle.

However, an intermediate step using spherical coordinates is also possible for mapping the
position of the acquisition system. In this case, the first three components of the action vector
initially represent the spherical coordinates azimuth angle φ

A/RT
t , polar angle θ

A/RT
t , and the

radius r
A/RT
t . As in the first case, the last three components correspond to the Euler angles

α
A/RT
t , β

A/RT
t and γ

A/RT
t . Conversion to Cartesian coordinates is then carried out using the

relationships explained in Appendix A2. A potential advantage of defining the components
of the action vector in spherical coordinates lies in the dependence of the distance of the
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acquisition system from the rotary table and, therefore, the object to be inspected on only
the parameter r

A/RT
t . This suggests that the RL agent can easily learn the positioning of the

acquisition system from the object at an optimal working distance.

x

y

z

𝜑𝑡
𝐴/𝑅𝑇

𝜃𝑡
𝐴/𝑅𝑇

𝑟𝑡
𝐴/𝑅𝑇

x

y

z

𝑋𝑡
𝐴/𝑅𝑇

𝑌𝑡
𝐴/𝑅𝑇

𝑍𝑡
𝐴/𝑅𝑇

a) Cartesian coordinate system b) Spherical coordinate system

Figure 5.19: Visualization of the mapping of the agent output to the position in space in
Cartesian coordinates (left, subfigure a)) or spherical coordinates (right, subfigure
b))

An exemplary visualization of the mapping of the agent output to the position of the next
acquisition pose is shown in Figure 5.19.

Adjustment of value ranges
By restricting the values of the components at,i in the range between -1 and 1, the value ranges
must subsequently be adjusted, given an assignment of the components of the action vector
to components of a coordinate system. Assuming a unique assignment of the components
of the action vector at to Cartesian coordinates and a square workspace around the center
of the inspection object, the first three components at,1, at,2, at,3 of at can be mapped, to the
Cartesian coordinates X

A/RT
t , Y

A/RT
t and Z

A/RT
t in the value range [−100, 100]. In this case,

a mathematical mapping (at,1, at,2, at,3) ∈ [−1, 1] → (XA/RT
t , Y

A/RT
t , Z

A/RT
t ) ∈ [−100, 100]

takes place using Min-Max scaling. Similarly, using spherical coordinates, this implies that
a mapping of at,i with the value ranges of [−1, 1] to [0, 2π] for the azimuth angle φ

A/RT
t

(at,1 ∈ [−1, 1] → φ
A/RT
t ∈ [0, 2π]) as well as [0, π] for the polar angle θ

A/RT
t (at,2 ∈ [−1, 1] →

θt ∈ [0, π]) and, for example, [0, 100] for the radius r
A/RT
t (at,3 ∈ [−1, 1] → rt ∈ [0, 100]),

is performed. Similarly, the angles α
A/RT
t , β

A/RT
t and γ

A/RT
t as well as the relative rotation

angle of the rotary table ∆φRT,t are scaled to valid value ranges. The explained relationships
can be found in Table 5.5.

Based on these relationships, the poses pA/RTt and pO/RTt of the acquisition system and
inspection object as part of the VP V S

t can be determined based on the output at of the agent.
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Table 5.5: Overview of the adjustment of the value ranges of the individual mapped compo-
nents of the action vector to the components of the poses pA/RTt and pO/RTt .
(a) Value ranges when using Cartesian coordinates. (b) Value ranges when using
spherical coordinates.

Parameter Value range

XRT
t , Y RT

t , ZRT
t [−100, 100]

αRTt , γRTt [−180◦, 180◦]
βRTt [−180◦

2 , 180◦

2 ]
∆φRT,t [0◦, 360◦]

Parameter Value range

φRTt [0, 360◦]
θRTt [0, 180◦

2 ]
rRTt [0, 100]

αRTt , γRTt [−180◦, 180◦]
βRTt [−180◦

2 , 180◦

2 ]
∆φRT,t [0◦, 360◦]

When calculating the pose pO/RTt , however, it must be noted that the absolute angle of rotary
table must be used to calculate the pose, which can be retrieved by IAgent from the ROS
parameter server (see 5.1.2). This is because the agent can only output one relative angle
∆φRT,t and can, therefore, only be used to determine the relative pose ∆pO/RTt .

Integration of prior knowledge
The modeling of the action vector presented so far assumes that the agent can and has to
influence all degrees of freedom of the system. For the given problem of visual planning,
however, prior knowledge can be used meaningfully to reduce the decision complexity of
the agent and thus simplify the visual planning problem. This way, it is assumed that agents
can be trained faster since the solution space is restricted and the exploration of non-optimal
strategies is excluded from the beginning.

The variants of prior knowledge considered in this thesis are:

1. Reasonable restriction of the value ranges to which individual agent outputs are mapped.

2. Use of analytical determination of individual components of the poses pA/RTt and pO/RTt

to simplify the learning task of the RL agent.

An overview of different possibilities of integrating prior knowledge for mapping the agent
output to poses of the acquisition system is listed in Table 5.7.

In the case of spherical coordinates, limiting the radius r
A/RT
t to a small and fixed range or

even a fixed value, exploiting knowledge of the optimal working distance of the acquisition
system, is possible (Mr,fix and Mr,range). Concerning the orientation of the acquisition system,
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a heuristical approach can be applied to ensure that the acquisition system is always oriented
toward the center of gravity of the inspection object (Mα,β). The calculation rule is identical
to the rule for data generation for segmentation already mentioned in section 5.2.1. In this
case, the angle γ

A/RT
t , which corresponds to the rotation around the longitudinal axis of the

acquisition system, is determined so that the y-axis of CA is aligned coplanar to the x-y plane
of the coordinate system CRT of the rotary table Mγ,align. Thus, it is possible to have the RL
agent learn the position of the acquisition systems pose pA/RTt , while the orientation is always
being specified heuristically. The number of entries of the action vector at as the output
of the agent can thus be reduced to three parameters (representing X

A/RT
t , Y

A/RT
t and

Z
A/RT
t when using Cartesian coordinates or φ

A/RT
t , θ

A/RT
t and r

A/RT
t when using spherical

coordinates). An alternative is M∆α,∆β, where α
A/RT
t and β

A/RT
t are oriented towards CRT ,

but the agent can specify relative angle deviations ∆α
A/RT
t , ∆β

A/RT
t , as in the case of the

rotation angle of the rotary table.

If the planning problem is initially to be solved without considering the restrictions on the
accessibility of poses by the robot model, further simplifications can be integrated. This
concerns, for example, the angle γ

A/RT
t . γ

A/RT
t , has almost no influence on the acquired

points of the object surface due to its almost rotationally symmetric frustum but has a large
influence on the joint angles of the robot required to reach a pose pA/RTt . If the robot’s
trajectory planning is excluded, γ

A/RT
t can be fixed, resulting in Mγ,fix (e.g., γ

A/RT
t = 0). In

this case, the planning problem can also be simplified to the extent that ∆φRT,t can be set to
zero, since any pose pA/RTt in space can be reached by the acquisition system and rotation
of the inspection object is not necessarily required to completely cover the surface of the
inspection object. This leads to M∆φRT,t,fix (∆φt,RT = 0).

If the robot’s trajectory planning is considered, it is useful to directly limit unreachable poses in
space. This applies in particular to poses of the acquisition system in space whose positions
are too far away from the robot base CR. In this case, the value ranges of the spherical
coordinates φ

A/RT
t and θ

A/RT
t can be restricted, which leads to Mφ,θ,range. In this case, the

ranges of φ
A/RT
t and θ

A/RT
t are chosen, so that the resulting pose pA/Rt of CA in CR (after

coordinate transformation of pA/RTt to pA/Rt ) is reachable with high probability.

Variants of implemented action alternatives
With the variants of coordinate system mapping introduced and the options for integrating
prior knowledge presented, there are several alternative variants of possible action encoding
for the agents. These variants vary depending on the degrees of freedom (DoF) the agent
exhibits and the prior knowledge used to restrict the DoF of the agent. An excerpt of the
implemented variants can be found in Table 5.8 for the Spherical action modeling variants
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Table 5.7: Overview of valid possibilities to integrate prior knowledge into the action mapping.
Abbreviation Parameter Description

Mr,fix r
A/RT
t Fixed value of r

A/RT
t (rA/RTt = 470mm).

Mr,range r
A/RT
t r

A/RT
t is set in a small range around working distance of

the acquisition system (rA/RTt ∈ [450mm, 550mm]).

Mγ,fix γ
A/RT
t Fixed value of γ

A/RT
t (γA/RTt = 0◦).

Mγ,align γ
A/RT
t Choose γ

A/RT
t to align the y-axis of CA coplanar to the x-y

plane of CRT .

Mα,β α
A/RT
t , β

A/RT
t α

A/RT
t and β

A/RT
t are determined analytically to face CRT .

M∆α,∆β α
A/RT
t , β

A/RT
t α

A/RT
t and β

A/RT
t are determined analytically to face CRT .

Angular deviations ∆α
A/RT
t , ∆β

A/RT
t ∈ [−10◦, 10◦] from

these heurstically calculated angles α
A/RT
t and β

A/RT
t are

determined by the agent.

M∆φRT,t,fix ∆φt,RT ∆φt,RT = 0 for the whole acquisition cycle.

Mφ,θ,range φ
A/RT
t , θ

A/RT
t φ

A/RT
t and θ

A/RT
t are restricted in the ranges φ

A/RT
t ∈

[45◦, 135◦] and θ
A/RT
t ∈ [22.5◦, 90◦].

and in Table 5.9 for the cartesian action modeling variants. These are explained briefly in the
following.

The most basic modeling variant is the variant with the abbreviation A2S,0R. In this case,
spherical coordinates are used for the mapping. The agent has two degrees of freedom
φ
A/RT
t and θ

A/RT
t . The distance r

A/RT
t of the acquisition system to the center of the inspection

system is fixed and the orientation is determined analytically, where γ
A/RT
t is always set to

zero. Furthermore, the agent cannot rotate the inspection object (∆φRT,t). In comparison
to A2S,0R, the action coding A3S,0R allows the agent to additionally control the distance of
the acquisition system to the inspection object using the radius r

A/RT
t . The encoding variant

A3S,2R provides the agent with the ability to freely define its orientation using Euler angles
α
A/RT
t and β

A/RT
t . However, γ

A/RT
t is still set to zero. In contrast, A3S,2R,lim determines the

orientation (αA/RTt , β
A/RT
t ) analytically, but the agent can specify deviations ∆α

A/RT
t and

∆β
A/RT
t . The last action variant presented using a mapping based on spherical coordinates

is A3S,2R,lim,T . This variant enables the object to be rotated (∆φRT,t) but has restrictions in
the angle range of the angles φ

A/RT
t and θ

A/RT
t that can be approached. In addition, prior

knowledge is integrated by limiting the distance r
A/RT
t to the inspection object. This variant

of action encoding is particularly useful and necessary when considering the agent system
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Table 5.8: Spherical RL action modeling variants. Lowercase numbers in the abbreviation
denote DoF. Lowercase letters denote either the coordinate system (S for spherical)
or the rotation R to which the DoF are allocated. T indicates whether rotary table
rotation is enabled.

Spherical coordinate mapping alternatives

Abbreviation DoF poses pA/RTt and pO/RTt Fixed parameters Prior knowledge

A2S,0R
at,1=̂φ

A/RT
t

at,2=̂θ
A/RT
t

α
A/RT
t =̂analytical

β
A/RT
t =̂analytical

γ
A/RT
t = 0◦

r
A/RT
t = 470mm

∆φRT,t = 0◦

Mα,β

Mγ,fix

M∆φRT,t,fix

Mr,fix

A2S,0R,T

at,1=̂φ
A/RT
t ∈ [45◦, 135◦]

at,2=̂θ
A/RT
t ∈ [22.5◦, 90◦]

at,3=̂∆φRT,t

α
A/RT
t =̂analytical

β
A/RT
t =̂analytical

γ
A/RT
t = 0◦

r
A/RT
t = 470mm

Mα,β

Mγ,fix

Mr,fix

A3S,0R

at,1=̂φ
A/RT
t

at,2=̂θ
A/RT
t

at,3=̂r
A/RT
t

α
A/RT
t =̂analytical

β
A/RT
t =̂analytical

γ
A/RT
t = 0◦

∆φRT,t = 0◦

Mα,β

Mγ,fix

M∆φRT,t,fix

A3S,2R

at,1=̂φ
A/RT
t

at,2=̂θ
A/RT
t

at,4=̂α
A/RT
t

at,3=̂r
A/RT
t

at,5=̂β
A/RT
t

γ
A/RT
t = 0◦

∆φRT,t = 0◦
Mγ,fix

M∆φRT,t,fix

A3S,2R,lim

at,1=̂φ
A/RT
t

at,2=̂θ
A/RT
t

at,3=̂r
A/RT
t

at,4=̂∆α
A/RT
t

at,5=̂∆β
A/RT
t

γ
A/RT
t = 0◦

∆φRT,t = 0◦

M∆α,∆β

Mγ,fix

M∆φRT,t,fix

A3S,2R,lim,T

at,1=̂φ
A/RT
t ∈ [45◦, 135◦]

at,2=̂θ
A/RT
t ∈ [22.5◦, 90◦]

at,3=̂r
A/RT
t ∈ [400mm, 600mm]

at,4=̂∆α
A/RT
t

at,5=̂∆β
A/RT
t

at,6=̂∆φRT,t

γ
A/RT
t = 0◦

Mr,range

Mγ,fix

Mφ,θ,range
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Table 5.9: Cartesian RL action modeling variants. Lowercase numbers in the abbreviation de-
note DoF. Lowercase letters denote either the coordinate system (C for Cartesian)
or the rotation R to which the DoF are allocated.

Cartesian coordinate mapping alternatives

Abbreviation DoF poses pA/RTt and pO/RTt Fixed parameters Prior knowledge

A3C,0R

at,1=̂X
A/RT
t

at,2=̂Y
A/RT
t

at,3=̂Z
A/RT
t

α
A/RT
t =̂analytical

β
A/RT
t =̂analytical

γt = 0◦

∆φRT,t = 0◦

Mα,β

Mγ,fix

MφRT,t,t,fix

in conjunction with the developed robot simulation, as this variant already maps the agent
outputs into accessible workspace areas of the robot system. The rotation of the inspection
object then enables the agent to perform a complete object inspection. A simplified version
of this action variant is A2S,0R,T . In this case, both the radius r

A/RT
t is fixed and the angles

α
A/RT
t and β

A/RT
t are determined analytically.

An analogous approach can also be used in the case of mapping to Cartesian coordinates
(table 5.9). In the case of action mapping A3C,0R, the three action outputs at,1, at,2 and at,3

of the action vector at are mapped to the degrees of freedom X
A/RT
t , Y

A/RT
t and Z

A/RT
t . An

integration of prior knowledge to determine the remaining degrees of freedom can be done
analogously to the case of mapping to spherical coordinates.

5.3.4.3 Reward module

To learn a desired behavior that solves the acquisition planning problem as well as possible
and to continuously evaluate the actions performed, an RL agent receives feedback in the
form of a numerical reward signal rt. The challenge in RL lies in breaking down the overall
goal, which the agent must fulfill through its strategy in interaction with the environment, to
this one numerical value. The reward signal must, therefore, be expressed as a function of
evaluation metrics that indicate the degree of fulfillment of an inspection target. In accordance
with 2.2.1 and section 5.3.1, the evaluation metrics considered in this thesis for the planning
problems NBV, RPP and IPP are chosen as follows:

• Achieved surface coverage ΨE of the target point cloud PRT
′

G after one (NBV) or
several acquisitions (RPP, IPP) after an episode. For NBV and RPP, PRT

′

G corresponds
to the ground-truth point cloud PRT

′

GT of the inspection object, while for IPP only a subset
of all surface points of the inspection object, i.e. only certain ROI, must be acquired
(PRT

′

G ⊂ PRT
′

GT ).
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• Number nE of acquisitions required for completing the inspection goal, i.e., reaching
goal state sG, or the termination state sT . Only relevant for RPP and IPP since for NBV
nE = 2.

• Overall length dE of traveling distances between the successively determined poses
by the agent to fulfill the inspection goal (reaching state sG) or after termination by
exceeding a predefined allowable number of acquisitions (reaching state sT ).

Further evaluation metrics not considered in this thesis may depend on the VPP solution’s
application area. For metrological applications, the accuracy of an acquired point cloud or its
resolution may be important (Scott 2009).

Considering the evaluation metrics mentioned above, it is useful to express the reward signal
R as a function of these variables as in equation 5.7.

R = f(ΨE, nE, dE) 5.7

In the literature and in this thesis, two types of reward signals, Rdense and Rsparse, are distin-
guished (Eschmann 2021, P. 32). The dense reward Rdense describes a reward signal where
the agent receives a reward after each action performed. The sparse reward signal Rsparse

describes a reward signal, where the agent only receives a reward if a terminal state sT is
reached.

Specifically for the dense reward Rdense, auxiliary metrics need to be considered since,
particularly at the beginning of a data acquisition process, the impact of an action on the
evaluation metrics ΨE, nE, and dE can be difficult to estimate. Auxiliary metrics include, for
example, the percentage of surface points ∆Ψt acquired with an acquisition, which have not
been covered in the previous acquisitions. Furthermore an auxiliary metric is the length dt

as the travel length between the previous pose (pA/RTt−1 ) and the pose output by the agent
(pA/RTt ). Dense rewards, thus, offer the advantage of making it easier for the agent to learn
a strategy since it receives a reward after each step. However, the challenge is to choose
auxiliary metrics to construct Rdense in such a way that actions are chosen so that they
contribute to fulfilling the long-term goal expressed by the evaluation metrics ΨE, nE, and
dE. An insufficient choice of auxiliary metrics can make it impossible for the agent to find the
optimal solution to the problem.

In contrast, sparse rewards Rsparse are directly based on the evaluation metrics ΨE, nE, and
dE after an episode ends. However, in this case, the agent receives a reward only once in
an episode. This results in a difficult credit-assignment problem, which involves determining
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which of the actions taken by the agent were more influential on the outcome (good or bad)
than the others.

The evaluation and auxiliary metrics must be quantitatively approximated from the observation
ot of the scan simulation environment SSim during the agent’s learning process. These
approximations are detailed in the following.

Calculation of surface coverage
To calculate the surface coverage ΨE after an episode or auxiliary metrics related to surface
coverage, the point cloud PRT

′

cov,t acquired until interaction step t is first downsampled. This
downsampling is done to match the point density (voxel grid size) of the ground truth point
cloud PRT

′

GT using a voxel grid approach.

The first auxiliary metric is the percentual surface coverage Ψt after t acquisition steps in
the acquisition process. Ψt can be estimated by taking into account the maximum number of
possible ground truth points nGT to be acquired and the ncov,t acquired points on the ground
truth point cloud PRT

′

GT by the acquisition system until interaction step t. ncov,t is calculated by
assigning each point of the acquired point cloud PRT

′

cov,t to a point of the ground truth point cloud
PRT

′

GT if its nearest neighbor in PRT
′

GT falls below a certain threshold distance ϵ. The parameter
ϵ is thereby dependent on the point cloud density of PRT

′

cov,t and PRT
′

GT and consequently the
point distances between them. Therefore, the parameter ϵ is chosen heuristically, resulting in
ϵ = 0.2 in this thesis. Note that a higher density of PRT

′

cov,t and PRT
′

GT should result in choosing a
lower ϵ. The object coverage Ψt can then be estimated using equation 5.8.

Ψt = ncov,t
nGT

5.8

Similarly, based on the same calculation method, the percentage of object surface in the last
acquisition ∆Ψt, not yet covered by previous acquisitions, can be calculated. This auxiliary
metric is a function of the new surface points ∆ncov,t acquired in the last acquisition at step t

and the number of points in the ground truth point cloud nGT . It can also be calculated via
∆Ψt = Ψt−Ψt−1. As the last auxiliary metric, the percentage of remaining object surface to be
covered Ψt,rem = 1 − Ψt is an additional metric that can be used for the reward calculation.

It should be noted that calculating the surface coverage of individual acquisitions during
the training process, which takes place during the calculation of the reward signal, is only
possible based on an available three-dimensional geometry model of the object. This is
permissible since geometry models must be part of the training process. The distinction
between model-based and model-free only arises when using the fully trained RL agent,
provided that information about the geometry model is used to calculate the state st,modb
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(model-based, the geometry model must also be available when using the RL agent) or is not
used st,modf (model-free, no geometry model is required).

Approximation of the length of traveling distance
For industrial application cases, the length of the traveling paths is a relevant evaluation metric.
It significantly influences the execution time of an acquisition plan and, therefore, directly
influences the inspection time. Using MoveIt to determine a trajectory between points and is
a simple way to afterward calculate the length of a trajectory between an initial pose pRTt−1 and
a final pose pRTt . For the framework developed in this thesis, estimating the trajectories and
calculating the associated reward should also be possible without the explicit use of MoveIt.
Therefore, a reasonable and conservative approximation of the travel distances given the
acquisition system’s initial and final pose is used. The simplified approximation of the travel
distance dt (t = 1, ..., T ) between a start pose pRTt−1 and an end pose pRTt of the acquisition
system is carried out via the estimation of the length of a circular segment and a downstream
linear travel path (see equation 5.9). This simplified approximation is visualized in Figure 5.20
and explained in the following.

𝐶𝑅𝑇

𝑑𝑡,𝑠𝑝ℎ

𝑑𝑡,𝑙𝑖𝑛
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𝒑𝑡−1
𝑅𝑇

𝒑𝑠
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𝒑𝑡
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𝒑𝑡−1
𝑅𝑇

𝒑𝑠
𝑅𝑇

𝑑𝑡,𝑙𝑖𝑛

𝑑𝑡,𝑠𝑝ℎ

1

2

Figure 5.20: Visualization of the approximation of travel distance dt

First, the Cartesian coordinates of the auxiliary point pRTs are calculated. To this end, it is
first checked which of the two poses (pRTt or pRTt−1) has the smaller distance to the origin,
which is the coordinate system CRT of the rotary table. Two different cases have then to
be distinguished based on which point (pRTt or pRTt−1) has the greater distance to CRT . Both
cases are visualized in Figure 5.20. An auxiliary point is calculated as the point that lies on
the vector between the origin and the pose with the greater distance to the origin and has a
distance to the origin that is equal to the distance of the pose with the smaller distance to the
origin. dt,lin then equals the travel distance from pRTs to the pose with the greater distance to
the origin. dt,sph correspondingly equals the length of the circular arc between the pose with
the smaller distance to the origin and pRTs .
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dt = dt,sph + dt,lin 5.9

In the case of an equal radius, the travel distance solely consists of the distance dt,sph on the
spherical surface. The overall traveling distance dE as an evaluation metric for an episode
can then be calculated as the sum of the travel distances dt of all acquisitions until sT or sG is
reached at step t = T (see equation 5.10).

dE =
t=T∑
t=0

dt 5.10

Overview of implemented reward alternatives
An overview of the implemented variants of dense and sparse rewards can be found in
Table 5.10. The first reward variant R1 rewards the agent after each acquisition based on the
percentage of newly covered surface area scaled by the percentage of object surface area
still acquirable before said acquisition. R2 only rewards the agent by the percentage of newly
acquired surface area and is thus a simpler version of R1. The choice of designing reward
R1 this way is reasonable, since rewarding the agent only relative to the area newly covered
(R2), leads to continuously diminishing rewards in later acquisition steps. This is because
the object surface to be newly covered relative to the total surface area gets smaller, in case
previous acquisition steps already provided a high coverage. Therefore, the reward signal R1

considers the object surface covered in an acquisition step relative to the object surface that
can still be acquired. R3 additionally scales R1 with the travel distance required to reach the
pose pA/RTt specified by the agent for acquisition. This reward signal can thus guide the agent
to choose actions that provide high surface coverage with low travel distances. Variations of
reward functions R1 and R2 are R4 and R5, where the agent receives a negative reward if no
additional object surface is acquired.

Similar approaches are adopted based on the agent’s reward after an episode in a sparse
reward setting. R6 rewards the agent only if the agent fulfills the ΨE ≥ 90% surface coverage
goal. R7 relates that reward to the achieved surface coverage ΨE. R8 additionally introduces
a scaling concerning the number of acquisitions needed to achieve the respective coverage
goal. Thus, the agent explicitly receives higher rewards for achieving a large object surface
coverage while minimizing the number of acquisitions required. An additional scaling by the
cumulative travel costs dE in an episode is used in R9.
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Table 5.10: Implemented modeling variants of the reward signal for the reinforcement learning
agent.
Abbreviation Type Goal Formula

R1 Dense Ψt ≥ 90% rt = ∆Ψt

Ψrem,t−1

R2 Dense Ψt ≥ 90% rt = ∆Ψt

R3 Dense Ψt ≥ 90% rt = ∆Ψt

Ψrem,t−1
1
dt

R4 Dense Ψt ≥ 90% rt =
{

∆Ψt, ∆Ψt > 0
−1, otherwise

R5 Dense Ψt ≥ 90% rt =


∆Ψt

Ψrem,t−1
1
dt

, ∆Ψt > 0
−1, otherwise

R6 Sparse Ψt ≥ 90% rt =
{

1, st = sG
0, st ̸= sG

R7 Sparse Ψt ≥ 90% rt =
{ ΨE

nE
, st = sG

0, st ̸= sG

R8 Sparse Ψt ≥ 90% rt =
{ ΨE

nE
, st = sT

0, st ̸= sT

R9 Sparse Ψt ≥ 90% rt =
{ ΨE

nEdE
, st = sT

0, st ̸= sT

5.3.5 Modeling of the reinforcement learning agent APlan,RL

To configure the RL agents, the software framework stable-baselines1 (Raffin & Hill et al.
2021) is used, which supports the simple use and parameterization of different RL agents.
Due to the continuous state and action space considered, proximal policy optimization (PPO)
by Schulman & Wolski et al. 2017 and soft actor critic (SAC) by Haarnoja & Zhou et al. 2018
are suitable state of the art methods and evaluated. Both methods belong to the group of
actor-critic variants of RL. As explained in 2.3.3, these methods use a parameterized policy
as an actor and parameterized value function approximation as critic. The parameters of the
agent APlan,RL are denoted by w. w contains the parameters of the parameterized policy
and the value function approximation. The parameters of the value function approximation
(critic) are denoted by wϕ. During the training phase, weights wϕ are continuously updated to
approximate the value function given the current state. This, in return, enables the evaluation
and optimization of the action selection strategy (actor) by updating its weights wψ by gradient-
based updates.

1 Link to online documentation of stable-baselines:
https://stable-baselines3.readthedocs.io/en/master/
accessed: 13.06.2024
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Figure 5.21: Overview of the NN architecture based on PN and PCN encoder for feature
extraction and regression MLP for agent output.

The representation of the strategy or the estimators of the value function is carried out, as usual
in the current state of research, using neural networks (c.f. Devrim Kaba & Gokhan Uzunbas
et al. 2017; Potapova & Artemov et al. 2020; Korbach & Solbach et al. 2021; Landgraf &
Meese et al. 2021; Mnih & Kavukcuoglu et al. 2015). Any network architecture that transfers
a point cloud as input into a feature vector can be used. Based on preliminary tests, two
suitable alternatives for processing point clouds have been identified in a joint work, resulting
in a thesis supervised by the author of this dissertation (A_Gäbele 2022). The first alternative
is an implementation of PointNet (PN) by Qi & Su et al. (2017), the first implementation of
a neural network for learning on point clouds. The second option is the use of the feature
vector as the output of the encoder of the Point Completion Network (PCN) by Yuan & Khot
et al. 2018, which builds on the approach of the PN. In contrast to the PN, the PCN does
not employ input transforms. Instead, a shared MLP directly calculates local point features.
Intermediary global features are obtained and concatenated with the local point features using
a max-pooling layer. The final global feature vector vg,PCN that captures information about the
entire point cloud is obtained using another shared MLP and max-pooling. Both alternative
network structures, when used in a parameterized policy as an actor to determine the next
action at based on state st = (st,PC, st,p), can be seen in Figure 5.21. Thereby, st,PC and st,p
are either the model-based versions ((st,PC, st,p) = (st,modb,PC, st,modb,p)) or the model-free
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version ((st,PC, st,p) = (st,modf,PC, st,modf,p)) of the state modeling alternatives. It should be
noted that when the network is defined, either the PN or the PCN is used as the encoder, and
the display of both networks in Figure 5.21 is purely for visualization purposes.

Only the state st,PC is passed through the respective encoder to extract features of the
point cloud-based state. The pose-related state st,p is concatenated to the global feature
vector after the global feature vector has been extracted by the PCN or PN and passed
through a regression MLP to obtain the output of the NN. The output dimension n of the
regression MLP depends on the number of DoF of the action modeling used. Compared to
the NN of the parameterized policy for action selection, the NN of the critic for estimating
the state value function (critic) differs only in that only one output ( the value of a state) has
to be estimated. The basic structure, consisting of an encoder (either PN or PCN) and a
downstream regression MLP, is identical. For details on the hyperparameters used and the
network architectures, please refer to section 6.2.2.2 as well as the original works of Qi & Su
et al. 2017 and Yuan & Khot et al. 2018.



Evaluation and computational results 109

6 Evaluation and computational results

The approaches presented in the methodological part of this thesis (chapter 5) are evaluated
below. The section 6.1 presents the results of the validation of the approaches for the 3D
reconstruction of the inspection object and the additional integration of semantic information
into the 3D reconstruction process. The following section 6.2 then details the training results
of the agents trained with the RL simulation framework developed in this thesis to solve the
sub-problems of VPP in remanufacturing.

6.1 Results for the approaches of 3D reconstruction and semantic 3D
reconstruction

This section first discusses the validation of the 3D reconstruction approach (section 6.1.1).
The segmentation results using the semantic and instance segmentation models are then
presented (section 6.1.2). Finally, the semantic 3D reconstruction is evaluated as a whole
(section 6.1.3).

6.1.1 Validation of the 3D Reconstruction approach

The following results confirm the effectiveness of the developed reconstruction procedure for
3D modeling of starter motors and potentially any inspection object. This includes validation
of the reconstruction process and calibration algorithms (calculation of TA/E and TRT/R),
with results detailed in Table 6.1. An excerpt of the collaborative results presented in the
thesis of A_Scheiger 2022 under the author’s supervision is presented. The methodology and
relevance of these results in supporting the reconstruction approach are then discussed.

The analysis compares point clouds from the reconstruction approach with those from the
highly accurate handheld laser scanning system Zeiss T-Scan1. A small point distance
between the models indicates that the accuracy of the reconstruction method is close to
that of the reference system. This is verified using four different starter motors, with detailed
product information of the Zeiss T-Scan available in the Appendix A6.

Figure 6.1 shows a point cloud model of a clamped starter motor: subplot a) from the
reconstruction approach of the thesis and subplot b) from the model obtained by the Zeiss
T-Scan reference system. A heat map visualizing point distances between the reconstruction
approach and the reference cloud is presented in subplot c). The clamping system was
manually removed from all four starter motors for comparison.

1 Link to product website:
https://www.handsonmetrology.com/de/loesungen/t-scan/
accessed: 14.06.2024
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a) b) c)

Figure 6.1: Visualization of the reconstructed 3D model (subplot a), the reference model
(subplot b), and a heat map of the point-to-point distance for the reconstructed
model and reference model (subplot c).

The agreement between point cloud models obtained by the reconstruction approach and
those obtained by the Zeiss T-Scan reference system was assessed using Hausdorff Distance
(see Reinke & Tizabi et al. (2021, P. 24)) and Mean Error (see Hodson (2022, P. 5482)) metrics.
Hausdorff Distance measures the maximum discrepancy between the clouds by identifying
the furthest point-to-point distance, highlighting the maximum misalignment. Mean Error
calculates the average deviation among corresponding points, indicating overall alignment
accuracy. The analysis primarily focuses on the 95th percentile of the Hausdorff Distance
to mitigate outlier effects. Further details on the metrics used in this thesis can be found in
Appendix A7.

Due to the analytical nature of the reconstruction approach proposed in this thesis, comparing
four starter motor models generated with the reconstruction approach with their counterparts
obtained by the Zeiss T-Scan reference system has been deemed sufficient. The only small
source of variability in the results is the non-deterministic ICP, which relies on random initial
transformation values. To account for this, the three-dimensional modeling process was
repeated ten times for each of the four starter motors. Table 6.1 shows these iterations’
averaged Hausdorff distance and mean error values.

All four models show similar 95th percentile Hausdorff distances (HDC→L
95 ) and mean errors

(MEC→L). Thereby, C and L denote point clouds and the metric space is the Cartesian Space.
Model 4 shows the best reconstruction results due to the lowest error values. In contrast,
model 2 shows the least accurate reconstruction. However, the average point distance across
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Table 6.1: Hausdorff Distance and Mean Error für the reconstructed 3D models evaluated.

HDC→L
95 MEC→L[µm]

Model Nr. Mean Min Max Mean Min Max

1 627.9 623.2 629.9 251.4 252.4 256.1
2 723.1 701.6 747.2 311.1 303.1 319.8
3 647.0 645.7 648.0 285.3 282.9 287.6
4 420.2 414.1 424.6 157.5 157.4 158.0

models is below 350µm, which is acceptable for fine planning using reinforcement learning
(RL) agent solving the IPP.

6.1.2 Results of the semantic segmentation and instance segmentation
approaches

After validating the developed reconstruction method for three-dimensional modeling, the
segmentation approaches proposed in this thesis are evaluated using the IoU metric (see
section 5.2.2) of the validation dataset. It’s important to note that only extracts of the quantita-
tive results are presented in the following main text, while the complete data are available in
Appendix A8. Three NN were trained for each model configuration.

6.1.2.1 Results of the segmentation models using only RGB data

Table 6.2: Hyperparameter configuration for training the U-Net and M-Net configurations.

Parameter
Model

Backbone

Optimizer & Learning ratea

Loss
Pretrain

Freeze & Epochs

Batch size

(a)

Value
M-Net

VGG16 ResNet34
SGD Adamb

0.01/0.005/0.001
Default

True False
True False

50/150 200
8

(b)

Value
U-Net

VGG16 ResNet34
SGD Adamb

0.01/0.005/0.001
Focal Dice
True False
True False

50/150 200
8

(c)

a : Initial learning rate, reduced by 20% every 10 epochs.
b : Learning rate for Adam is 0.01 times the learning rate of SGD.

The training results for segmentation networks using only RGB data are discussed. Table 6.2
shows the selected hyperparameter levels for M-Net and U-Net networks, including variations
(subplots b and c) based on the hyperparameters (subplot a). These networks are trained
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over all hyperparameter permutations, with detailed results in Appendix A8. The rationale
behind certain hyperparameter choices (backbone, loss, pre-train, and freeze) is explained
in the section on the segmentation approach (section 5.2.2), while others are discussed
below. Adam and SGD are used as optimizers, with the learning rate adjustments informed
by previous collaborative research documented in a supervised thesis (A_Hollinger 2022).
Adam’s learning rate is 100 times lower than SGD’s due to its faster convergence speed. The
training covers 200 epochs, with the initial freezing of the encoder removed after 50 epochs
to allow full training over the remaining 150 epochs to balance performance improvement with
the risk of overfitting. The batch size is fixed at eight to balance computational efficiency and
network performance.

Table 6.4: Overview of IoU values of the best U-Net configurations trained.
Model Abbr. Model Backbone Optimizer Loss Learning rate Pretrain Freeze IoUmax IoUmean IoUstd

U1 U-Net VGG16 SGD Dice 1 ∗ 10−2 True True 0.8081 0.8050 0.0036
U2 U-Net VGG16 SGD Focal 1 ∗ 10−2 True True 0.8124 0.7638 0.0344
U3 U-Net VGG16 Adam Dice 1 ∗ 10−4 True False 0.9217 0.9187 0.0027
U4 U-Net ResNet34 SGD Dice 1 ∗ 10−2 True True 0.6596 0.6561 0.0025
U5 U-Net ResNet34 Adam Dice 1 ∗ 10−4 True False 0.9033 0.9005 0.0028

Table 6.4 shows the best-performing U-Net configurations, highlighting U3 as the best-
performing model. Using a VGG16 backbone, Adam optimizer, dice loss function, learning
rate of 1 ∗ 10−4, pre-trained weights, and no frozen layers, U3 achieves the highest IoU values
(max: 0.9217, mean: 0.9187) with minimal standard deviation (std: 0.0027). The results
demonstrate the effectiveness of the Adam optimizer in improving U-Net performance. In
comparison, configurations using the SGD optimizer show less satisfactory convergence and
performance. In addition, VGG16 outperforms ResNet34 as a backbone in direct comparisons,
indicating its slight advantage. The choice between Dice and Focal loss does not show a
consistent trend across different configurations, although the best-performing U3 uses Dice
loss.

Table 6.5: Overview of IoU values of the best M-Net configurations trained.
Model Abbr. Model Backbone Optimizer Loss Learning rate Pretrain Freeze IoUmax IoUmean IoUstd

M1 M-RCNN VGG16 Adam Default 1 ∗ 10−4 True True 0.9517 0.9462 0.0040
M2 M-RCNN ResNet34 Adam Default 1 ∗ 10−4 True True 0.9566 0.9537 0.0026

Table 6.5 lists training results of the best M-Net configurations trained. In contrast to the U-Net,
the SGD optimization algorithm has also proven to be a valid variant when using the M-Net.
However, the Adam optimizer still shows slightly better performance. In contrast to U-Net, the
ResNet34 encoder consistently provides slightly better performance on M-Net.
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Freezing encoder weights for the first 50 epochs consistently yields slightly better IoU values
with the M-Net. However, this finding can not be confirmed for the U-Net configurations, as
the best-trained model (U3) is trained without freezing the encoder weights. Using encoders
with pre-trained weights leads to better performance for both U-Net and M-Net. A direct
comparison of the best configurations (U3 and M2) reveals that both exhibit high IoU values.
The M-Net outperforms the U-Net with a higher average IoU value (mean IoU of 0.9537
compared to 0.9217), with similar standard deviations.

6.1.2.2 Results of the segmentation approaches integrating depth information

In the experiments incorporating depth data into segmentation network training, the hyperpa-
rameter configurations are detailed in Tables 6.6 and 6.9. Due to suboptimal performance with
the ResNet34 encoder and the SGD optimizer in U-Net training using RGB data, these param-
eters are excluded from the evaluation of U-Nets incorporating depth information (UD-Nets).
The exclusion also applies to the VGG16 encoder for M-Nets integrating depth information
(MD-Nets). Similarily, due to the tendency towards worse performance using lower learning
rates, the lowest learning rate (1 ∗ 10−5 for Adam and 1 ∗ 10−3 for SGD) was excluded. Apart
from these exceptions, the hyperparameter configurations for training the different variants of
UD-Nets and MD-Nets remain unchanged.

Table 6.6: Hyperparameter configuration of the UD-Net configurations
Parameter

Model
Fusion type

Loss
Pretrain

Freeze & Epochs

Batch size
Backbone

Optimizer & Learning ratea

(a)

Value
UD-Add UD-Net UD-4D

Intermediate Late| Early
Focal Dice
True False
True False
50/150 200

8
VGG16
Adam

1 ∗ 10−4 5 ∗ 10−5

(b)

a : Initial learning rate, reduced by 20% every 10 epochs.

The results from the evaluated UD-Nets in Table 6.8 yield similar conclusions to those
from training without depth data integration. The dice and focal losses perform comparably
well, exemplified by UD1 and UD2. Both UD-4D model variants show strong performance.
Specifically, UD1, with the dice loss, yields the best average networks (mean: 0.9086), while
the best-performing network, UD2, is trained with the focal loss (max: 0.9165).
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Table 6.8: Overview of IoU values of the best UD-Net configurations trained.
Model Abbr. Model Fusion type Backbone Optimizer Loss Learning rate Pretrain Freeze IoUmax IoUmean IoUstd

UD1 UD-4D Early VGG16 Adam Dice 5 ∗ 10−5 True True 0.9135 0.9086 0.0039
UD2 UD-4D Early VGG16 Adam Focal 1 ∗ 10−4 True True 0.9165 0.9062 0.0045
UD3 UD-Net Intermediate VGG16 Adam Focal 1 ∗ 10−4 True True 0.9022 0.9017 0.0005
UD4 UD-Net Late VGG16 Adam Focal 5 ∗ 10−5 True True 0.9143 0.9129 0.0016
UD5 UD-Add Intermediate VGG16 Adam Focal 1 ∗ 10−4 True True 0.9296 0.9291 0.0006
UD6 UD-Add Late VGG16 Adam Dice 1 ∗ 10−4 True False 0.9272 0.9251 0.0015

The late fusion variant outperforms when comparing the top variants of UD-Net with net-based
feature fusion at either the intermediate or late stage (UD3 and UD4). This is true for the
maximum (max: 0.9143) and the mean (mean: 0.9129). Conversely, the opposite is observed
for feature fusion by addition. The intermediate fusion is more effective than the best late
fusion, with higher scores (max: 0.9296 and mean: 0.9291). However, the gap between the
two variants (UD5 and UD6) is not as pronounced as when comparing the net-based fusion
variants.

In summary, the UD5 model with an intermediate, addition-based feature fusion is the best-
performing model. In this model, the encoder is frozen at the beginning of training, unlike
training without depth data integration. Comparing the best hyperparameter configuration
without depth data integration (U3) with the best configuration with depth data integration
(UD5), UD5 shows superior performance. On average, UD5 with depth integration outperforms
U3, with IoUmean,UD5=0.9291 compared to IoUmean,U3=0.9187, and similarly for the best
model, with IoUmax,UD5=0.9296 compared to IoUmax,U3=0.9217.

Table 6.9: Hyperparameter configuration of the MD-Net configurations
Parameter

Model
Fusion type

Pretrain

Freeze & Epochs

Loss
Batch size
Backbone

Optimizer & Learning ratea

(a)

Value
MD-ADD MD-Net MD-4D MD-Late

Intermediate Early Late
True False
True False

50/150 200
Default

8
ResNet34

Adamb SGD
1 ∗ 10−2 5 ∗ 10−3

(b)

a : Initial learning rate, reduced by 20% every 10 epochs.
b : Learning rate for Adam is 0.01 times the learning rate of SGD.

Early image and depth data fusion yield the best results when comparing M-Net with integrated
depth data. The MD1 configuration produced the best model overall (IoUmax,MD1=0.9547),
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while the MD2 configuration produced the best trained models on average (IoUmean,MD2=0.9527).
However, the differences between these configurations are minimal, the only difference being
the different learning rates.

Table 6.11: Overview of IoU values of the best MD-Net configurations trained.
Model Abbr. Model Fusion type Backbone Optimizer Loss Learning rate Pretrain Freeze IoUmax IoUmean IoUstd

MD1 MD-4D Early ResNet34 Adam Default 1 ∗ 10−4 True True 0.9547 0.9504 0.0038
MD2 MD-4D Early ResNet34 Adam Default 5 ∗ 10−5 True True 0.9542 0.9527 0.0013
MD3 MD-Add Intermediate ResNet34 Adam Default 1 ∗ 10−4 True True 0.9436 0.9410 0.0021
MD4 MD-Net Intermediate ResNet34 Adam Default 1 ∗ 10−4 True True 0.9400 0.9337 0.0047
MD5 MD-Late Late ResNet34 Adam Default 1 ∗ 10−4 True True 0.9515 0.9482 0.0023

In a direct comparison between the best UD-Net and MD-Net configurations, the results are
consistent with the comparison between U-Net and M-Net variants without depth informa-
tion integration. All of the best models from individual MD-Net fusion variants, as listed in
Table 6.11, outperform the best UD-Net configuration. Additionally, it’s noteworthy that all
configurations with depth integration, except UD5, were initially trained with frozen encoder
weights. This suggests that using frozen weights in the initial training should be preferred
when incorporating depth information in the application.

6.1.2.3 Ensemble evaluation and uncertainty estimation

The subsequent analysis includes ensemble evaluation and uncertainty estimation results
based on the identified best model configurations for U-Net, UD-Net, M-Net, and MD-Net.

Ensemble evaluation
Ten models (M1 to M10) are trained for each of the model configurations U3, UD5, M2, and
MD2, following the methodology described in section 5.2.3. These models are then evaluated
on the test dataset. It’s important to note that no data augmentation is applied during the
segmentation model predictions on the test data, thus evaluating the models’ performance on
real image and depth data. The IoU values for all models within each configuration and the
IoU for the ensemble prediction are shown in Table 6.12.

Table 6.12: Results of the ensemble evaluation for the best model configurations.
Model Abbr. M 1 M 2 M 3 M 4 M 5 M 6 M 7 M 8 M 9 M 10 IoU E

U3 0.9628 0.9627 0.9631 0.9630 0.9618 0.9633 0.9629 0.9640 0.9636 0.9633 0.9656
UD5 0.9662 0.9668 0.9675 0.9636 0.9662 0.9675 0.9682 0.9671 0.9671 0.9663 0.9707
M2 0.9555 0.9559 0.9536 0.9571 0.9530 0.9556 0.9574 0.9562 0.9556 0.9562 0.9650

MD2 0.9430 0.9454 0.9449 0.9394 0.9423 0.9493 0.9456 0.9435 0.9464 0.9492 0.9574

The main finding from the ensemble approach is that without data augmentation, both U-Net
versions (U3 and UD5) perform significantly better regarding ensemble IoU (IoU E) than their
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counterparts, the M-Net versions (M2 and MD2). This contrasts the validation data evaluation,
where the M-Net configurations outperformed the U-Net configurations. In this scenario, the
U-Net configurations show superiority. Ultimately, the UD5 model configuration is the best
configuration variant.

This result emphasizes the impact of augmentation on U-Net configurations and their perfor-
mance. A plausible explanation is that augmentation introduces notable noise into the neural
network (NN), leading to less robust semantic segmentation than instance segmentation.
Semantic segmentation relies on pixel-based classification, while instance segmentation
internally conducts object detection first. This two-part process will likely enhance segmenta-
tion robustness by initially detecting objects and then performing binary segmentation of the
detected objects.
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Figure 6.2: IoU of the best model configurations for all starter motor components. The follow-
ing applies: U-opt =̂ U3, UD-opt =̂ UD5, M-opt =̂ M2, MD-opt =̂ MD2.

Figure 6.2 presents a visual summary of component-specific IoU values. It displays box plots
illustrating ensemble performance for the NN configurations in segmenting starter motor
components and the IoU for segmenting the complete motor ("all"). The overall IoU value of
the whole segmentation result ("all") is high with a low boxplot spread, indicating an overall
good segmentation performance. Consistently good segmentation is observed for the carrier
and housing across all ensembles. However, all NN configurations encounter challenges in
segmenting the electrical connection (evident from the wide boxplot spread), indicating a
significant variation in segmentation quality. This difficulty likely arises from the small size and
complexity of the electrical connection, where even minor mis-segmentations have a notable
impact on the IoU value. Similar challenges may affect the gear and solenoid components
due to their smaller size than the carrier or housing.
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Uncertainty estimation
The uncertainty estimation results offer valuable insights. Figure 6.3 displays RGB images
alongside segmentation results from various model configurations. Additionally, uncertainty
maps generated by uncertainty estimation are depicted for all model configurations. Signifi-
cantly sharper uncertainty maps are observed for configurations that utilize depth data for
segmentation (UD5 and MD2) compared to those relying solely on RGB data (U3 and M2).
Configurations U3 and M2 exhibit extensive uncertainties, particularly in areas bordering the
starter motor, indicating challenges in distinguishing background from motor components. This
suggests that configurations integrating depth data effectively utilize it to differentiate between
background and engine components. Furthermore, areas of high uncertainty are observed at
transition pixels between components and between components and the background. This
is reasonable considering the potential overlap between different segmentations in these
regions across individual NNs in the ensemble, leading to heightened uncertainty.

U-Net U3 UD-Net UD5

M-Net M2 MD-Net MD2

Image and ground truth

Figure 6.3: Visualization of the uncertainty maps of the best model configurations.

Table 6.13 presents the F1 score, false discovery rate (FDR), and false positive rate (FPR)
for the best model configurations, contrasting with the earlier qualitative analyses. This
comparison quantitatively evaluates unfiltered and filtered cases, where segmentations of
individual pixels are discarded if their segmentation uncertainty, determined by the NN en-
semble, exceeds a threshold (σ̂(DT,i)uv ≥ 0.5). The F1 score represents the harmonic mean
of precision and recall. At the same time, FDR is the proportion of false positive predictions,
and FPR is the ratio of false positive predictions to the total number of actual negative results.
Further details on these metrics can be found in the Appendix A9.

The quantitative results in Table 6.13 suggest that filtering out pixels with high prediction
uncertainty decreases prediction quality (F1 score is consistently lower in the filtered case
F1,filt than in the unfiltered case F1). However, it can increase segmentation robustness (FDR
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Table 6.13: Results of the best model configurations’ unfiltered and filtered segmentation
results. The IoU, F1 score, false discovery rate (FDR), and false positive rate
(FPR) are compared.

Model Abbr. IoU IoUfilt F1 F1,filt FDR FDRfilt FPR FPRfilt

U3 0.9656 0.9284 0.7220 0.6308 0.1249 0.0507 0.0051 0.0014
UD5 0.9707 0.9529 0.7287 0.6642 0.0770 0.0315 0.0064 0.0024
M2 0.9650 0.9136 0.7158 0.5607 0.0650 0.0209 0.0082 0.0013

MD2 0.95574 0.9359 0.7043 0.6413 0.0759 0.0248 0.0091 0.0021

and FPR are also lower in the filtered cases FDRfilt and FPRfilt in contrast to the unfiltered
cases FDR and FPR). Filtering pixels with high uncertainty results in lower IoU and F1
scores across all model ensembles, indicating that more pixels predicting correct component
membership are filtered out than those predicting incorrect components. However, FPR and
FDR also decrease, suggesting that the remaining pixels are more likely to be correctly
assigned to starter components (or background) by the segmentation. This represents a
trade-off between model quality and completeness regarding surface coverage percentage
during the semantic reconstruction process. Filtering by the NN ensemble excludes pixels
with high uncertainty, potentially improving model quality by increasing the likelihood of correct
class assignment for all surface points in the reconstructed 3D semantic model. However,
this may reduce the completeness of the model because surface areas with high prediction
uncertainty may be excluded from the reconstruction.

6.1.3 Evaluation of the semantic 3D reconstruction approach

The preceding sections demonstrate the successful reconstruction of three-dimensional
models and the semantic and instance segmentation capability to segment starter motor
components. Furthermore, it is shown that an ensemble slightly improves segmentation
compared to a single model and that such an ensemble can refine models further through
uncertainty assessment.

This section evaluates the model completeness and quality of the semantic 3D models
generated by the developed approach. Ten additional starter motors are acquired using RGB,
depth data, and point clouds according to the method described in section 5.2.1. These data
are not used to train segmentation networks. Semantic 3D models of the starter motors are
reconstructed using the respective optimal NN model configurations, as described in section
5.2.4. An example of a reconstructed semantic 3D model for the four NN model configurations
is shown in Figure 6.4.

The acquired data includes reconstruction and manual labeling of 3D models for each of the
ten starter motors, resulting in ten ground truth semantic 3D models. The quality and com-
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U-Net U3 UD-Net U5 M-Net M2 MD-Net MD2

Figure 6.4: Visualization of the reconstructed semantic 3D models based on the segmentation
of the image data (RGB and/or depth) using the best model configurations and
the acquired point clouds.

Table 6.14: Tabular representation of the average accuracy of the semantic 3D reconstruction
of the best model configurations for all components of the starter motors of the
test data set.

Accuracy

Model Abbr. Carrier Housing Solenoid Electrical connection Gear Mean

U3 89.2% 89.2% 89.0% 82.0% 80.7% 86.0%
UD5 96.1% 94.4% 93.1% 90.7% 95.3% 93.9%
M2 89.1% 91.8% 93.6% 90.5% 91.7% 91.3%

MD2 94.0% 91.6% 93.5% 84.4% 94.9% 91.7%

pleteness of these ground truth models are evaluated by comparing them to the reconstructed
semantic 3D models generated by the segmentation networks. The percentage of correctly
segmented surface points on the starter motors is examined to evaluate model quality. Mean-
while, for model completeness, the focus is on determining the percentage of the starter motor
surface covered by the semantic 3D reconstruction approach. The average model accuracy
results are summarized in Table 6.14, while the model completeness summary is presented
in Table 6.15.

The tabular results clearly show that the U-Net model configuration U3 has the highest average
model completeness across all components. In addition, examination of the variation in
component completeness, as shown in the box plots in Figure 6.5 for all model configurations
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Table 6.15: Tabular representation of the average model completeness of the semantic 3D
reconstruction of the best model configurations for all components of the starter
motors of the test data set.

Percentage seen

Model Abbr. Carrier Housing Solenoid Electrical connection Gear Mean

U3 95.9% 98.3% 99.1% 94.5% 98.1% 97.2%
UD5 93.3% 97.9% 99.0% 94.2% 96.9% 96.2%
M2 95.3% 97.9% 99.0% 89.7% 95.7% 95.5%

MD2 93.1% 97.2% 98.0% 91.6% 92.4% 94.4%

considered, reveals that this variation is minimal for the U3 model configuration. This trend is
consistent for all other model configurations, with few outliers observed.
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Figure 6.5: Semantic 3D reconstruction completeness of the best model configurations for
all starter motor components. The following applies: U-opt =̂ U3, UD-opt =̂ UD5,
M-opt =̂ M2, MD-opt =̂ MD2.

However, a more detailed quantitative examination reveals a critical issue, particularly of the
individual semantic 3D reconstruction results shown in Figure 6.4. Model configurations U3
and M2, which do not integrate depth data, often segment the environment around the starter
motor, leading to significant distortions in the semantic 3D reconstruction result. This effect is
less pronounced in the two model configurations integrating depth information.

The model accuracy further confirms these findings (refer to Table 6.14). Both model configu-
rations integrating depth data exhibit the highest accuracy, with the U-Net model configuration
UD5 achieving the highest accuracy for all components except the solenoid. Regarding model
completeness, Figure 6.6 provides a visual overview of the accuracy for the best segmentation
model configurations.
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Figure 6.6: Semantic 3D reconstruction accuracy of the best model configurations for all
starter motor components. The following applies: U-opt =̂ U3, UD-opt =̂ UD5,
M-opt =̂ M2, MD-opt =̂ MD2.

These results demonstrate that the semantic 3D reconstruction approach can be robustly
applied to unknown starter variants. First, the best model configurations from all investigated
segmentation approaches (semantic and instance segmentation) achieve sufficiently high
model coverage with an acceptable level of variation. Furthermore, all investigated model
configurations of these segmentation approaches show equally good model accuracy. Fur-
thermore, the variation of model completeness and model accuracy is low, with only a few
outliers. In addition, integrating depth information is shown to prevent co-segmentation of the
environment.

6.2 RL for the solution of VPPs in remanufacturing

This section presents the results of the modeling alternatives outlined in section 5.3. It begins
with a description and overview of the data sets used and the evaluation approach in sections
6.2.1 and 6.2.2. The results for the VPP problem cases, including NBV selection, RPP and
IPP, are then detailed in the following sections 6.2.3 (NBV), 6.2.4 (RPP) and 6.2.5 (IPP).

6.2.1 Dataset description

This thesis evaluates problem cases using four different datasets. These datasets vary in
realism and complexity, making them suitable for evaluating the developed agent models and
their applicability in remanufacturing. Each dataset in this thesis consists of STL models of the
objects to be inspected and the ground truth point cloud PGT . Additional information such as
the membership of individual points of PGT to component classes may also be available. This
allows the derivation of inspection targets for the case of IPP, if specific components need
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to be inspected, highlighting the distinction from supervised learning. None of the datasets
contain ground truth labels in the form of poses pA/RTt of the acquisition system. Instead, only
the object model (STL) and the ground truth point cloud (PGT ) are provided, requiring the RL
agent to learn full (RPP) or partial inspection of individual regions of interest (IPP).

Synthetic motor dataset D1: The first dataset, D1, consists of STL models and ground truth
point clouds PGT of starter motors synthetically generated using the approach of Wu & Zhou
et al. (2022). These generated starter motors vary in their geometric properties to represent
the range of existing starter motor variants. It’s assumed that each starter motor consists of
a fixed set of geometric primitives representing specific components (e.g., solenoid, main
housing, gear, etc.). These geometric primitives can be parameterized (e.g., the main housing
is a cylinder with parameters such as height and radius), and parameter values are sampled to
create unique starter models. Realistic parameter bounds and defined relationships between
geometric primitives ensure that parameters stay within realistic ranges. For example, the
gear diameter cannot exceed the size of the gear housing. This approach results in a diverse
and realistic data set of 200 motors with randomly generated parameters.

Real motor dataset D2: The second data set, D2, consists of 40 real starter motor models.
These STL models were created from real starter motors using a handheld laser scanner
system (Zeiss T-Scan). More technical details about the laser scanner system can be found
in Appendix A6. During the measurement, the laser scanner system generated the ground
truth point clouds PGT . The measurement system’s software generated the corresponding
STL models.

Station motor dataset D3: The third dataset, D3, represents actual clamping scenarios
of starter motors within the clamping system of the inspection station. To construct the D3
dataset, point clouds of the dataset that were collected to train the segmentation networks
for 3D semantic reconstruction were used. For each engine clamping scenario, multiple
partial point clouds were generated from different perspectives and angles of the rotary table
were generated during this collection process. These partial point clouds of the 40 existing
starter motors clamped in the system were converted into a STL model. This conversion
was achieved using the 3D reconstruction approach described in section 5.1.4, which first
transforms the partial point clouds into a globally registered and post-processed point cloud
representing the ground truth point cloud PGT . The screened Poisson1 reconstruction ap-
proach of Kazhdan & Hoppe (2013) was used to generate the STL models based on PGT .
The screened Poisson algorithm extends the Poisson reconstruction approach of Kazhdan

1 Link to algorithm documentation in PyMeshlab:
https://pymeshlab.readthedocs.io/en/0.1.8/filter_list.html
accessed: 14.06.2024
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& Bolitho et al. (2006). The Poisson surface reconstruction approach treats points and their
normals in a point cloud as a vector field to solve the standard Poisson problem (Kazhdan &
Bolitho et al. 2006, P. 1). The solution of the Poisson problem is an implicit function whose
values are zero at points of the vector field and whose gradient equals the normal vector of
the vector field. Thus, a surface can be extracted from the solution of the Poisson problem.
Screened Poisson reconstruction additionally incorporates interpolation constraints to improve
stability and surface quality (Kazhdan & Hoppe 2013, P. 1).

Dataset D3 can represent a real clamping scenario and ensure that all points of PGT can be
classified. This is possible because all RGB and depth images used to train the segmentation
networks were labeled. Due to the clear relationship between the pixels of the RGB and depth
images and the corresponding points of the partial point clouds, each point of the globally
registered and post-processed point cloud PGT (the result of the 3D reconstruction process)
can also be assigned to a component class.

ShapeNet dataset D4: The previously discussed datasets, D1-3, focus solely on the
product category of starter motors. Dataset D4, on the other hand, consists of STL models
and point clouds of various model types from the ShapeNet dataset. ShapeNet, developed
by Stanford University (Chang & Funkhouser et al. 2015), provides a collection of 51,300
unique 3D models in 55 different object categories. This dataset serves as a widely used
benchmark for comparing various computer graphics algorithms (Chang & Funkhouser et al.
2015, P. 1).

To keep complexity manageable, dataset D4 includes 150 randomly selected STL models
along with their corresponding ground truth point clouds PGT from seven object categories:
bus, ship, car, skateboard, train, motorcycle, and airplane from the ShapeNet dataset. In
addition, dataset D4 contains the 40 engine models and their ground truth point clouds from
dataset D2.

An overview of the appearance of the STL models for the individual data sets D1-4 can be
found in Figure 6.7. The experiments conducted in this thesis use the presented datasets
to control complexity and realism and provide fundamental insights into different modeling
variants of the RL agents developed in this thesis.

6.2.2 Evaluation approach

The following section details the overall evaluation approach.
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Data set D1 Data set D2 Data set D3 Data set D4

Figure 6.7: Overview of the appearance of the STL models for the individual data sets D1-4.

6.2.2.1 Evaluation setup

The RL agent is trained in episodes, each representing the acquisition process of a single
STL model from the dataset. To emulate the manual clamping process in the inspection
station’s clamping system and to introduce variability, each randomly selected STL model
is first placed upright in the simulation. It is then rotated around its longitudinal axis (z-axis)
in the range [−180◦, 180◦] and tilted along the x- and y-axes in the range [−25◦, 25◦]. The
acquisition process continues until the terminal state sT or the goal state sG is reached.
This endpoint is determined by either reaching 90% surface area coverage or reaching the
threshold of ten acquisitions, depending on the episode design. The agent’s strategy π for
action selection is optimized based on state, action, and reward transitions. It’s worth noting
that the initial rotation is not applied when working with dataset D3 since the manual clamping
process is already included in the STL model, which represents a starter motor clamped in
the inspection system’s clamping system.

Except for data set D1, data sets D2 to D4 are divided into training and test STL models and
point clouds. An 80% portion is allocated for training, while the remaining 20% is allocated for
testing. Dataset D1 is specifically used to evaluate basic modeling variants and the behavior
of the RL agents in the studied problem cases (NBV, RPP, and IPP). For datasets D2 to D4,
RL agents trained on the training models and point clouds are then tested on the test models
and point clouds to assess the adaptability of the agents to previously unseen models.

In addition to testing for unseen data, the best RL modeling variants are compared with
benchmark algorithms. These are the following:

1. Random: These benchmark algorithm randomly chooses a position in space and
automatically compute the orientation to the center of the coordinate system CRT .
Therefore, these algorithms use the action mapping A2S,0R.
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2. Heuristic: The simple solution method involves placing a rectangular bounding box
around the object mesh and generating an acquisition system pose for each face of
the bounding box. The pose is determined at a fixed distance along the bounding box
surface’s normal, and the acquisition system’s orientation is aligned with the surface
normal. This method results in a total of six acquisition poses.

3. SCP: The analytical solution of the VPP involves sampling multiple poses of the
acquisition system as VPs (VP). These VPs are then simulated for acquisition and
evaluated to analytically compute the shortest view plan to achieve the optimization
goal. Two implemented variants, SCPΨ and SCPΨ,d, are used. SCPΨ focuses solely
on maximizing the total surface area coverage ΨE after each episode, while SCPΨ,d

aims to maximize the surface area coverage ΨE while minimizing the required travel
distance dE. Both variants of the SCP benchmark algorithm are explained in detail in
Appendix 10.

6.2.2.2 Evaluation parameters

The parameters and selected standard configurations for the following evaluations of agent
modeling for solving the NBV problem, RPP, and IPP subproblems of VPP can be found
in Table 6.16. The chosen parameters and configurations are mostly based on preliminary
studies carried out in works (A_Schmid 2021, A_Gäbele 2022 and A_Koch 2022) under the
supervision of the author of this thesis, which have achieved good learning results (learning
success and convergence speed).

The required surface coverage to complete an episode and reach the target state sG is set
to 90% for the RPP and Inspection Planning Problem (IPP). For the NBV, an episode ends
after a fixed number of agent acquisitions, and no fixed value of required surface coverage is
required. In contrast, episodes end after 10 acquisitions for the RPP or after 5 acquisitions for
the IPP (reaching the terminal state sT ) without reaching the goal state sG. The maximum
number of interactions (steps) of the agent is defined as 1 ∗ 106 (NBV), 2 ∗ 106 (RPP), and
5 ∗ 106 (IPP), where the learning process is terminated in case of premature convergence.

The discount factor is the same for all subproblems (γRL = 0.9), whereas the learning rate for
the NBV problem is initially higher (η = 10−4) than for the RPP and IPP (η = 4 ∗ 10−5).

The standard RL algorithm used for all subproblems is the SAC with the PCN as encoder
for the NN and a downstream MLP structure of 256-128-64 neurons. Training is performed
with a batch size of 256, where the agents for the NBV problem are trained after each step.
In contrast, the agents for the RPP and IPP problems are trained after eight consecutive
episodes. For the agents solving the NBV problem, learning starts at the beginning of the
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Table 6.16: Parameters and configuration, as well as the respective default values and default
modeling choices of the RL agent.

Training cycle design Values NBV Values RPP Values IPP

Coverage of PG to reach sG - 90% 90%
Number of acquisitions to reach sT 1 10 5
Max. number of steps a 1 ∗ 106 2 ∗ 106 5 ∗ 106

Learning parameters Values NBV Values RPP Values IPP

Learning rate η b 10−4 4 ∗ 10−5 4 ∗ 10−5

Discount factor γRL 0.9 0.9 0.9

Modeling configuration Setup NBV Setup RPP Setup IPP

Dataset D1 D1 D1
Algorithm SAC SAC SAC
Encoder PCN PCN PCN
MLP structurec 256-128-64 256-128-64 256-128-64
Batch size 256 256 256
Training frequencyd 1S 8E 8E
Learning start 0 104 104

Entropy coefficiente 0.005 0.01 0.5

a: Maximum number, training is ended when convergence happens earlier.
b: Linear decay with a final value of 0.
c: Number of last layer neurons corresponds to DoF of action.
d: Learning happens after a specified number of steps (S) or episodes (E).
e: Higher values indicate an initially increased exploration of the agent.

interaction, while for the agents solving the RPP and IPP problems, learning starts after 104

steps. Random actions are performed at the beginning of the training process. This allows the
RL agents to collect this random experience at the beginning of training after 104 steps. This
is favored by the higher values of the entropy coefficient for the RPP and IPP agents, which
allows for more exploration. The choice of this configuration is favored by the fact that both
RPP and IPP represent more complex problems compared to the NBV problem. Therefore,
the agents must initially explore more to learn a successful solution strategy.

The acquisition system parameters for the evaluated problem cases are detailed in the Table
6.17. These parameters remain nearly identical for all problem cases, with variations observed
primarily in the OWD and working area for the IPP scenario. This distinction arises because
detailed evaluation of ROI often requires acquisition systems capable of closer proximity
to the object for higher resolution. Consequently, the varied parameters accommodate this
requirement. In addition, the altered parameters introduce additional complexity to the IPP
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problem, as less area is typically acquired per acquisition. Therefore, more emphasis is placed
on the RL agent to accurately determine the pose of the acquisition system.

Table 6.17: Parameters and chosen default values for the sensor model.

Sensor model parameters Values RPP & NBV Values IPP

Near and far bounds bnear, bfar [300, 500]mm [150, 300]mm
Resolution Ruv (430 × 300)xy (430 × 300)xy
Aperture angles ϑA,uv (27◦, 25◦)xy (27◦, 25◦)xy
Sensor OWD 470mm 270mm
Cut-off angle ϑA,C 60% 60%

6.2.2.3 Evaluation procedure

The main evaluation metrics for comparing different modeling alternatives of RL agents have
already been introduced in 5.3.4.3. These include the surface coverage ΨE after an episode,
the number nE of acquisitions required to reach ΨE, and the cumulative travel distances
dE. Additional evaluation metrics used in this thesis will be introduced and explained where
appropriate. While the trajectory of the reward signal is crucial for evaluating the learning
behavior of the RL agents, it is not used as a central evaluation metric. Ideally, the reward
function is functionally related to the problem’s evaluation metrics, such that maximizing the
reward is equivalent to maximizing/minimizing (depending on the optimization variable) the
evaluation metrics. Therefore, the effect of the reward signal on the problem at hand is directly
examined by monitoring the evaluation metrics defined above.
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Figure 6.8: Graph of the evaluation metrics Coverage ΨE, Episode travel distances dE and
Required number of acquisitions nE for the exemplary agents RPP 1 and RPP10
introduced in later sections of this work.

Multiple simulation runs with the same configuration are performed and then averaged.
Previous supervised work by A_Schmid 2021, A_Gäbele 2022, and A_Koch 2022 has shown
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that using three runs per configuration allows for quantitative comparisons. The evaluation
metrics shown in Figure 6.8 are plotted over the number of episodes. An episode includes
the acquisition process of an object model by the RL agent. Since multiple agents are trained
for each agent configuration, the plots in Figure 6.8 include the averaged course of the
evaluation metric in a bold line. In addition, the minimum and maximum bounds of all trained
agents across the training run are shown as an area around the averaged evaluation metrics.
As shown, the agents reach a converged state after a certain number of episodes. In the
converged state, there is no significant improvement in the evaluation metrics until the final
value of episodes is reached. The Figure shows that the agents train for different numbers
of episodes until they converge. For this reason, in the following sections, only a part of the
training process of the compared agents is shown in the Figures to visualize the agents’
training behavior, draw conclusions, and visually support the facts explained. For this reason,
the quantitative values of the evaluation metrics of the RL agents in the converged state
may differ slightly from the representations in the Figures. In addition to the illustrations of
the evaluation metrics throughout the training, a table with the final average values of the
evaluation metrics in the converged state is always provided. The numerical value in the
converged state is calculated by averaging the respective evaluation metric over the last 100
episodes of a simulation run and the simulation runs performed with that particular modeling
alternative.

6.2.3 Results of the RL agent training using the proposed simulation framework
for the NBV problem

First, the developed agent model’s basic learning capability is demonstrated by tackling the
simplest planning problem: determining the NBV. To do this, the four agents, NBV 1-4 are
compared against two baseline methods, Random 1 and Random 2. The dataset used is the
synthetic motor dataset D1.

The baselines, Random 1 and Random 2, randomly select actions using the action mapping
A2S,0R to convert a two-entry random vector in the range [−1, 1] into a pose in spherical
coordinates. The key difference lies in the initial pose p

A/RT
0 : for Random 1, it remains

constant, while for Random 2, it varies randomly based on the method described above. The
subsequent pose pA/RT1 is chosen for both baselines.

The learning agents, NBV 1 and NBV 2, differ in their initial pose pA0 : it is fixed for NBV 1 but
randomly chosen for NBV 2. Both agents define VPs as poses on a sphere with a fixed radius
of 470 mm, using Mr,fix. NBV 1 demonstrates the ability of an agent to learn the NBV from
a fixed initial pose, while NBV 2 extends this capability to varying initial conditions. These
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Table 6.18: Overview of the evaluation metrics of the agents and baselines evaluated for the
NBV problem.

Agent information

Model Abbr. S A R Initial acquisition ∆Ψ0 ∆Ψ1 ΨE

Random 1 - A2S,0R - fix 25.95% 13.56% 39.51%
Random 2 - A2S,0R - random 26.27% 13.61% 39.88%

NBV 1 S1 A2S,0R R1 fixed 25.98% 30.54% 56.52%
NBV 2 S1 A2S,0R R1 random 26.50% 29.26% 55.76%
NBV 3 S1 A3S,0R R1 random 26.55% 29.71% 56.26%
NBV 4 S1 A3C,0R R1 random 25.60% 22.87% 48.47%

agents operate within the state S1 and adhere to the reward function R1. The results of their
learning processes are documented in Table 6.18.

A comparison of the surface coverage of the initial acquisition shows no differences between
learning agents (NBV 1 and NBV 2) and baselines (Random 1 and Random 2). This lack of
difference is expected since the initial poses pA/RT0 are predetermined and not influenced by
learning. It should also be noted that the additional surface coverage gained by a VP is about
26% of the object’s total surface coverage if no prior acquisition has occurred.

The additional surface covered by the pose pA/RT1 is more interesting. Random baselines
cover only about 13-14%, resulting in a total surface coverage ΨE of about 39%. In contrast,
learning agents identify VPs that cover, on average, about 29-31% of the object’s surface.
This additional coverage, ∆Ψ1, exceeds the average initial coverage of 26%, resulting in a
higher ΨE of approximately 56% for agents NBV 1 and NBV 2 compared to Random 1 and
Random 2. This suggests that both fixed and random initial VPs allow NBV 1 and NBV 2 to
select subsequent VPs to maximize the acquired surface coverage ∆Ψ1.
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Figure 6.9: Distribution of acquisition system positions of the poses pA/RT1 issued by the
agent NBV 1 in the NBV problem with fixed initial acquisition system pose pA/RT0 .
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Figure 6.9 illustrates the distribution of acquisition system poses in space of the NBV for agent
NBV 1. Shown are the acquisition system positions from three different perspectives to make
the distribution of the acquisition system poses more tangible. This distribution shows that
NBV 1 strategically positions its VP pA/RT1 relative to the initial fixed pose pA/RT0 to maximize
surface coverage ∆Ψ1. The crescent shape of the distribution is probably due to the initial
random rotation of the inspected starter motors before each acquisition process. Figure 6.10
shows the poses generated by agent NBV 2. Despite the randomness of the initial VP pA/RT0 ,
the agent seems to converge on preferred poses pA/RT1 , presumably offering the highest
average surface coverage ∆Ψ1 depending on the initial pose pA/RT0 .
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Figure 6.10: Distribution of acquisition system positions of the poses pA/RT1 issued by the
agent NBV 2 in the NBV problem with random acquisition system pose pA/RT0 .

Further insight can be gained by allowing the agent to vary the radius (NBV 3, action mapping
A3S,0R). NBV 3 selects VPs pA/RT1 as VPs, resulting in approximately the same newly acquired
surface ∆Ψ1 of the inspected object as NBV 1 and NBV 2. This also leads to approximately
the same object surface coverage ∆ΨE after two acquisitions. Figure 6.11 illustrates the
visualization of evaluation metrics, including reward and surface coverage of NBV for pose
pA/RT1 for agents NBV 1-3. It can be seen that the additional integration of a degree of
freedom to be learned (radius r

A/RT
t ) does not seem to have a negative impact on the speed

of convergence. However, the agents (NBV 2 and NBV 3) that start with a random initial pose
are slower to converge (need more episodes), as seen in Figure 6.11

A visual comparison of Agent NBV 3 and NBV 4 can be seen in Figure 6.12. NBV 4 uses
Cartesian coordinates for action mapping (action mapping A3C,0R). In contrast to NBV 3, the
surface coverage achieved by NBV 4’s selected VPs is inferior. On average, it covers only
about 22.87% of the surface ∆Ψ1 of the inspected object with its chosen pose pA/RT1 , about
7% less than agents NBV 1-3. In addition, there were notable differences in the learning
speed of the individual agents during training, as shown by the different limits of the curves in
Figure 6.12 for agent NBV 4. This indicates that, despite the DoF of both agent variants (NBV
3 and NBV 4) being the same, the action mapping A3C,0R using Cartesian Coordinates is
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Figure 6.11: Graph of the evaluation metrics Reward and Coverage of NBV for the agents
NBV1, NBV 2 and NBV 3.

preventing the agent NBV 4 from learning a favorable action selection strategy. The following
simulations are conducted with action mapping variants using Spherical coordinates.
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Figure 6.12: Graph of the evaluation metrics Reward and Coverage of NBV for the agents
NBV 3 and NBV 4.

6.2.4 Results of the RL agent training using the proposed simulation framework
for the RPP problem

Having demonstrated the effectiveness of the RL agent modeling approach in solving NBV,
the performance on the RPP problem will be evaluated in the following.
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6.2.4.1 Basic agent modeling results

Four basic agents (RPP 1-4) and their corresponding evaluation metrics in solving RPP are
presented in Table 6.19. These agents differ in their choice of action mapping (A2S,0R for RPP
1, A3C,0R for RPP 2, and A3S,0R for RPP 3 and RPP 4) and the encoder used (PCN for RPP
1-3 and PN for RPP 4). The evaluation metrics graphs, including coverage, travel distances,
required number of acquisitions, and distance to the origin, are shown in Figure 6.13.

Table 6.19: Overview of the agents and evaluation metrics evaluated in the RPP.

Agent information Metrics

Model Abbr. S A R Encoder ΨE nE dE

RPP 1 S1 A2S,0R R1 PCN 93.95% 5.43 340.14
RPP 2 S1 A3C,0R R1 PCN 89.70% 7.81 427.80
RPP 3 S1 A3S,0R R1 PCN 92.94% 5.72 341.29
RPP 4 S1 A3S,0R R1 PN 92.08% 6.46 358.29

All agents exhibit learning behavior aimed at optimizing the goal enforced by the reward
signal R1, maximizing surface coverage by sequentially adjusting the acquisition system. This
behavior is evident from the upper left graph in Figure 6.13, which illustrates the surface
coverage ΨE at the end of episodes throughout the agents’ learning cycle.

Remarkably, to achieve the required surface coverage ΨT > 90%, the agents adjust the
distance of their poses from the origin during the learning process (lower right graph in Figure
6.13). This is also visualized for one of the RPP 3 agents in the left graph of Figure 6.14
in the left graph where also the standard deviation of the distance to the inspection object
is visualized. The adjustment is necessary because the sensor model operates at a fixed
working distance and is ideally positioned as far away from the inspected object as possible to
maximize the surface area covered. However, the distance cannot be too large, as this would
cause the acquisition system to be too far away from the object, resulting in the object being
out of the system’s field of view, resulting in empty acquisitions (right graph of Figure 6.14).
Thus, by adjusting the distance of poses from the origin, the amount of empty acquisitions
(visualized in the right graph of Figure 6.14) is minimized.

Using state S1 (see Table 6.19 and section 5.3.4 for details) for agent training yields the
primary insight: solving RPP in the model-free scenario is feasible using RL. This is explained
in section 5.3.4.1, where it’s explained that state S1 relies only on information from the current
acquisition step. Unlike state S3, which explicitly requires an object model, state S1 doesn’t
require any knowledge of the geometry of the inspection object.
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Figure 6.13: Graph of the evaluation metrics Coverage ΨE, Episode travel distances dE,
Required number of acquisitions nE and Distance to origin CRT for the agents
RPP 1, RPP 2, RPP 3 and RPP 4.

It’s interesting to note that, although not explicitly enforced by the reward signal R1, the number
of acquisitions needed to reach ΨT decreases throughout the learning cycle (lower left graph
of Figure 6.13). This decrease can be attributed to the discount factor γRT = 0.9, which
incentivizes the agent to prioritize acquisitions with higher rewards earlier in the process.
As a result, the desired 90% surface area coverage is achieved in fewer steps, reducing
the total number of acquisitions required. Figure 6.15 illustrates this trend. Although the
surface coverage of the initial acquisition remains fixed throughout the learning process
(approximately 26%, similar to NBV), the agents excel at maximizing the additional surface
area gained in the initial acquisitions. In particular, agent RPP 3 demonstrates particularly
efficient maximization of the additional surface coverage acquired in the first four acquisitions,
namely ∆Ψ1, ∆Ψ2, ∆Ψ3, and ∆Ψ4.

Comparing agents RPP 1-4 in terms of achieved surface area coverage, it’s evident that only
agent RPP 2, which uses mapping to Cartesian coordinates, fails to achieve the required



134 Evaluation and computational results
D

is
ta

n
ce

 t
o

 o
ri

gi
n

 [
cm

]

Episodes [#] Episodes [#]

E
m

p
ty

 A
cq

u
is

it
io

n
s 

[#
]

Figure 6.14: Graph of the distance to origin CRT and empty acquisitions over the learning
process of one of the RPP 3 agents.

average surface area coverage of ΨT > 90%. Conversely, all three agents (RPP 1, RPP 3,
and RPP 4) that use mapping to spherical coordinates achieve ΨT > 90% on average. These
results are consistent with those observed in the NBV problem experiments, where agent
NBV 4 with Cartesian mapping also performed worse than agents with spherical mapping.
Additionally, it’s noteworthy that despite having a lower average total surface coverage ΨE,
agent RPP 2 requires more acquisitions nE on average, resulting in longer travel distances
dE.

Furthermore, insights from the NBV problem suggest that action mappings A2S0R and A3S0R

yield similar evaluation metrics since the agent can learn the optimal working distance
independently. In addition, a comparison between agents RPP 3 and RPP 4, which differ
only in the encoder network used (PCN for RPP 3 and PN for RPP 4), sheds further light on
agent design. Although both agents achieve similar average surface coverage ΨE after an
episode, it’s clear that using PN as the encoder results in higher average acquisitions. RPP 4
converges as fast as its counterpart RPP 3 in terms of surface coverage optimization (upper
left graph of Figure 6.13). Yet, it continues to minimize the necessary acquisitions throughout
the learning cycle, as shown in the lower left graph in Figure 6.13. Notably, while RPP 4
achieves convergence in surface coverage after approximately 4000 episodes, it also exhibits
significant variance in convergence speed regarding the number of needed acquisitions (lower
left graph in Figure 6.13) of the RL agents trained with this configuration, indicated through
the wide spread of lower und upper bound. In contrast, the variance between learning runs
for agents RPP 1 and RPP 3 is significantly lower while additionally converging faster.

Figures 6.16 and 6.17 show the distribution of VP positions for the ten observations in space
for agent RPP 3. The VP positions show spatial clustering, which is particularly noticeable
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Figure 6.15: Plot of the distribution of the difference values ∆Ψt of the surface coverage ΨE

over the learning process of the agent RPP 3.

in the initial observations. Similar to NBV, the first acquisition after the first one forms a
crescent-shaped cluster compared to the first acquisition. With successive acquisitions, these
clusters become larger and less structured.

In the initial acquisitions, certain points, highlighted by intense yellow coloring, are approached
disproportionately often. However, this pattern diminishes in subsequent acquisitions. By
acquisition 5 (t = 5), points on a hemisphere are uniformly approached. This suggests that
individual poses are favored in the early stages of acquisition due to their potential for high
surface coverage. As acquisition progresses and surface coverage accumulates, the agent
adjusts its approach based on acquisition progress and available surface coverage.

6.2.4.2 Comparison of the basic agent modeling alternatives with benchmark
algorithms

Table 6.20 compares the best-performing basic agent model against random and heuristic
benchmark algorithms. The results show that the random benchmark, which has no learning
behavior, achieves an average surface coverage ΨE of 74.86% after six acquisitions in a
single episode.

Conversely, the heuristic achieves an average surface coverage of 96.33% with the same
number of acquisitions as the random benchmark. However, the heuristic approach entails a
high average travel distance dE of 619.37. This is attributed to the heuristic algorithm deter-
mining acquisition system poses around the object without actively considering minimizing
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Figure 6.16: Plots of the first 5 poses pA/RTt (t ∈ [1, 5]) issued by the agent RPP 3 after
convergence.

travel distances or reordering the sequence of poses to minimize travel distances between
successive acquisitions.

RPP1 has an average surface coverage ΨE of 93.95% after six acquisitions, close to the
heuristic benchmark. In addition, it has the lowest average travel distance to reach ΨE, with
an average of 5.43 acquisitions and the shortest total travel distance of 340.14 among the
three approaches compared.

In summary, RPP1 outperforms the random benchmark in surface coverage ΨE and travel
distance dE. While it falls short of the heuristic method’s surface coverage, RPP1 requires
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Figure 6.17: Plots of the last 5 poses pA/RTt (t ∈ [6, 10]) issued by the agent RPP 3 after
convergence.

fewer acquisitions on average. It covers less travel distance, highlighting the superiority of the
RL approach over the simple heuristic benchmark algorithm.

6.2.4.3 State modeling alternative results

While the previous section focused on basic agents, the following section delves deeper into
the variations resulting from different state, action, and agent modeling approaches. The
quantitative results of these variations are detailed in Table 6.21.

Comparing agents RPP 3 and RPP 5, there are no significant differences in the evaluation
metrics ΨE, nE, and dE. RPP 3 uses the model-free state S1, while RPP 5 uses the binary-
coded model-based state S4. This suggests that a geometry model may not be essential
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Table 6.20: Overview of the evaluation metrics of the random and heuristic benchmark and
the RPP1 agent.

Benchmark ΨE nE dE Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6

Random 74.86% 6 386.14 23.63% 41.01% 53.36% 63.22% 70.30% 74.86%
Heuristic 96.33% 6 619.37 - - - - - 96.33%
RPP 1 93.95% 5.43 340.14 26.98% 50.67% 70.24% 82.91% 90.96% 93.39%

Table 6.21: Overview of the agents’ evaluation metrics for varying agent modeling of state
modeling and action mapping used.

Agent information Metrics

Model Abbr. State type S A R Agent ΨE nE dE

RPP 3 Model-free S1 A3S,0R R1 SAC 92.94% 5.72 341.29
RPP 5 Model-based S4 A3S,0R R1 SAC 93.31% 5.40 348.32
RPP 6 Model-free S2 A3S,0R R1 SAC 93.09% 5.67 348.90
RPP 7 Model-based S5 A3S,0R R1 SAC 92.82% 5.67 336.57
RPP 8 Model-based S5 A3S,2R R1 SAC 31.94% 11 580.89
RPP 9 Model-free S2 A3S,2R,lim R1 SAC 92.91% 6.01 324.32
RPP 10 Model-free S2 A3S,2R,lim R1 PPO 90.22% 9.09 535.80
RPP 11 Model-based S5 A3S,2R,lim R1 SAC 93.23% 5.90 339.70
RPP 12 Model-free S3 A3S,2R,lim R1 SAC 93.04% 5.79 394.28
RPP 13 Model-based S6 A3S,2R,lim R1 SAC 93.24% 5.84 404.60

for determining the optimal view plan, particularly in applications involving different variants
of starter motors. This could be due to the similarity of sequential poses for geometrically
similar products. With minimal variation in boundary conditions (such as starter type and
initial orientation), an agent such as RPP 3 can adapt without requiring knowledge of the
geometry model or its spatial orientation.

The agents RPP 6 and RPP 7 are extensions of RPP 3 and RPP 5. These agents only differ
from RPP 3 and RPP 5 in their state, which contains normal vectors in addition to the point
cloud coding (S2 in the model-free case for RPP 6 and S5 in the model-based case for RPP 6).
However, when examining the evaluation metrics, RPP 6 and RPP 7 do not differ significantly
from their counterparts, RPP 3 and RPP 5, in the converged state. This is evident both in the
quantitative tabular overview (Table 6.21) and in Figure 6.18. Interestingly, the inclusion of
normal vectors can be detrimental to convergence speed. This can be seen by comparing, for
example, RPP 5 and RPP 7. While RPP 7 integrates normal vector information, it converges
slower than its counterpart, RPP 5, which does not. RPP 5, which uses the model-based
state S4 based on the ground truth point cloud PGT and binary coding of the covered points,
shows the fastest convergence in terms of required acquisitions compared to RPP 3, RPP 6,
and RPP 7. Thus, a model-based state supports faster convergence than a model-free state
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Figure 6.18: Graph of the evaluation metrics Coverage ΨE, Episode travel distances dE,
Required number of acquisitions nE and Distance to origin CRT for the agents
RPP 3, RPP 5, RPP 6 and RPP 7.

when only point information is passed. However, this advantage is negated when normal
vectors are integrated into the state, since RPP 6 (model-free with normal vector information)
and RPP 7 (model-based with normal vector information) show similar convergence speed.

Up to this point, the discussed agents have only been able to determine the position of the
pose pA/RTt in space. The orientation of these agents is determined solely by their orientation
towards the origin of the coordinate system CRT . However, agents RPP 8-13 also allow for the
orientation of the acquisition system to be defined. Agent RPP 8 employs the A3S,2R action
mapping. This agent modeling variant is able to set the pose of the acquisition system as well
as the orientation of the inspected starter motor by controlling the rotary degree of freedom
of the rotary table without integrating any prior knowledge. However, quantitative results of
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evaluation metrics in Table 6.21 and associated graphs in Figure 6.19 indicate that the trained
agents for agent modeling RPP 8 are not able to learn a satisfactory strategy, based on the
poor performance regarding surface coverage and the needed amount of acquisitions, since
the agent modeling is not able to achieve ΨT > 90%.
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Figure 6.19: Graph of the evaluation metrics Coverage ΨE, Episode travel distances dE,
Required number of acquisitions nE and Distance to origin CRT for the agents
RPP 8-11.

Building on this result, agents RPP 9-13 adopt the action mapping A3S,2R,lim, allowing only
angle-based deviations from the predefined orientation of the acquisition system to the origin
of CRT . Despite initial challenges in convergence, state models S2 and S5 are used because
they have minimal impact on evaluation metrics in the converged state, primarily influencing
convergence speed while providing more comprehensive information. In addition, agent
modeling for RPP 10 uses PPO as the RL algorithm.
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An analysis of the behavior of agent RPP 10 compared to agents RPP 9 and RPP 11 shows
that while RPP 10 achieves the required surface coverage of ΨE ≥ 90% on average, it
requires a significantly higher number of acquisitions nE, resulting in longer travel distances
dE . Figure 6.19 shows that RPP 10 converges much slower than RPP 9 and RPP 11. Overall,
RPP 10, which uses PPO as the RL method, shows inferior performance in the VPP problem.
Additionally, comparing agents RPP 9 and RPP 11 with their counterparts RPP 6 and RPP
7, which cannot output an angle-based deviation from CRT , shows that RPP 9 and RPP 11
tend to perform even worse. Although they achieve comparable surface coverage ΨE on
average, RPP 9 and RPP 11 require a higher average number nE of acquisitions despite
slightly smaller average travel distances dE.

Finally, agents RPP 12 and RPP 13 are analyzed. Their state models S3 and S6 contain
information about the acquired surface points from the last acquisition and the pose ap-
proached by the acquisition system. The results in Table 6.21 show that these agents also
achieve ΨE ≥ 90% and require fewer acquisitions on average compared to RPP 9 and
RPP 11. However, RPP 12 and RPP 13 show significantly higher travel distances than their
counterparts, RPP 9 and RPP 11, which lack additional information about the last pose and
the acquired surface points in their state.

In summary, it’s clear that state modeling and action mapping significantly impact agent
behavior. Incorporating additional information doesn’t always lead to improved performance
on all evaluation metrics. A reward signal was used in the experiments that only enforced
surface coverage maximization. Other evaluation metrics, such as number of acquisitions nE

until the end of an episode and distance traveled dE in an episode, are not explicitly addressed
in the reward signal, resulting in different levels of optimality across agent modeling variants.
Therefore, in the following section, selected variants of different reward functions are evaluated
to explore the possibility of optimizing multiple objective variables simultaneously.

6.2.4.4 Reward modeling alternative results

Reward signals used in this work are introduced in section 5.3.5. The reward signal R1

used to reward based on the area ∆Ψt not yet covered in the last acquisition relative to the
theoretically still possible area Ψrem,t−1 to be covered. The reward signal R2, on the other
hand, only rewards based on the area ∆Ψt not yet covered after each acquisition step. The
reward signal R3 further scales R1 based on the length of the travel distance dt between the
position of the last acquisition and the current acquisition pose. R3 is also a dense reward
signal and rewards after each acquisition step. Agent RPP 14 uses R2, while RPP 15 uses
R3. For an overview of the evaluation metrics of the agent modeling variants considered in
this section, see Table 6.22.
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Table 6.22: Overview of the agents’ evaluation metrics for varying reward modeling alterna-
tives used.

Agent information Metrics

Model Abbr. Reward type S A R Agent ΨE nE dE

RPP 1 Dense S1 A2S,0R R1 SAC 93.95% 5.43 340.14
RPP 12 Dense S3 A3S,2R,lim R1 SAC 93.04% 5.79 394.28
RPP 14 Dense S3 A3S,2R,lim R2 SAC 92.64% 6.37 419.20
RPP 15 Dense S3 A3S,2R,lim R3 SAC 93.54% 6.69 251.08
RPP 16 Sparse S3 A2S,0R R8 SAC 93.19% 4.73 340.19
RPP 17 Sparse S3 A2S,0R R9 SAC 93.49% 4.80 340.74
RPP 18 Sparse S3 A3S,2R,lim R6 SAC 53.08% 11 588.97
RPP 19 Sparse S3 A3S,2R,lim R7 SAC 43.00% 11 400.46

A direct comparison between RPP 12 and RPP 14 shows that the simpler modeling of the
reward signal R2 has a negative impact on the evaluation metrics of travel distance dE and
required number of acquisitions nE . While both agents achieve the required surface coverage
ΨE ≥ 90%, RPP 14 converges more slowly with this reward signal, as shown in Figure 6.20.
Comparing RPP 12 with RPP 15, which uses reward signal R3, demonstrates the potential
of multi-criteria evaluation metric optimization. By integrating the scaling term of the travel
distance dt between acquisitions, RPP 15 minimizes the cumulative travel distance dE for the
acquisition process of an inspection object. However, the slightly more complex optimization
problem results in a slower convergence process for the trained agents.
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Figure 6.20: Graph of the evaluation metrics Coverage ΨE, Episode travel distances dE and
Required number of acquisitions nE for the agents RPP 12, RPP 14 and RPP
15.

When using sparse reward signals, the comparison starts with agents RPP 18 and RPP 19.
RPP 18 uses the reward signal R6, which rewards the RL agent with a constant value (1)
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when the target state sG is reached at ΨT ≥ 90%. Similarly, RPP 19’s reward is based on
the achieved surface area coverage ΨE divided by the required number of acquisitions nE.
However, the results indicate that neither agent, RPP 18 or RPP 19, achieves comparable
surface coverage to agents with dense reward signals. This could be attributed to the rarity of
reaching the target state sG at ΨT ≥ 90% within the 11 allowed acquisitions for RPP 18 and
RPP 19. Consequently, these agents receive sparse rewards, which hinders their ability to
discriminate between beneficial and less beneficial actions in states.

In the case of sparse rewards, two simplifications are used, resulting in agent modeling
variants RPP 16 and RPP 17. First, these agent models use action modeling A2S,0R, and
second, both agent models use sparse reward signals that do not reward the agent upon
reaching the goal state sG, but rather upon reaching a terminal state sT . This ensures
that these agent models are consistently rewarded at the end of an episode, i.e., after an
acquisition process of the inspection object. By choosing the action modeling A2S,0R instead
of A3S,2R,lim, the degrees of freedom of the agent models RPP 16 and RPP 17 are further
restricted, which simplifies the learning process for the agents.

Position of initial acquisition Density distribution of acquisitions
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Figure 6.21: Positional components of the poses pA/RTt issued by the agent with agent mod-
eling RPP 12 in the last 200 training episodes.

Comparing RPP 16 and RPP 19 shows the benefits of restricting the agents’ degrees of
freedom (DoF) and choosing a reward signal that consistently rewards the agents at the end
of an episode. Unlike the agent modeling in RPP 19, RPP 16 demonstrates learning and
convergence, while agent 19 does not maximize surface coverage or minimize the amount
of acquisitions. It always performs the maximum amount of 11 acquisitions in an episode
until said episode is terminated. Surprisingly, RPP 16 outperforms agent models RPP 1 and
RPP 12, which use dense reward signals. While these agents achieve comparable surface
coverage ΨE at the end of an episode, RPP 16 exhibits lower travel distance dE than RPP
12 and comparable travel distance dE compared to RPP 1. The notable difference lies in the
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number of acquisitions nE required to achieve surface coverage ΨE, which is lower for RPP
16 than for RPP 1 and RPP 12 in both cases.
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Figure 6.22: Positional components of the poses pA/RTt issued by the agent with agent mod-
eling RPP 16 in the last 200 training episodes.

A possible explanation can be found in Figures 6.21 and 6.22. Figure 6.22 shows the density
distribution of the positional components in space for the last 200 episodes of poses pA/RTt

approached by one of the trained agents using agent modeling RPP 16. Conversely, Figure
6.21 shows the density distribution of the last 200 episodes of poses pA/RTt approached by an
agent using agent modeling RPP 12. The concentration of poses in Figure 6.22 is significantly
higher than in Figure 6.21. This suggests that agents using agent modeling RPP 16 learn a
globally optimal distribution of pose positions to achieve the final surface coverage ΨE ≥ 90%
with the fewest acquisitions nE , as dictated by the reward signal R8. In contrast, agents using
agent modeling RPP 12 tend to have a more widely distributed density distribution. Here, the
reward signal R1 implicitly minimizes the number of acquisitions, and agent modeling RPP
12 also implicitly emphasizes a globally optimal solution for VPP. Consequently, the agent
modeling prioritizes solving the NBV problem over the RPP problem. This results in a higher
number of necessary acquisitions to reach the goal ΨE ≥ 90%, considering that the choice of
NBV is not always optimal for solving RPP (see section 2.2.1).

6.2.4.5 Training results on real starter motor data and comparison with benchmark
algorithm SCP for the RPP

The previous results discussed the results of agent modeling using the D1 dataset. Now the
focus shifts to examining the transferability of these results to the D2 dataset and comparing
them to the analytical solution approaches using the SCP benchmark algorithms.

Table 6.23 presents the results of RPP 12 and RPP 16, as discussed earlier. Additionally,
the outcomes of agents RPP 20 and RPP 21 are included. These agents differ only in their
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Table 6.23: Overview of the evaluation metrics of selected agent modeling with dense and
sparse reward configuration trained with the data sets D1 and D2.

Agent information Metrics train Metrics test

Abbr. Reward S A R Data ΨE nE dE ΨE nE dE

RPP 12 Dense S3 A3S,2R,lim R1 D1 93.04% 5.79 394.28 - - -
RPP 16 Sparse S3 A2S,0R R8 D1 93.19% 4.73 340.19 - - -

RPP 20 Dense S3 A3S,2R,lim R1 D2 93.11% 5.59 351.77 93.56% 5.57 347.23
RPP 21 Sparse S3 A2S,0R R8 D2 93.05% 4.02 275.19 92.06% 5.47 417.41

training dataset, being trained on dataset D2 instead of D1. Without delving into specific
numerical values, it was demonstrated that successfully training the modeled RL agents is
achievable using dataset D2, with comparable evaluation metrics to those trained with dataset
D1. RPP 20 and RPP 21 were additionally evaluated on previously unseen starter motor
models (5 out of the 40 starter motor models from dataset D2 were excluded from training
and used for testing). It was observed that these agents generalize well to unseen models,
indicating their robustness. However, in the case of RPP 21, which uses a sparse reward,
there is a noticeable reduction in performance on the test data, particularly regarding the
required number of acquisitions (nE) and travel distance (dE).

Table 6.24: Overview of the evaluation metrics of the analytical SCP VPP solution algorithms.

Acquisition step t

Dataset Metric t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

SCPD1,Cov
Ψ D1

Average Ψt 35.54% 68.75% 86.43% 94.03% 97.20% 98.59%
Average dt 0 140.57 224.13 347.65 433.47 544.26

SCPD1,Cov
Ψ,d D1

Average Ψt 35.15% 63.96% 85.40% 93.59% 96.56% 98.04%
Average dt 0 108.51 192.60 255.08 323.20 398.22

SCPD2,Cov
Ψ D2

Average Ψt 44.03% 81.50% 92.51% 97.02% 98.88% 99.45%
Average dt 0 138.02 223.95 318.48 422.21 517.43

SCPD2,Cov
Ψ,d D2

Average Ψt 43.95% 76.44% 92.33% 96.30% 98.34% 99.22%
Average dt 0 111.16 176.24 228.70 305.33 378.76

The quantitative comparison between the benchmark algorithms SCPD1,cov
Ψ and SCPD2,cov

Ψ ,
both aiming to maximize surface coverage and evaluated on datasets D1 and D2, respectively,
yields comparable results. Table 6.24 shows the tabular results of evaluating the analytical
SCP benchmark algorithms. Evaluated over the number of acquisitions, they each achieve
similar values for the evaluation metrics Ψt and dE. Notably, SCPD2,cov

Ψ , evaluated on the
dataset D2 containing real starter motor models, tends to achieve a larger average surface
coverage Ψt with a smaller necessary average travel distance dt. Similar results are observed
when comparing SCPD1,cov

Ψ,d and SCPD2,cov
Ψ,d . Both SCP variants seek a balance between

maximizing surface coverage and minimizing the required distance. This can be seen in a
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direct comparison, such as between SCPD1,cov
Ψ and SCPD1,cov

Ψ,d . While SCPD1,cov
Ψ achieves

an average surface coverage of Ψ4 = 94.03% with an average path length of d4 = 347.65
after four acquisitions, SCPD1,cov

Ψ,d achieves a slightly lower surface coverage (Ψ4 = 93.59%)
but significantly reduces the average path length required (d4 = 255.08).

A direct comparison between the agents and the SCP benchmark algorithms shows that,
despite the learning behavior of the agents, the benchmark algorithms outperform them. On
average, the SCP benchmark algorithms reach a surface coverage ΨE comparable to that of
the agents after only three acquisitions. Thus, on average, the agents require two to three
more acquisitions than the analytical SCP benchmark algorithm to reach a surface coverage
of ΨE ∼ 93%. However, a significant drawback of these SCP benchmark algorithms is that
they must virtually evaluate 900 acquisitions to solve the VPP. This takes about 0.5 seconds
per acquisition for a total of 450 seconds. In contrast, the agent can output the next pose in a
few milliseconds due to the short computation time of the NN used as policy. Thus, the RL
agent-based approach provides a real-time solution, albeit with more required acquisitions
during the inspection than is ideal.

6.2.4.6 Application including the robot simulation

The previous results were obtained by allowing the RL agent to freely position itself around the
object to be inspected, which only partially reflects the real application case of an acquisition
system positioned on a robot. The following results discuss how the previously evaluated RL
agents can solve the RPP problem when they also have to learn the reachability of selected
poses. When a robotic system with reachability constraints is considered, Table 6.25 presents
quantitative results for selected modeling variants of the RL agents trained on datasets D1-D3.
While the state and reward modeling remains the same for these agents, new action modeling
variants, A3S,2R,lim,T and A2S,0R,T , were used. These variants allow rotation of the inspection
object and use a restricted mapping of the agent’s output to spherical coordinates to better
represent the robot’s workspace, as introduced in section 5.3.4.2. As a result, the agent must
learn to control the rotation of the inspection object to compensate for the restricted motion
due to the workspace constraint. It has to be noted that agents RPP 28 and RPP 29 trained
on dataset D3 were also tested using five starter motors not used during training.

The insights gained from previous sections are further confirmed when considering the
restriction of the agent’s movement space, the possibility for the agent to define unreachable
poses, and the additional degree of freedom of rotation of the rotary table. For instance,
integrating the travel length between poses into the reward signal can impact the overall
travel length of the trained RL agent. This is evident from comparing evaluation metric dE

for agents RPP 22 and RPP 23, where RPP 22 uses R1 and RPP 23 uses R3. Additionally,
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Table 6.25: Overview of the evaluation metrics of the agents that have been trained using the
robot simulation.

Agent information Metrics train Metrics test

Abbr. Reward S A R Data ΨE nE dE ΨE nE dE

RPP 22 Dense S3 A3S,2R,lim,T R1 D1 90.72% 6.42 207.14 - - -
RPP 23 Dense S3 A3S,2R,lim,T R3 D1 90.65% 6.76 166.30 - - -
RPP 24 Sparse S3 A3S,2R,lim,T R8 D1 51.53% 10.99 148.60 - - -
RPP 25 Sparse S3 A2S,0R,T R8 D1 91.33% 4.95 45.73 - - -

RPP 26 Dense S3 A3S,2R,lim,T R1 D2 90.35% 5.65 151.30 87.73% 5.95 150.77
RPP 27 Sparse S3 A2S,0R,T R8 D2 91.35% 4.43 49.07 91.21% 4.75 36.38

RPP 28 Dense S3 A3S,2R,lim,T R1 D3 90.84% 5.60 103.70 91.46% 5.70 113.49
RPP 29 Sparse S3 A2S,0R,T R8 D3 90.82% 5.07 64.85 91.41% 4.63 70.36

agent RPP 24, rewarded by a sparse reward signal R8 with action modeling A3S,2R,lim,T ,
fails to converge. Similar to evaluations without integrating a robot model, the sparse reward
setting is effectively addressed by the RL agent only when the action space is restricted to
fewer degrees of freedom. This is observed in the comparison of RPP 24 and RPP 25, both
configured similarly, with the only difference being action modeling A2S,0R,T for agent RPP 25,
which has fewer degrees of freedom compared to action modeling A3S,2R,lim,T of RPP 24.

Similar to the experiments without robot model integration, agents RPP 25, RPP 27, and RPP
29 with sparse reward signals show comparable results to each other and outperform their
counterparts with dense reward signals (RPP 22 as the dense counterpart of RPP 25, RPP
26 as the dense counterpart of RPP 27, and RPP 28 as the dense counterpart of RPP 29).

The insights from training agents using dataset D1 can be directly applied to datasets D2 and
D3. Additionally, similar to the scenario without integrating the robot model into the simulation,
the trained agents generalize their learned strategies to data not present during training, as
evidenced by the test evaluation metrics for agents RPP 26-29.

The quantitative results indicate that all trained RL agents effectively minimize the number of
unreachable poses and empty acquisitions (resulting from the positioning of the acquisition
system too far away or too near to the object or selecting an unreachable pose) defined by
the agent. This is exemplified by one of the trained RL agents from the RPP 28 configuration
and one from the RPP 29 configuration, as depicted in Figures 6.23 and 6.24.

A notable observation is that the RL agent in agent configuration RPP 28 initially has a
significantly higher number of empty acquisitions and unreachable poses than its counterpart
in agent configuration RPP 29. However, both configurations quickly adapt during training
by consistently selecting reachable poses and performing acquisitions that improve surface
coverage. There is a brief period where the RL agent in the RPP 29 configuration exhibits
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Figure 6.23: Graph of the empty acquisitions and non-reachable poses over the learning
cycle for one agent of the agent configuration RPP 28.
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Figure 6.24: Graph of the empty acquisitions and non-reachable poses over the learning
cycle for one agent of the agent configuration RPP 29.

a temporary decline in its learned policy, as evidenced by a temporary increase in empty
acquisitions and unreachable poses. This may be due to the fact, that in the sparse setting,
more variance in the observed rewards can be experienced, which may, in turn, favor bad
gradient estimation by the RL algorithm and thus bad weight updates of the NN representing
the action selection strategy (actor and critic when using SAC).

Comparing the positional components of poses issued by the RL agents in agent configura-
tions RPP 28 and RPP 29 (displayed in Figures 6.25 and 6.26), along with the rotation angles
(illustrated in Figures 6.27 and 6.28), provides interesting insights about their behavior across
different acquisition steps.
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Figure 6.25: Positional components of the poses pA/RTt issued by the agent with agent mod-
eling RPP 28 in the last 200 training episodes.
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Figure 6.26: Positional components of the poses pA/RTt issued by the agent with agent mod-
eling RPP 29 in the last 200 training episodes.

A direct comparison shows that the position components of the poses generated by the RL
agent in agent configuration RPP 28 are relatively evenly distributed on a spherical surface
within the workspace of the robot-mounted acquisition system. In contrast, the position
components of the poses in agent configuration RPP 29 tend to cluster along a circular arc.

Comparing the output rotation angles of the rotary table, particularly in the early acquisitions
(e.g., acquisitions 1 and 2), it’s evident that the variance of these output rotation angles for
the RL agent in agent configuration RPP 28 is significantly lower than that of the RL agent in
agent configuration RPP 29. The RL agent in RPP 28 appears to achieve surface coverage
maximization through a fixed rotation pattern and adjusting the acquisition system’s position
on the spherical surface. In contrast, the RL agent in RPP 29 maintains a constant positioning
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Figure 6.27: Mean curve and standard deviation of the rotation angles of the rotary motor
in the individual acquisition steps throughout training for an RL agent of agent
configuration RPP 28.

of the acquisition system along the circular arc while varying the rotation angle of the rotary
table to maximize surface coverage.

6.2.4.7 Results for the RPP with multiple product categories on the Dataset D4

The results up to this point have been generated with products from one product category
(starter motor) with variations of its variants. It has been shown that RL agents can also be
used model-free (state modeling variants S1-S3), i.e. if no knowledge about the 3D model of
the product to be inspected is available to derive the state of the RL agent.

For the following experiments, data set D4 is used, which contains not only the starter
motor product category but also other object categories (bus, motorcycle, ...). The tabular
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Figure 6.28: Mean curve and standard deviation of the rotation angles of the rotary motor
in the individual acquisition steps throughout training for an RL agent of agent
configuration RPP 29.

presentation of the quantitative results of the following explanations can be found in table
6.26.

Table 6.26: Overview of the evaluation metrics of the agents trained on dataset D4.

Agent information Metrics

Model Abbr. Reward type S A R Dataset ΨE nE dE

Val 1 Dense S3 A3S,2R,lim R1 D4 88.37% 8.56 577.62
Val 2 Dense S6 A3S,2R,lim R1 D4 91.11% 6.41 492.18
Val 3 Sparse S3 A2S,0R R8 D4 88.03% 7.51 416.91
Val 4 Sparse S6 A2S,0R R8 D4 91.69% 5.7 436.88

First, it has been shown that the learning behavior of the RL agents also occurred in the case
of multiple product categories. However, it can be noted that the variants of the RL agents that
were trained with a model-free condition (Val 1 with dense reward signal R1 and Val 3 with
sparse reward signal R8) performed significantly worse than their model-based counterparts
(Val 2 and Val 4). The agents Val 2 and Val 4, with both dense and sparse reward signals,
managed to maximize the surface coverage and reduce the number of acquisitions required
for this.

Although the agents (especially Val 2 and Val 4) show a clear learning behavior, deficits
are still identifiable. For example, the poses approached by the trained RL agents can be
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Figure 6.29: Distribution of the poses approached for one RL agent of the agent modeling
Val 2 in the converged state for the object categories ship and airplane.

examined in dependence on the inspection object at hand. It shows the distribution of the
first pose after the initial acquisition for one of the RL agents of agent modeling Val 2 in
the converged state for the object categories ship and airplane. Results have shown that
the trained RL agents maximize the surface area and minimize the number of acquisitions
required for this but do so independently of the inspection object at hand. This means that
independent of the inspection object, the agent always chooses the same poses as VP for
the episode’s second, third, and further acquisitions, resulting in a local optimum found by the
agent.

It can thus be concluded that the RL agents solve the credit assignment problem in RL this
problem class (RPP multiple object categories) but do so insufficiently for the realization of
adaptive/ autonomous agent behavior.

6.2.5 Results of the RL agent training using the proposed simulation framework
for the IPP problem

After the applicability of RL for solving the problems of NBV planning and RPP has been
shown, it remains to be examined whether it is suitable for the problem of IPP.
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The following results demonstrate the main findings that have emerged in this work when
considering the IPP. Detailed investigations can be found in the work of A_Koch 2022, which
was carried out under the supervision of the author of this thesis.

Quantitative results for investigating an exemplary problem of the IPP can be found in Table
6.27. For this purpose, two regions with 150 surface points each were randomly defined on
each starter motor of the respective investigated data sets (D1, D2 and D3) in each episode.
The task in training the RL agents was to select acquisition poses with as few acquisitions as
possible to acquire these surface points fully. Variation of this problem is given by varying the
number of regions and surface points per region (which ultimately corresponds to the size
of the region to be acquired). These have been investigated in detail in the work of A_Koch
2022.

Table 6.27: Overview of the evaluation metrics of the agents trained using the robot simulation.

Agent information Metrics train Metrics test

Abbr. Reward S A R Data ΨE nE dE ΨE nE dE

IPP 1 Dense S4 A3S,0R R1 D1 91.67% 3.16 123.79 - - -
IPP 2 Dense S4 A3S,0R R1 D2 92.62% 3.17 128.38 92.60% 3.18 123.76
IPP 3 Dense S4 A3S,0R R1 D3 85.12% 3.44 127.03 83.50% 4.30 113.96
IPP 4 Dense S4 A3S,2R,lim R1 D3 86.15% 3.37 115.2 86.00% 4.55 100.17
IPP 5 Dense S6 A3S,2R,lim R1 D3 88.09% 3.02 136.81 88.61% 3.85 113.00
IPP 6 Dense S6 A3S,2R,lim R5 D3 91.13% 2.73 107.19 90.47% 3.21 103.20
IPP 7 Dense S6 A2S,0R,T R1 D3 63.55% 5.00 51.93 - - -

As in the case of RPP, the results are presented below with results of the benchmark
algorithms SCPD1,Ins

Ψ , SCPD2,Ins
Ψ and SCPD3,Ins

Ψ , which give the analytical solution to the
problem for the data sets D1, D2 and D3, respectively, when only the surface coverage
is optimized and the travel distances required for this are neglected. It can be seen that
SCPD1,Ins

Ψ , SCPD2,Ins
Ψ and SCPD3,Ins

Ψ achieve over 90% surface coverage after only two
acquisitions (t = 2). This is expected, as two surface regions should be covered on average
with two acquisitions. The comparatively high coverage after just one acquisition can be
explained by the fact that there are often regions sampled next to each other that can
theoretically be covered with one acquisition.

By comparing agent IPP 1, which was trained on data set D1, with its counterpart SCPD1,Ins
Ψ ,

it can be seen that although it also achieves over 90 % surface coverage of the regions, it
requires three instead of two acquisitions on average. Analogous insights can also be gained
for the agents IPP 2 and IPP 3 if they are compared with their counterparts SCPD2,Ins

Ψ and
SCPD3,Ins

Ψ . It is also noticeable that the performance of agent IPP 3 is worse for data set D3,
in particular compared to IPP 1 and IPP 2, which have the same hyperparameters. On the
one hand, this is already evident in the training, as a lower surface coverage is achieved with
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a greater number of necessary acquisitions. On the other hand, this is even more evident
when testing the IPP 3 agent on starter motors that have not been trained on.

Here, it can be seen that, on average, a larger number of acquisitions is necessary for a
similar surface coverage as during training. However, the integration of additional information
into the agent modeling proved to be advantageous here. IPP 4 has more degrees of freedom
(rotation of the acquisition system) due to the action modeling A3S,2R,lim. Compared to IPP
3, this enables increased surface coverage during training with slightly fewer necessary
acquisitions. IPP 5 additionally integrates the complete state vector S6, which in turn enables
an increase in surface coverage and a reduction in the number of necessary acquisitions
compared to IPP 4 during training. This is presumably because more information is given to
the agent through the state S6, enabling IPP 5 to learn a better strategy than instead of using
state S4.

However, as with IPP 3, the fact remains that when testing the agents IPP 4 and IPP 5,
a significantly higher number of acquisitions is carried out than in training, and that would
theoretically be necessary (as can be seen from the results of the SCP benchmark algorithms
from Table 6.28).

In the case of IPP, the variation of the reward signal also has an influence on the agent’s
behavior. Comparing IPP 5 and IPP 6, they differ only in the reward signal (R1 for IPP 5 and
R5 for IPP 6). More specifically, only a constant punishment (negative reward) is integrated
in R5, which punishes acquisitions that do not include any surface points of a ROI to be
acquired. Compared to IPP 5, it can be observed that with this definition of the reward signal,
an increase in the average surface coverage can be achieved while at the same time reducing
the required acquisitions and travel distances of the acquisition system. This can presumably
be attributed to the fact that the IPP 6 agent learns faster and more efficiently through negative
rewards to associate the passed state with actions that achieve a gain in the object surface to
be covered.

Table 6.28: Tabular overview of the results of the SCP benchmark algorithms for the IPP
problem evaluated on datasets D1, D2 and D3.

Acquisition step t

Metric t = 1 t = 2 t = 3 t = 4 t = 5

SCPD1,Ins
Ψ

Average Ψt 74.34% 94.38% 98.69% 99.22% 99.04%
Average dt 0 49.13 102.13 144.37 159.66

SCPD2,Ins
Ψ

Average Ψt 72.63% 92.96% 97.86% 98.95% 99.18%
Average dt 0 47.19 94.49 136.72 169.84

SCPD3,Ins
Ψ

Average Ψt 71.27% 88.27% 93.25% 95.26% 96.10%
Average dt 0 49.45 99.81 144.32 184.36
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While the agents IPP 1-6, which were trained without integrating the robot model, achieve
comparatively good results for the IPP, IPP 7 is trained with integration of the robot model. In
addition to controlling the position of the acquisition system, in this case the IPP 7 agent must
also control the relative rotation angle of the rotary table to acquire the ROI systematically. In
this case, it can be seen that the agent only inadequately solves the IPP. The IPP 7 agent
does not acquire the required surface coverage of ΨT > 90% of the ROI with 5 acquisitions
and only achieves an average surface coverage of approx. 63%. In comparison to Agent
IPP 3, only the state (from S4 to S6) and the additional degree of freedom due to the rotary
table have changed in addition to the integration of the robot model. Since the integration
of the state S6 had a positive effect on the agent behavior in the remaining investigations in
IPP and the agents in RPP have learned to output only reachable poses of the acquisition
system as actions, it can be assumed that in the case of IPP, the degree of freedom of the
rotary table is detrimental. It is reasonable to assume that the rotation of the rotary table also
constantly changes the position and orientation of the ROI during the acquisition process and
thus induces additional complexity (comparable to the acquisition of different objects, see
investigations in 6.2.4.7), which could not be learned by the agent IPP 7.

Overall, it should be noted that, as in the case of RPP, when training an RL agent on several
object variants, the problem complexity induced by the IPP results in comparatively suboptimal
strategies being learned by the RL agents. This is not only the case for IPP 7 but also for the
remaining agents IPP 1-6. In principle, the parameterization effort for these RL agents was
significantly greater than for the agents of the NBV problem and the RPP. The RL agents for
solving the IPP problem have always required a higher exploration (higher entropy coefficient
in Table 6.16) rate and a lower learning rate to converge. It cannot be ruled out that this
work has merely laid the foundation for further attempts at more optimal parameterization
and solution of the IPP. In principle, however, there is a trade-off between the number
of agent trainings to be carried out and the choice of hyperparameterization. For higher
exploration rates and lower learning rates, RL agents need longer to converge with the same
computing capacity, which is why the in-depth investigation of these hyperparameterizations
was dispensed within this thesis.

6.2.5.1 Sim-to-Real: RPP results on the inspection station

All previous results of the trained RL agents have been obtained in the simulation. In the
following, the quantitative results of RL agents trained in the simulation including the robot
model are presented, which are evaluated (tested) on the real inspection station using real
starter motors (Sim-to-Real setting). The following results show the results of the experiments
of agents RPP 28 (dense reward signal R1) and RPP 29 (sparse reward signal R8) in
comparison to two benchmarks (random and heuristic). Since it is assumed in the present
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experiments that the object geometry of the starter motors to be inspected is not available, the
heuristic from section 6.2.1, which explicitly extracts bounding boxes from known geometry
models and calculates the necessary VP from them, cannot be used. For the following
experiments, a fixed VP was defined above the rotary table, and the acquisition system was
aligned horizontally to the starter motors in the following six acquisitions, whereby the starter
motor with the rotary table was rotated by 60◦ between the individual acquisitions. The random
benchmark corresponds to the benchmark from section 6.2.1, whereby a random permissible
position in space has been sampled for each acquisition, and the orientation of the acquisition
system has been automatically calculated to face the starter motor.

Figure 6.30 shows the percentage of surface area acquired over the number of acquisitions
performed for the agents and benchmarks. The respective agents and benchmarks were
tested for the five different test starter motors in dataset D2. The underlying ground truth model
(see data set D2 in section 6.2.1) was used to calculate the percentage surface coverage for
each motor. The respective percentage of surface coverage in Figure 6.30 is the averaged
surface coverage after the respective acquisitions for all five starter motors.

Figure 6.30: Percentage of surface coverage over the number of acquisitions for agents RPP
28 and RPP 29 as well as benchmarks Random and Heuristic.

The results show that both RPP 28 and RPP 29, trained in the virtual inspection station
environment, can be used on the real inspection station. Both agents perform better than
the random benchmark. After just five acquisitions, both agents have a percentage surface
coverage between 80% and 90%. RPP 29, which was trained using a sparse reward signal
R8, shows, as in the simulations, a comparable surface coverage to its dense counterpart
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RPP 28 with fewer acquisitions. Therefore, the simulation’s findings can be transferred directly
to the real system. It also becomes apparent that the agents RPP 28 and RPP 29 have
a significantly greater percentage surface coverage than the benchmark heuristic in early
acquisitions (acquisitions 1 to 4). This is reasonable because the heuristic rotates the starter
motors with a certain number of angle increments (60◦) and thus requires several rotations
to enable the acquisition system to cover the entire surface. In contrast, the agents RPP
28 and RPP 29 have been trained to maximize the percentage surface coverage, whereby
the learned strategies have probably forced a maximization of the surface coverage in each
acquisition. This has probably resulted in problems in the later course of the acquisition
process, which have already been discussed in section 2.2.1, since the agents have tended
to solve the NBV problem.

Overall, these results show that the results from the simulation can also be confirmed in reality.
The trained RL agents perform comparably to a heuristic, whereby the heuristic performs
slightly better in the real application. However, these deficits can possibly be easily remedied
in further work by fine-tuning the RL agents on the real use case and thus outperforming the
heuristic.
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7 Discussion and outlook

This thesis presents a methodological approach to using RL agents for autonomous view
planning in remanufacturing. Based on the real use case of initial visual inspection, its
challenges have been addressed as part of the solution approach of this thesis, and the
solution approach has been implemented and evaluated. In the following, the insights gained
are summarized and critically assessed in relation to the research deficits (see section 3.5)
derived in this thesis (section 7.1). These findings provide the basis for deriving possible
future research activities (section 7.2).

7.1 Critical appraisal

The approach of this thesis consists of a RL simulation framework. Differently modeled RL
agents are trained to solve VPP relevant for remanufacturing. To this end, the inspection
station used within the scope of this thesis has been modeled and virtualized to allow, e.g., for
virtual analyses of the accessibility of the poses issued by the RL agent. Further, a method
for semantic 3D reconstruction was developed using semantic mapping employing instance
and semantic segmentation methods. This semantically reconstructed 3D model can then be
used as input for pose planning by the RL agent in case components or defects, generally
referred to as ROI, must be inspected in more detail during the acquisition process. Based
on the digital representation of the inspection station, the RL simulation framework was
developed. The semantic 3D reconstruction approach was used to generate initial training
and test data for the RL agents to be trained. The entire RL simulation framework consists of
three components. Firstly, the actual RL agent APlan, secondly SSim consisting of the virtual
station representation including a developed acquisition simulation and thirdly, IAgent, an
interface for communication between APlan and SSim with the possibility to define differently
modeled state, action and reward functions. This thesis presents a solution approach (see
chapter 4) that addresses the research deficits (see section 3.5) identified in the current state
of research. In the following section, the approach will be critically assessed.

Research deficit 1: Missing evaluation of differently modeled RL Agents
The development of the RL simulation framework has made it possible to freely design the
configuration of the RL agents. Firstly, the open-source library stable-baselines 3 (see section
5.3.5) enables seamless integration of different RL algorithms. Furthermore, developing the
interface IAgent allowed maximum freedom to define the state, action, and reward definitions.
Particular attention has been paid to a general implementation when defining the various
configuration options. For example, the RL agent operates on a state function that is derived
from acquired point clouds. This state definition is therefore highly universal, as many optical
measurement systems available today can acquire point clouds. The same applies to the
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modeling of action mapping, whereby, in this case, the RL agent directly manipulates degrees
of freedom (DoF) of the system (pose of the acquisition system and rotation angle of the rotary
table). The results have shown that a variation in the modeling of the RL agents has a decisive
influence on their performance. For instance, it was shown that the appropriate integration
of prior knowledge and the associated restriction of the RL agents’ action space positively
affects their performance. Furthermore, it has been shown that the additional integration of a
large amount of state information does not provide any significant benefit. These insights can
be traced back to the so-called curse of dimensions, according to which finding an optimal
strategy for the RL agents becomes more difficult with increasing state and action space,
even though additional potential information has been encoded in the state and the RL agent
has more degrees of freedom. Overall, the modeling results of the present work provide an
ideal starting point for further research. Different modeling variants have been presented
and interpreted, whereby successful and less successful modeling alternatives have been
compared quantitatively concerning defined performance indicators.

Research deficit 2: Dependence on available object geometries at system runtime
Existing RL approaches for solving the VPP are model-dependent. This implies that at
execution time, they require knowledge of the geometry model or knowledge of the product at
hand or its variant to plan on this geometry model (derivation of the acquisition state based
on the geometry model, e.g., Potapova & Artemov et al. (2020)) or the selection of a RL agent
specifically trained for the product at hand to solve the problem (e.g., Landgraf & Meese et al.
(2021)). However, this does not imply that geometry models are not required to train the RL
agents. Therefore, two alternative state representations, model-based and model-free, have
been defined and evaluated in this thesis. The model-free version is primarily required and
validated for the solution of RPP as part of the general inspection of remanufacturing. The
model-based version must be chosen and evaluated for the individual inspection (IPP), as
the reconstructed semantic 3D model of the inspection object is available when using the
methodology proposed and its procedure for inspection. Both state definitions have shown
comparable results, indicating the ability of the RL agents to interfere knowledge about not yet
acquired surface points of the inspection from inputting information about the surface points
already acquired in the previous acquisitions as state when using the model-free variant. This
has successfully been demonstrated in the sim-to-real, where agents trained in the simulation
have successfully been transferred to the real inspection station and solved the RPP for
starter motors with an unknown object geometry model.

Research deficit 3: Missing investigation of varying planning tasks
Another significant deficit in the state of research is the lack of investigation of RL agent
behavior for varying planning tasks. On the one hand, this concerns the training of RL agents
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to solve RPP for a large number of different objects, but also, for example, the solving of IPP,
in which there is a variable positioning of the regions to be acquired on the inspection object.
Both problems have been investigated in this thesis. Regarding the generalization to different
inspection objects for the RPP, the investigated RL agents showed learning behavior but
only found local optima, shown by the inferior performance in comparison to the analytically
found (optimal) solutions. The RL agents learned a strategy that successively positions the
acquisition system so that an acceptable surface coverage is achieved on average for all
inspection objects, regardless of the inspection object. The more desirable behavior of the RL
agents, an inspection object-specific adaptation of the positioning strategy of the detection
system by the RL agents, could not be learned. Similarly, the use case of IPP with varying
ROI to be inspected with constant variants of the inspection objects (starter motors) has been
investigated. Except for the RL agents integrating the robot model, the RL agents trained here
were able to solve this problem and, depending on the positioning of the ROI on the inspection
object, select acquisition poses that also acquire the ROI. However, the comparison with the
analytical SCP benchmark algorithms has shown that for both the case of the RPP and the
case of the IPP, the trained RL agents require on average 1-2 more acquisitions to fulfill the
respective inspection goals than necessary according to the optimal solution provided by the
SCP algorithms.

7.2 Outlook

This thesis extends the state of research in the field of view planning using RL by applying it
to the use case of initial visual inspection in remanufacturing. Various problems of VPP have
been considered, solved, and analyzed with different modeled RL agents. The findings of this
work serve as a foundation for further research.

Fine-tuning of pre-learned strategies: In the present work, all RL agents have been trained
from scratch, i.e., with a randomly initialized strategy. The research of this work can be built
upon if already pre-trained strategies are merely fine-tuned by RL. One example is imitation
learning, in which an agent has to learn the behavior of an expert by demonstrating its problem
solution (Hussein & Gaber et al. 2017). The expert can be a human, but also an analytical
solution approach (e.g., the solution of a VPP using SCP algorithm), whose solution behavior
is to be imitated. The formalism of imitation learning is directly based on that of RL. Thus, the
knowledge gained in this work makes the RL simulation framework developed in this work
suitable for further work in this direction.

Model-based RL: In comparison to the model-free RL approach of this work, in which
an RL agent learns an ideally optimal strategy by intelligently exploring the environment,
model-based RL integrates a planning component. Model-based RL combines a model of
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the environment (explicitly not the geometry model of the inspection object) with a learning
process to approximate the optimal strategy. (Moerland & Broekens et al. 2023). Usually, in
addition to the optimal strategy, this environment model is also learned during the learning
process, whereby various possibilities exist here. One possibility is, for example, the prediction
of the successor state given a current state and a theoretically executed action. If such a
model is known, several actions can be evaluated in one state and the subsequent state they
lead to. An evaluation of the possible subsequent states with regard to their quality allows the
best possible evaluated action to be selected and carried out.

In addition to these fundamentally methodologically motivated research directions, further
steps can be taken. The results of this work are mainly based on point cloud-based state
definitions. However, in the past, RL agents have also been evaluated very successfully in
the domain with image-based states (cf. Mnih & Kavukcuoglu et al. 2013). The findings from
applying RL agents can be transferred to the problem of VPP. Extending the acquisition
simulation to generate virtual image data is easily possible. This makes it possible to train RL
agents with multimodal data (image data, depth data, point clouds and their processed forms,
e.g. voxel grids).

Increasing the degree of realism also plays an important role in future research efforts.
The point clouds acquired in this work were determined solely by visibility and distance to
the simulated acquisition system without considering, for example, the reflection effects of
surfaces. However, reflections may make the acquisition of individual surface areas of an
inspection object invisible, even though they lie within the working range of the acquisition
system. Considering possible boundary conditions when acquiring individual ROI when
viewing the IPP also falls into this context. A feature of an inspection object may have to be
acquired at a predefined distance or at a predefined angle of the acquisition system to the
feature. The integration of such boundary conditions poses a significant difficulty, especially
for model-free RL, since these boundary conditions must be modeled via a quantitative value
(the reward signal), which in turn induces an enormous difficulty for the learning behavior of
the RL agents.

This work has also shown that integrating multiple optimization variables into a reward function
is possible. Optimization by the RL agents in the use case of RPP allowed two variables to
be optimized simultaneously, whereby the evaluated agents no longer showed any significant
improvement with regard to this variable when a third optimization variable was integrated.
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8 Conclusion

Due to uncertainty regarding the variant and condition of returned used products in remanu-
facturing, the industry currently performs manual visual inspections of these products. This
inspection process is complex, and returned used products must be inspected as a whole, but
individual components may also require dedicated inspection. A human inspector implicitly
solves the so-called View Planning Problem (VPP), which involves choosing acquisition poses
to fully inspect a product or specific features of the product.

The research conducted in this thesis underscores that in the absence of a three-dimensional
model of the object to be inspected, intelligent methods like reinforcement learning (RL) can
be harnessed to devise a strategy for solving the VPP in remanufacturing. However, the
current RL solutions have seen limited application or evaluation, particularly when a 3D model
of the object is not available at runtime. Moreover, the targeted inspection of specific features
of the object with RL remains unexplored.

In this thesis, a method has been developed to enable RL agents to solve the View Planning
Problem (VPP) in remanufacturing. To approach this problem, an inspection station was
first modeled and virtually represented, serving as the basis for subsequent evaluations.
This virtually modeled and represented inspection station was integrated into a simulation
framework developed in this thesis for training variously modeled RL agents. The framework
facilitates the training of RL agents for the Next Best view Planning Problem (NBV), the
Reconstruction Planning Problem (RPP) and the Inspection Planning Problem (IPP).

Given that it is often assumed in remanufacturing that there is no 3D model of the inspection
object available, an approach was developed with the aid of segmentation algorithms. This
approach enables constructing a semantic product model, which includes 3D information
of the inspection object and the locations of different components on the product model.
This semantic product model can be generated during system runtime with the results from
the overall inspection of the object’s surface (RPP) and subsequently serve as a basis of
information for RL agents inspecting individual features of the inspection object (IPP).

The consistent description of different VPP and the standardized modular framework in-
troduced in this work enable the easy integration of different solution approaches for VPP
(heuristics, analytical solutions, and learning approaches). By analyzing the derived planning
problems with data sets of increasing complexity under consideration of the different modeling
variants of RL agents developed in the thesis, influences of existing RL approaches on the
agent performance have been systematically investigated and discussed.
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The results have shown that the modeled RL agents can solve all derived planning problems.
It is worth highlighting that this is also possible in the model-free case, where an agent has
not been specifically trained on the geometry model at hand, but only with a large number
of different geometry models of the same product group (in the case of this work, starter
motors). This offers significant advantages in that generating a view plan is possible, even
without an existing geometry model, by sequential output of VP by an RL agent. It is also
possible to optimize various target variables of VPP (maximizing the surface coverage of the
inspection object and minimizing the required travel path lengths). Nevertheless, although
the RL agents have shown to perform on par with a benchmark heuristic, it has also been
shown that the trained RL agents perform worse in terms of evaluation metrics (especially the
number of acquisitions required to achieve a given surface coverage) compared to analytical
solutions that calculate a near-optimal view plan. This was specifically the case when the
RL agent was assigned an increasing number of degrees of freedom (e.g., in addition to
influencing the pose of the acquisition system, also influencing the rotation of the rotation
table). However, the modular simulation framework derived in this work and the uniform,
consistent, and systematic approach to modeling the RL agents provide an essential basis for
using more novel algorithms of the RL to obtain agent behavior closer to the global optimum
for a real-time capable solution of VPP. This modularity, in particular, also made it possible to
successfully validate and verify the results of this thesis directly on the real inspection system.
As in the simulation, RL agents trained in the simulation thereby also show comparable
performance to a benchmark heuristic when tested in the real application case.

Overall, the present work thus provides a significant contribution to the selection, modeling,
and interpretation of learning RL methods for solving VPP. Remanufacturing is selected as
a use case, where prior knowledge regarding the planning task to be solved is not or only
partially available, and thus autonomous, adaptive system behavior is required. The individual
components of the solution approach developed in this thesis for semantic 3D product model
generation with the help of agents for solving the RPP for complete surface coverage of the
inspection object and downstream solution of the IPP for individual inspection of ROI have
been successfully evaluated. In particular, the uniform and standardized modeling of the
agent framework allows the promising results to be systematically improved in further work.





Bibliography 165

Bibliography

References according to the scheme (A_<name><year>) refer to student work at the wbk
Institute of Production Science of the Karlsruhe Institute of Technology (KIT), which was
guided by the author of the dissertation.

A_Gäbele 2022
Gäbele, J. (2022), „Development and Implementation of a Reinforcement-Learning Ap-
proach for Automated Product Acquisition“. Bachelors Thesis. Karlsruhe: Karlsruhe Institute
of Technology (KIT), wbk Institute of Production Science.

A_Hollinger 2022
Hollinger, V. (2022), „Development and implementation of a deep-learning method for se-
mantic segmentation of electric engines based on RGB-D data“. Masters Thesis. Karlsruhe:
Karlsruhe Institute of Technology (KIT), wbk Institute of Production Science.

A_Koch 2022
Koch, D. (2022), „Implementation and Evaluation of Supervised and Reinforcement Learning
Approaches for the Selective Optical Inspection of Product Features“. Masters Thesis.
Karlsruhe: Karlsruhe Institute of Technology (KIT), wbk Institute of Production Science.

A_Scheiger 2022
Scheiger, V. (2022), „Automated Product Inspection and Computer Vision-based Camera
Position Replanning“. Masters Thesis. Karlsruhe: Karlsruhe Institute of Technology (KIT),
wbk Institute of Production Science.

A_Schmid 2021
Schmid, J. (2021), „Development and implementation of an online capable, model free,
machine learning based approach for automated product capturing“. Masters Thesis. Karl-
sruhe: Karlsruhe Institute of Technology (KIT), wbk Institute of Production Science.

A_Schnaberich 2022
Schnaberich, M. (2022), „Development and commissioning of an autonomously operating
diagnostic station for optical inline measurement in a remanufacturing use-case“. Masters
Thesis. Karlsruhe: Karlsruhe Institute of Technology (KIT), wbk Institute of Production
Science.

A_Yingqi 2022
Yingqi, Q. (2022), „Implementation of an approach for three-dimensional product modeling
and projection-based corrosion detection“. Masters Thesis. Karlsruhe: Karlsruhe Institute
of Technology (KIT), wbk Institute of Production Science.



166 Bibliography

Achlioptas & Diamanti et al. 2018
Achlioptas, P.; Diamanti, O.; Mitliagkas, I. & Guibas, L. (2018), „Learning representations
and generative models for 3d point clouds“. Proceedings of Machine Learning Research
(PMLR). 35th International Conference on Machine Learning (ICML) (Stockholm, Sweden,
July 10–15, 2018). Ed. by J. Dy & A. Krause. Vol. 80, pp. 40–49.

Ahmed & Saint et al. 2018
Ahmed, E.; Saint, A.; Shabayek, A. E. R.; Cherenkova, K.; Das, R.; Gusev, G.; Aouada, D.
& Ottersten, B. E. (2018), „Deep Learning Advances on Different 3D Data Representations:
A Survey“, arXiv preprint: 1808.01462. U R L: http://arxiv.org/abs/1808.01462.

Andrew-Munot & Ibrahim et al. 2015
Andrew-Munot, M.; Ibrahim, R. N. & Junaidi, E. (2015), „An overview of used-products
remanufacturing“, Mechanical Engineering Research 5.1, pp. 12–23. D O I: 10.5539/MER.
V5N1P12.

ANSI RIC001.2-2021 2021
ANSI RIC001.2-2021 (2021), Specifications For The Process Of Remanufacturing. Ameri-
can National Standards Institute (ANSI), Washington.

Aras & Boyaci et al. 2004
Aras, N.; Boyaci, T. & Verter, V. (2004), „The effect of categorizing returned products in
remanufacturing“, IIE transactions 36.4, pp. 319–331. D O I: 10.1080/07408170490279561.

Ashutosh & Kumar et al. 2022
Ashutosh, K.; Kumar, S. & Chaudhuri, S. (2022), „3D-NVS: A 3d supervision approach for
next view selection“. Proceedings of the 26th International Conference on Pattern Recogni-
tion (ICPR) (Montreal, Canada, Aug. 21–25, 2022). Ed. by M. Jenkin; H. I. Christensen &
C.-L. Liu. IEEE, pp. 3929–3936. D O I: 10.1109/ICPR56361.2022.9956377.

Banta & Zhien et al. 1995
Banta, J. E.; Zhien, Y.; Wang, X. Z.; Zhang, G.; Smith, M. T. & Abidi, M. A. (1995), „Best-next-
view algorithm for three-dimensional scene reconstruction using range images“, Intelligent
Robots and Computer Vision XIV: Algorithms, Techniques, Active Vision, and Materials
Handling 2588, pp. 418–429. D O I: 10.1117/12.222691.

Beer & Fisk et al. 2014
Beer, J. M.; Fisk, A. D. & Rogers, W. A. (2014), „Toward a framework for levels of robot
autonomy in human-robot interaction“, Journal of human-robot interaction 3.2, pp. 74–99.
D O I: 10.5898/JHRI.3.2.Beer.

Berner & Brockman et al. 2019
Berner, C.; Brockman, G.; Chan, B.; Cheung, V.; Dębiak, P.; Dennison, C.; Farhi, D.; Fischer,
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Appendix

A1 General solution approach for SCP, CM and NBV
approaches

Solution of the VPP via solving the SCP
The SCP is defined in Peuzin-Jubert & Polette et al. 2021 as follows. Given a parent set
U = {u1, ..., un} with elements ui (i = 1, ..., n). Another set G = {g1, ..., gm} contains
elements gj (j = 1, ..., m) which are subsets of U such that gj ⊂ U . Furthermore, the union of
all subsets in G corresponds to the set U (∪gj = U ). Solving SCP is then equivalent to finding
the smallest list of subsets in G such that the union of this list is equal to U (Peuzin-Jubert &
Polette et al. 2021, P. 2). An extension to the traditional SCP is adding costs to each element
gj , where then the goal is to find the smallest list of subsets in G with the least costs that fully
cover U .

Based on this definition, a model-based approach can solve the problem of the SCP. The
elements ui of the set U correspond to the object’s total surface to be acquired, divided into
sections. The indice j (j ∈ [1, ..., m]) of gj denotes the jth of the m VP. Each VP can acquire
a certain section of the total surface. gj then represents surface sections visible from VP j.
Thus, G is the set of all combinations of surface sections seen from all m VPs. Accordingly,
a list of VPs must be found that covers all sections of the total surface, hence the set U . To
solve SCP, Peuzin-Jubert & Polette et al. (2021) describes the common procedure in the
literature in five steps.

The first step divides the object surface into a fixed number of sections. Each section cor-
responds to an element ui of the set U . For example, the faces of a mesh or points of a
point cloud can be used as sections. Another possibility is representing sections as voxels
after the voxelization of the object. In the second step, a number of m VP are sampled. For
the sampled VPs, all vectors gj (j = 1, ..., m) containing the acquirable surface sections of
the VP of the acquisition system are empty at the beginning of the reconstruction process.
Therefore, the set of surface sections ui that can be acquired by each VP j are calculated
and stored in gj . A visibility matrix is suitable to evaluate which sections can be acquired by a
VP. This binary matrix introduced by Tarbox & Gottschlich (1995) contains as rows all VP j,
as well as the surface sections ui as columns (Tarbox & Gottschlich 1995, P. 91). One row
for VP j corresponds to gj. The fourth step calculates the needed VPs to fully cover U . To
determine which of the VPs to choose, a selection algorithm is used, whose selection of the
VPs solves the optimization problem. Two kinds of selection algorithms can be distinguished.
First, selection algorithms that iteratively choose a VP j (j ∈ [1, ..., m]) and add gj to the set
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G until a termination criterion is met. Second, selection algorithms that determine the whole
set G in one computational step and optimize it iteratively. To solve the first kind of selection
problem, a simple greedy algorithm might be suitable, which selects in each step the VP that
covers the maximum number of surface sections ui not yet covered by the VPs currently in G

(Peuzin-Jubert & Polette et al. 2021, P. 8). A selection algorithm for the second problem might
be realized via evolutionary algorithms (Solar & Parada et al. 2002). In this case, several
candidate sets of VP would be directly generated and optimized until a solution based on a
given termination criterion is found. The fifth step is then concerned with postprocessing (e.g.,
finding the optimal sequence of the VP) of the found solution.

Solution of the VPP via coverage maximization
The following methods are primarily aimed at maximizing the surface coverage of an object.
The number of acquisitions required to achieve that goal is only considered a secondary
objective, in contrast to the solution of SCP.

In the first step, the object’s surface is divided into sections. The quality of this step is of
crucial importance in the case of applying coverage optimization methods since their success
mainly depends on the subdivision of the surface. Different possibilities are proposed in the
literature to subdivide the object into sections (segmentation of the object surface) according
to Peuzin-Jubert & Polette et al. (2021). For instance, if the object model is represented as a
point cloud, clusters can be generated based on point distances and their orientation. These
clusters are then grouped into sections.

In the second step, the VPs are generated for the complete coverage of all segmented surface
sections. In contrast to the methods for solving the SCP, the VPs are not generated and
evaluated in a subsequent step. However, they are determined directly from the surface
segmentation. The approaches in Peuzin-Jubert & Polette et al. (2021) define a VP for each
surface segment. According to Germani & Mengoni et al. (2009), a visibility map can be used
(Germani & Mengoni et al. 2009, P. 1714). Starting from a VP oriented using the normal of a
surface section, the directions of occluded contours are determined using the visibility map.
This map is computed for each point of a section by projecting the surfaces to be determined
onto a unit sphere. New poses are then determined to include the largest possible number of
points. Analogous to the solution of the SCP, a visibility matrix is then constructed to link the
VPs to the corresponding sections they can acquire. Last, the number of acquisitions needed
to maximize the surface coverage is determined.

Since these methods aim not to minimize the number of acquisitions needed, a solution is to
choose one acquisition per surface section. Current research strives to reduce the required
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acquisitions after the initial view plan generation. Methods are described in more detail in
Peuzin-Jubert & Polette et al. (2021), to which the interested reader is referred.

Solution of the VPP via NBV planning
Peuzin-Jubert & Polette et al. (2021) define the procedure as follows. At the beginning of
the procedure, an initial acquisition is performed with a VP j. After the initial acquisition, the
acquired surface sections g0 = gj and the estimated remaining unknown surface sections gR,0

are deduced. Based on gR,0, m new VPs are generated. Each of these m VP gets assigned a
vector g1

o (o = 1, ..., m). Each of the vectors g1
o contains a subset of the estimated remaining

unknown surface sections gR,0 of the previous acquisition with VP j that can be acquired with
VP o (o ∈ [1, ..., m]).

The next VP is then selected based on a selection algorithm. This can be achieved, for
example, using a greedy algorithm that chooses the VP o (o ∈ [1, ..., m]) associated with the
vector g1

o containing the most surface segments estimated to be not yet covered. Consequently,
the sets of known surface segments are calculated as the union of surface sections covered
by both previous acquisitions g1 = g0 ∪ g1

o . Furthermore, the estimated unknown surface
segments gR,0 are updated to gR,1, and the procedure is repeated until a termination criterion
is met.

Different approaches represent the acquired surface sections and estimate the unknown
surface sections to be acquired by the next views. Pito (1999) uses a simplified mesh to
represent the acquired surface (Pito 1999, P. 1026). At the edges of the mesh, the author
defines small rectangular sections. This results in three areas based on the acquisition
position and orientation. A distinction is made between the seen surfaces, the unseen areas
close to an edge of the known area, and the unknown space. New VPs are determined based
on an overlap criterion with previous acquisitions to maximize coverage of unseen areas
close to seen areas. Furthermore, a voxel representation is commonly used. This has been
applied by Vasquez-Gomez & Sucar et al. (2014) and others (Peuzin-Jubert & Polette et al.
2021, P. 16). In the works of Vasquez-Gomez & Sucar et al. (2014), each voxel assumes
either the state occupied, not occupied, or unknown. Through an iterative procedure, VPs are
searched, from which the unknown voxels can be acquired. This allows for the inclusion of
multiple objects located within the workspace. However, voxel representation is very inefficient
in memory usage. Since empty voxels must also be considered and stored, the memory and
computational overhead increases greatly with the resolution of the voxel grid. New VPs are
randomly generated on a sphere whose center is at the object’s centroid.
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A2 In-depth basics of coordinate transformations

The following is based on Mareczek (2020).
Exemplary calculation of a rotation matrix based on Euler angles of the X-Y’-Z” con-
vention
In the context of kinematics and robotics, Euler angles are a set of three angles used to rep-
resent the orientation of a rigid body in three-dimensional space. Rotations with the specified
Euler angles are applied to the principal axes in a specific sequence. Euler angles with the
rotation convention of X-Y’-Z” are called Cardan angles. The rotations are applied first about
the X-axis, then the new Y-axis (Y’), and finally the new Z-axis (Z”).

Given the Euler angles α for the rotation around the X-axis, β for the rotation around the
Y’-axis, and γ for the rotation around the Z”-axis, the rotation matrices for each of these axes
are:

• Rotation about the X-axis (α):

Rx(α) =


1 0 0
0 cos α − sin α

0 sin α cos α



• Rotation about the Y’-axis (β):

Ry′(β) =


cos β 0 sin β

0 1 0
− sin β 0 cos β



• Rotation about the Z”-axis (γ):

Rz′′(γ) =


cos γ − sin γ 0
sin γ cos γ 0

0 0 1



The combined rotation matrix R for the X-Y’-Z” convention is obtained by multiplying these
matrices in the order of the rotations:

R = Rx(α) · Ry(β) · Rz(γ) A2.1
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When performing this matrix multiplication, the result is the final rotation matrix representing
the orientation described by the given Euler angles in the X-Y’-Z” rotation order. This matrix
is used to transform coordinates from one coordinate system to another or to describe the
orientation of an object in space.

Conversion from spherical coordinates to Cartesian coordinates
Given that a point is not represented in Cartesian coordinates, the transformation of said
point from spherical coordinates to Cartesian coordinates needs to be calculated. In spherical
coordinates, a point is represented by three values: the radial distance r, the polar angle θ

(measured from the positive Z-axis), and the azimuthal angle φ (measured from the positive
X-axis in the X-Y plane). The Cartesian coordinates (x, y, z) of the point can be calculated
from the spherical coordinates (r, θ, φ) using the following equations:

x = r sin(θ) cos(φ) A2.2

y = r sin(θ) sin(φ) A2.3

z = r cos(θ) A2.4

Here, r is the distance from the origin to the point, θ is the angle between the positive Z-axis
and the vector from the origin to the point, and φ is the angle between the positive X-axis and
the projection of the vector from the origin to the point onto the X-Y plane.
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A3 Basics of the perceptron, multi-layer perceptron and
backpropagation algorithm

The perceptron
The Perceptron is the basic building block of a simple NN and the mathematical approximation
of a human neuron. It can be used as a simple classification algorithm that, according to Ertel
(2018), maps an input feature vector xf to an output value yf (Ertel 2018, P. 184, 185). This is
done by first calculating the weighted sum Z(xf , w) of the input feature vector xf and a weight
vector w. After computing the weighted sum Z(xf , w), an activation function a(Z(xf , w)) is
applied to it to obtain the actual output yf of the perceptron according to A3.5:

yf = g(Z(xf , w)) = g(
|X|∑
i=0

wi · xf,i) = g(w0 +
|X|∑
i=1

wi · xf,i) A3.5

The transformation step in equation A3.5 can be carried out as the zeroth component xf,0 = 1
of the input feature vector is the so-called bias, whose value is always one and which is always
added to the actual variable input feature vector (Ertel 2018, P. 193, Russell & Norvig 2010,
P. 728). In the simplest case, the activation function a(Z(xf , w)) is a step function according
to formula A3.6 (Ertel 2018, P. 184):

yf = a(Z(xf , w)) =


1, if w0 + ∑|X|

i=1 wi · xf,i > 0
0, otherwise

A3.6

The perceptron is thus a linear classifier (Ertel 2018, P. 183). The function of the bias is directly
evident from equation A3.6, since it shifts the hyperplane given by the weighted sum Z(xf , w)
with constant value w0 (Ertel 2018, P. 187). Thus, data that are not linearly separable with a
hyperplane given by Z(xf , w), going through the origin, can also be separated. The learning
task is then to find the weight vector w to separate the different classes in the training data.
For more information, please refer to Ertel (2018).

Multilayer feed-forward neural networks
Perceptrons can only solve linearly separable problems. A generalization of a percep-
tron is called a neuron, which may use an arbitrary activation function a(Z(xf , w)) (Rus-
sell & Norvig 2010, P. 729). Common activation functions are the Rectified Linear Unit
(ReLu, a(Z(xf , w)) = max(0, Z(xf , w))) or Tangens Hyperbolicus (tanh, a(Z(xf , w)) =
tanh(Z(xf , w))). To solve nonlinear problems, several neurons may be arranged in suc-
cessive layers (cf. Ertel 2018, P. 271, Russell & Norvig 2010, P. 729), where each layer is
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composed of an arbitrary number of neurons. This network topology is also called Multilayer
Perceptron (MLP) (Bishop & Nasrabadi 2006, P. 229) 1. In so-called feed-forward networks,
connections between a neuron only exist to the neurons of neighboring layers in the direction
of the network output but not to neurons in its own layer (Russell & Norvig 2010, P. 729).
MLPs consist of an input layer propagating the input data into the network. Input layers of
neural networks often employ linear activation functions (Arena & Fortuna et al. 1998, P. 7).
The result of the classification or regression is the neuron’s output in the neural network’s
last layer. The number of neurons, as well as their activation function thereby, is dependent
on the task at hand. For a regression task of one continuous variable, one output neuron
with linear activation a(Z(xf , w)) = Z(xf , w) is useful (Bishop & Nasrabadi 2006, P. 228).
For a classification task of more than two classes, for example, when classifying learning to
distinguish between images of handwritten digits, it is common to use one output neuron for
each digit (Russell & Norvig 2010, P. 729). As an activation function, the softmax function
(see equation A3.7) is then used (Ertel 2018, P. 236). It outputs for each neuron, e.g., the
digit class, the probability of the input belonging to said class based on the normalization of
the exponential output of each neuron k to the exponential outputs of all K neurons in the
output layer.

yk = eak(Z(xf ,k,wk))∑|K|
j=1 eaj(Z(xf ,j,wj))

A3.7

All further layers between the input and output layers are called hidden layers (Ertel 2018,
P. 267) and are used for the actual processing of the network input to the output by sequentially
passing the input through the layers of the neural network to obtain the output. The number of
hidden layers characterizes the depth of an MLP. In contrast to the perceptron, weights wl

i,j

in MLP are typically denoted with three indices. These represent the layer of the neuron the
weight is associated with (l), the number of the neuron in the previous layer (i), which forms
the connection with the neuron number (j) in the layer the weight is associated with.

The backpropagation algorithm
Based on Bishop & Nasrabadi (2006), learning in neural networks is performed by continuing
adjustment of the weights of the neural network until a satisfying accuracy of the prediction
ŷf,i for the training examples and the actual label yf,i is achieved across all training examples
(Bishop & Nasrabadi 2006, P. 269 f.). The prediction error is determined by a loss function
L (see equation A3.8). Since yf,i is calculated based on a function of the input xf,i and the
weight vector w, the loss function can be expressed as a function of the weights.

1Please note that while a MLP is a NN that always contains neurons, the term NN also refers to network types
that contain layers that are not made of neurons, for example Convolutional neural networks (CNNs).
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L = fL(ŷf,i, yf,i) = fL(ŷf,i, w, xf,i) A3.8

The backpropagation algorithm is applied to adjust the weights based on the calculated error.
Each weight wn is corrected according to its contribution to the error, with a learning rate η.

∆wn,t = −η∇wnL = −η
∂L
wn

A3.9

The choice of loss function depends on the problem to solve. The mean square error can
be used for regression as a loss function, while the cross entropy loss can be used for
classification. For more information on the backpropagation algorithm and an overview of
loss functions, see Russell & Norvig (2010, P. 733, ff.), Bishop & Nasrabadi (2006, P. 269, ff.)
and Wang & Ma et al. (2020).
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A4 Details on point cloud transformation using TA/RT ′
and

determination of TE/A and TR/RT

Determination of TA/RT
′
for transforming PAt,i to PRT

′

t,i

The rules for transforming the acquired point clouds between the mentioned coordinate
systems can be deduced assuming the knowledge of all transformation matrices above.
Each point PAt,i = [XA

t,i, Y A
t,i , ZA

t,i] of an acquired point cloud PCA
t is initially represented in

the acquisition system’s coordinate system CA. For transforming the point cloud to the
intermediate reference coordinate system CRT ′, the transformation matrix TR/RT

′
is used,

which transforms a point or point cloud from coordinate system CR to CRT ′. TR/RT
′
can be

obtained by a sequential multiplication of TRT/RT
′
and TR/RT , since a point or point cloud in

CR has to be first expressed in CRT (using TR/RT ) and can then be expressed in CRT ′ (using
TRT/RT

′
). Consequently, an acquired point cloud in CA has to first be expressed in CR (using

TA/R) and then from CR in CRT ′ using the relationships explained above. This leads to the
equation A4.10.

TA/RT
′
= TR/RT

′
TA/R = TRT/RT

′
TR/RT TA/R A4.10

The computation of the coordinate transformation is performed for all points of the point
cloud according to equation A4.11 to yield points in the reference coordinate system PRT

′

t,i =
[XRT ′

t,i , Y RT ′

t,i , ZRT ′

t,i ].

PRT
′

t,i = TA/RT
′
PAt,i ∀ PAt,i ∈ PCA

t A4.11

This results in a transformed point cloud PCRT ′

t = [XRT
′

t , YRT
′

t , ZRT
′

t , RRT ′

t , GRT ′

t , BRT ′

t ] where
now the points are represented in the rotating coordinate system of the rotary table. At
the same time, the color values remain unchanged (CA

t = CRT ′

t = [RRT ′

t , GRT ′

t , BRT ′

t ]). The
transformation back to the robots coordinate system CR can then be achieved similarly,
using the transformation matrix TRT

′/R = TRT/R TRT
′/RT . It is important to note that TRT

′/RT

results from the knowledge of the absolute rotation angle of the rotary table φRT and that
the fundamental calculation rule of transformation matrices TRT

′/RT = (TRT/RT
′
)−1 applies.

The following also applies TR/RT = (TRT/R)−1, which is relevant to calculate TR/RT knowing
TRT/R.

Determination of TA/E and TRT/R

TA/R can be expressed via the homogeneous transformation matrices of the acquisition
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system in the coordinate system of the robot end-effector TA/E . The end-effector in the robot
coordinate system TE/R whereas TA/R = TE/R TA/E holds. TE/R can be determined via
forward kinematics of the robot’s known joint angles and geometric dimensions. TRT

′/RT can
be expressed by a homogeneous transformation matrix only containing elements concerning
a simple rotation of CRT ′ around the z-axis of CRT , where the current absolute rotation angle
φRT can always assume to be known. This is because, before each acquisition run, the rotary
table performs a reference drive where the final state is the zero position (CRT = CRT ′ with
φRT = 0 and TRT

′/RT = I4) and the rotational angles successively executed can always be
summed up. The transformation matrices TA/E and TRT/R have to be determined differently.

A hand-eye calibration can be used to determine the constant transformation matrix TA/E

between the robot end-effector coordinate system CE and the coordinate system CA of the
acquisition system. In this thesis, a checkerboard pattern is a calibration pattern, which is
placed statically on the station. Several poses of the acquisition system are sequentially
approached with the robot so that the spatial relationship between the coordinate system
of the calibration pattern and the acquisition system can be determined. In the case of the
checkerboard pattern, the corner pixels of the black and white tiles must be detectable. The
constant transformation TCAL/R between the calibration object and the robot base is unknown.
However, it can be expressed by the transformation between the robot base and the end
effector TE/R, the static transformation between the end effector and the acquisition system
TA/E, and the variable transformation between the acquisition system and the calibration
object TCAL/A, which is different for each pose. Thus, a system of equations can be set up.
The task of the hand-eye calibration is now to determine the static transformation matrix
TA/E between the end-effector and acquisition system so that the system of equations is
solved unambiguously. For further information, please refer to A_Yingqi 2022, a master thesis
supervised by the author of this thesis. In this thesis, ten successive acquisitions from different
poses of the acquisition system mounted on the robot end-effector were performed. The
algorithm used is provided by Zivid itself 1 and was adapted to the needs of this thesis.

The transformation TRT/R between the robot base coordinate system CR and the rotary table
coordinate system CRT also has to be determined. This can be achieved by performing
a certain number of successive acquisitions of the checkerboard pattern. In this case, the
checkerboard pattern is placed on the rotary table. The acquisition system pose must be
fixed, and the rotary table must be rotated between each acquisition. To determine TRT/R the
translational part of CR to CRT is calculated first. This is done by sampling a number n random
absolute rotation angles φRT,i (i = 1, ..., n). Keypoints of the checkerboard are detected in

1 Link to documentation of hand-eye calibration:
https://github.com/zivid/zivid-python-samples/tree/master/source/applications/advanced/hand_eye_calibration
accessed 24.08.2023
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the resulting color images ID,i. Next, n absolute rotation angles are calculated based on
the rule φRT,j = φRT,i + 180◦ (j, i = 1, ..., n) and again, keypoints are detected in ID,j. The
three-dimensional coordinate is then assigned to each keypoint of the acquisition results
ID,i and ID,j resulting in PAC,i and PAC,j. These three-dimensional points of the keypoints are
then transformed in the static coordinate system CR resulting in keypoints PRC,i and PRC,j. By
performing a 180◦ rotation between pairs of acquisitions i and j, the coordinates of the same
keypoints in PRC,i and PRC,j can be averaged to obtain the coordinate of the rotation center. It
is sufficient to average two acquisitions (i.e., n = 1). However, by averaging the estimated
coordinate centers of the n > 1 acquisition pairs PRC,i and PRC,j (i, j = 1, ..., n) it is assumed
to obtain a better estimate. In this thesis, n = 5 is used. The rotational part of CRT in relation
to CR can be determined by estimating the rotary motor’s rotation axis parameters. This
can be achieved by using optimization algorithms that estimate the parameters of said axis
in a way that the same keypoints in PRC,i and PRC,j have minimal positional error (e.g., using
the mean squared euclidian distance) after rotation with known absolute angles φRT,i and
φRT,j. However, based on the hardware setup seen in Figure 5.2, it is assumed that the
z-axis of CR and CRT are approximately the same and therefore, the simplified homogeneous
transformation matrix TRT/R only contains translational components. It should be noted
that errors induced by this simplification can be compensated by registration methods, as
mentioned in section 5.1.4.
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A5 In-depth details and foundations on the segmentation
model architectures and training procedure

Chosen base model types
The basic models to be compared in this thesis are shown in Figure A5.1 and are:

• The U-Net by Ronneberger & Fischer et al. 2015 is a commonly used base architecture
for semantic segmentation.

• The Mask-RCNN (in the following called M-Net) by He & Gkioxari et al. (2017) is a
commonly used base architecture for object detection and instance segmentation.

Max-
Pooling

Decon-
volution

CBR-Block:
Convolution,

Batch-
Normalization, 

ReLU-Activation

Classification

Housing

Backbone

RPN

FCN

FC layers

FC layers

Image 
feature map

Bounding box

Segmentation 
mask

Skip-connection

Encoder / Backbone Decoder

a) U-Net b) Mask-RCNN

VGG16 ResNet34

… … … …

Legend

Backbone structure alternatives

Upsampling
block

Figure A5.1: Structure of the segmentation methods used. a) Structure of the U-Net as
semantic segmentation approach. b) Structure of the M-Net as instance seg-
mentation approach.

Transfer learning and finetuning using pre-trained backbones
Although the amount of data and variability can be increased by image augmentation, the
transfer learning method is often used in practice and this thesis. The basic idea is to transfer
knowledge from a source task to a target task (Tan & Sun et al. 2018, P. 271). A concept
often applied is transfer learning using parameter transfer. The assumption is that NNs work
similarly to the processing mechanism of the human brain (Tan & Sun et al. 2018, P. 275).
The network input undergoes a continual abstraction process. The first layers of the network
can be treated as a feature extractor (see also section 2.3.3 about deep learning), and the
extracted features are transferable to new tasks more easily than training a new network from
scratch.
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In transfer learning with parameter transfer, a NN is trained on a source task (e.g., classifica-
tion) in a domain (e.g., classification of animals in images) with a huge base dataset. The
first layers of these NN often capture general features and patterns that can be valuable for a
target task with the same goal (e.g., classification) but for a different domain (e.g., classifica-
tion of motor types in images). When faced with a new task, instead of training a model from
scratch, the first layers of the NN pre-trained on the source task, also called the backbone,
can be used and finetuned using a smaller task-specific dataset of the target task. The model
then only needs to adapt its learned features from the source task to the target task, leading
to faster and often more effective training.

This thesis also uses Pre-trained backbones when constructing the NN, the U-Net, and the
M-Net. Available backbone NN architectures differ in the layers’ structure. A recent overview
of available backbone architectures is in Elharrouss & Akbari et al. (2022). In this thesis, two
of the most basic and well-known representatives, the VGG-16 backbone and the ResNet-34
backbone, are used and compared for the segmentation task. VGG backbones use a series
of blocks of convolutional layers with batch-normalization and ReLu activation (CBR-Block)
with small filters followed by max-pooling layers. ResNet backbones use skip connections
between successive CBR-blocks (as opposed to the skip connections between the encoder
and decoder of a U-Net). These skip connections allow the extracted features to skip layers,
which mitigates the problem of vanishing gradients in deep networks. The basic structure of
the individual blocks of both backbone architectures can also be found in Figure A5.1.

The general procedure is to use a backbone as a feature extractor and build neural layers
on top of the backbone used to enable the NN architecture to solve the target task. When
constructing the U-Net, this results in adding the decoder consisting of deconvolution layers
on top of the backbone while enabling information flow from the backbone to the decoder
using skip connections. Similarly, when constructing the M-Net, the RPN and the subsequent
fully connected layers (for classification and BB regression) and the fully convolutional NN for
generating the segmentation mask are stacked onto the backbone used.

However, when using NN with pre-trained backbones, these consist of layers with pre-trained
weights (the backbones) and layers without pre-trained weights (all other layers). A common
approach is to first freeze (i.e., fix the weights) of the backbone and train the NN only adjusting
the weights of the layers not contained in the backbone and then finetune all weights (Chu &
Madhavan et al. 2016, P. 435) usually using a lower learning rate than before. However, Chu
& Madhavan et al. (2016, P. 440) have shown that the choice of freezing pre-trained layers or
not when finetuning should largely depend on the amount of training data available and the
similarity between the source task and target task data.
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Therefore, this thesis implements and compares three alternatives for the segmentation
approach. Given a NN for semantic/ instance segmentation consisting of a backbone and
additional layers,

1. no pre-trained backbone is used, i.e., the structure (e.g., a VGG-16 backbone) is used,
but the weights are initialized randomly before training.

2. the pre-trained weights of the backbone used are first frozen, and the NN is trained with
a comparably high learning rate just adjusting the weights of the newly added layers.
After a certain amount of training, the weights of the backbone are unfrozen, and all
layers of the NN are trained.

3. no freezing of the pre-trained NN weights is applied and the NN is fine-tuned directly.

Integration of depth information
By default, the U-Net and the M-Net operate exclusively on RGB data. However, approaches
to data fusion for segmentation already exist in the state of research. An overview article
for multimodal data fusion for segmentation is the one by Zhang & Sidibé et al. (2021). A
summary of approaches specifically for the data fusion of RGB and depth data is provided by
Wang & Wang et al. (2021).

Zhang & Sidibé et al. (2021) divide the existing approaches to data fusion into (1) early, (2)
late, and (2) hybrid data fusion. The analysis of the state of research from Wang & Wang et al.
(2021) shows that various approaches and network architectures exist to enable this data
fusion. As with the choice of models for semantic segmentation and instance segmentation,
simple fusion principles are, therefore, first evaluated in the use case of this thesis. For both
networks (U-Net and M-Net), fusion approaches based on the categorization of Zhang &
Sidibé et al. (2021) (early, late, and hybrid fusion) are therefore developed and implemented.
In the following, the term intermediate fusion will be used for hybrid data fusion, in contrast to
the nomenclature of Zhang & Sidibé et al. (2021). This name change is because models that
include hybrid data fusion usually do not use a combination of early or late data fusion but
rather fuse intermediate features of the backbone.

The alternative model architectures implemented in this thesis for the fusion of RGB and
depth data can be found in figures A5.2 (extension of the U-Net by depth data - UD-Net) and
A5.3 (extension of the M-Net by depth data - MD-Net). The approach commonly used in the
current state of research is used in which a separate feature extractor is used for both the
RGB and the depth data. This is also either a VGG-16 or a ResNet34 for the depth data.

The early and intermediate data fusion is the same for both network architectures used for
semantic segmentation (UD-Net) and instance segmentation (MD-Net).
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Figure A5.2: Implemented depth fusion approaches for the networks based on the U-Net
architecture considered in this thesis.

• Early fusion: In early data fusion, RGB and depth data are combined before entering
the respective network. This is done by stacking the individual channels (R, G, and B)
of the color image with the depth channel of the depth image. Since the pre-trained
backbones used only operate on three channels, as these are pre-trained with RGB
images, a dimensional reduction takes place in addition to stacking the channels using
a convolutional layer with learning weights.

• Intermediate fusion: In intermediate data fusion, the intermediate features of the
individual layers of the backbones (VGG-16 or ResNet34) for RGB and depth data are
first fused and then used as input to the subsequent layer of the backbone of RGB data
is used. It should be noted that the feature space size has to remain the same when
fusing, as the individual layers of the backbones used depend on a fixed size of the
feature space. This results in two options for feature fusion. With addition, the features
of a layer of the backbones of RGB and depth data are added element-wise. Using a
VGG-16, this approach is similar to the one proposed by Hazirbas & Ma et al. (2017).
A significant advantage of this option is that it leaves the size of the feature space
unchanged. Another comparatively easy option is network fusion using an additional
intermediate neural network. First, the channels of the initial features of the respective
layer are halved using a learning convolution (as with early data fusion). The features of
RGB backbone and deep backbone are then stacked to obtain features that are then
processed again by a learning convolution to be used as input for the subsequent layer
of the RGB backbone.
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Figure A5.3: Implemented depth fusion approaches for the networks based on the M-Net
architecture considered in this thesis.

In contrast to early and intermediate data fusion, the late data fusion approaches for the
UD-Net and the MD-Net implemented in this thesis differ.

• Late fusion of MD-Net: In contrast to intermediate data fusion, in which intermediate
features of individual layers of the backbones are fused, only the output of these back-
bones is fused in late data fusion. For the MD-Net, this involves a separate extraction
of a feature extractor for RGB and depth data and the subsequent fusion. The variant
implemented in this thesis corresponds to adding the extracted features and the subse-
quent further processing of these features for extracting region proposals and predicting
the BB and their properties (class, vertices, segmentation mask).

• Late fusion of UD-Net: When using a UD-Net, the skip connections can be used
to implement the late data fusion. For this purpose, the intermediate features of the
individual layers are either added or processed by an intermediate network, as in
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intermediate data fusion. These processed features can then be used directly in the
decoder. When using addition as a fusion method, this procedure corresponds to a
generalization of the fusion method for the MD-Net. This is because the fusion method
for the MD-Net results when only the features of the last layer of the RGB backbone and
the deep backbone are added.

Loss functions
The loss function for training a semantic segmentation model is calculated using the aug-
mented ground truth label segmentation mask C ′

GT and the model’s prediction CP . Since
the segmentation is initially pixel-based, losses of ordinary classification problems can be
used (e.g., pixel-based class prediction accuracy). In addition, region-based losses can be
used. An overview of loss functions commonly used for semantic segmentation can be found
in Jadon (2020). Two standard loss functions are dice loss and focal loss. The dice loss is
based on the overlap between the predicted and true masks of the classes in an image. It
aims to optimize the similarity between these class masks by increasing the overlap of all
class masks (Jadon 2020, P. 2).

LDice = 1
C + 1

C∑
c=0

[1 −
2 ∑H,W

u,v=1 pc(u, v) · gc(u, v)∑H,W
u,v=1 pc(u, v)2 + ∑H,W

u,v=1 gc(u, v)2
] A5.12

Unlike the dice loss, which focuses on mask overlap, the focal loss is based on a pixel’s
prediction. It introduces a modulating factor γf that dynamically adjusts the loss contribution
of each pixel. This factor decreases the contribution of well-classified pixels and increases
the contribution of misclassified pixels. Additionally, αc is class dependent and is a balancing
factor when there is a significant class imbalance. The Focal loss enables the model to learn
more effectively by putting more emphasis on challenging examples, thus performing well in
tasks with class imbalance (Jadon 2020, P. 2).

LFocal = 1
C + 1

C∑
c=0

H,W∑
u,v

[αc(1 − pt(u, v))γf · log(pt(u, v))]

with pt =


pc(u, v) if gc(u, v) = 1
1 − pc(u, v) else

A5.13

The formulas for Dice-Loss and Focal-Loss can be found in equations A5.12 and A5.13. Both
loss functions calculate the mean value of the respective loss over all classes (number C) of
the pixels (u, v) to be segmented in an image with size H × W . pc(u, v) accordingly denotes
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the prediction of the class membership of the pixel (u, v) to class c and gc(u, v) the ground
truth of the pixel (u, v) for class c.

In contrast to the comparatively simple definition of the loss function for semantic segmenta-
tion, the loss function, for instance, segmentation models, such as, e.g., M-Net, is composed
of different loss functions. Since M-Net allows the localization and segmentation of an object
instance using a bounding box in an image, the loss function is composed of the loss func-
tions for the (1) localization of the object in the image using the bounding box (Lbox), the (2)
assignment (classification) of the object to a class (Lcls), and the (3) predicted segmented
object mask (Lmask) (Hafiz & Bhat 2020, P. 1046). The whole loss function is then based on
the sum of the individual loss functions according to equation A5.14.

LM−RCNN = Lbox + Lcls + Lmask A5.14

These contributing loss functions can be individually defined. For example, Lmask is defined
in the M-Net as the binary cross entropy loss for the per-pixel binary classification of the
assignment of the pixel to the object (He & Gkioxari et al. 2017, P. 2963).

The evaluation metric IoU
Similarly, evaluation metrics based on the classification quality of individual pixels or region-
based metrics can be used to evaluate the segmentation quality of the approaches used. The
pixel accuracy calculates the percentage of correctly classified pixels in the entire image to
be segmented. It is a simple and intuitive measure of overall segmentation accuracy but does
not account for class imbalances. Region-based metrics (e.g., intersection over union - IoU)
consider the similarity of the resulting segmentation masks. IoU calculates the ratio of the
area of overlap between the predicted class mask and ground truth mask for a class to the
area of their union. It is a standard metric used in segmentation tasks to evaluate the accuracy
of object localization and class prediction. Another variant of a region-based metric is the
dice coefficient. The dice coefficient calculates the ratio of the overlap area of the predicted
and ground truth class masks in relation to the union of the area of both the predicted and
ground truth class masks. It is helpful for tasks with imbalanced class distributions. Since the
evaluation metrics indicate the quality of the segmentation, they can also be used to define
loss functions for training the segmentation algorithms.
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A6 T-Scan system product information

The table A6.1 lists the relevant parameters of the handheld T-Scan laser scanner and its
tracking system (T-Track 10) based on available data sheets1. These systems were used in
this work to generate the reference models. The Zeiss T-Scan and Zeiss T-Track 10 can be
seen in Figure A6.1, which was extracted of the T-Scan systems’ website2.

Table A6.1: Technical data of the Zeiss T-Scan and Zeiss T-Track 10 system extracted from
the technical datasheet.2

Zeiss T-Scan

Characteristic Value or Description

Measuring depth +/- 50 mm
Line width Up to 125 mm
Average working distance 150 mm
Line frequency Up to 330 Hz
Data rate 210.000 Points/Second
Average point distance 0.075 mm

Zeiss T-Track 10

Characteristic Value or Description

Measuring distance object - camera 2.0 m - 6.0 m
Measuring volume 20 m3

Field of view Up to 3200 mm x 2500 mm
Measuring rate Up to 2.8 kHz
Accuracy 0.04 mm + 0.04 mm/m

Figure A6.1: Visual display of the Zeiss T-Scan and Zeiss T-Track 10 systems based on the
T-Scan system website.

1 Link of datasheet:
https://www.handsonmetrology.com/de/loesungen/t-scan/#Features
accessed 04.04.2024

2 Link of image:
https://www.handsonmetrology.com/de/loesungen/t-scan/#Features
accessed 04.04.2024
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A7 Evaluation metrics for the 3D reconstruction approach

Hausdorff Distance

The Hausdorff Distance measures the maximum distance from any point in one set to the
closest point in the other set, reflecting the extent of maximum mismatch between the two
sets. Since the raw Hausdorff distance uses the maximum distance as a criterion of mismatch,
it is therefore prone to outliers. Thus, the adapted metric Hausdorff Distance 95th percentile
(HDC→L

95 ) is used in this work. HDC→L
95 between two sets C and L of a metric space X, is

defined as (Reinke & Tizabi et al. 2021, P. 24):

HDC→L
95 = max {d95(C, L), d95(L, C)} A7.15

Thereby, C and L denote point clouds and the metric space is the Cartesian Space. d95(C, L)
denotes 95th percentile of the distances between all points in C to all points in L. Similarly,
d95(L, C) denotes the 95th percentile of the distances of all points in L to all points in C. It is
therefore a more conservative approach to calculating the mismatch of two point clouds.

Mean Error

The Mean Error (ME) is used in this work as a metric to quantify the average distance between
the two point clouds C and L. It can be defined as:

MEC→L = 1
n

n∑
i=1

min
l∈L

d(ci, l) A7.16

Thereby, n denotes the number of points in the point cloud C. For each point ci, the distance
to its nearest neighboring point in point cloud L is calculated. These distances are summed
up to calculate MEC→L. MEC→L is useful for assessing the spatial similarity of two point
clouds, especially when direct point correspondences are not available, by focusing on the
closeness of points in C relative to the geometry of L. ME is a variant of the mean absolute
error (Hodson (2022, P. 5482)), whereby the point distances are used instead of the absolute
value.
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A8 Result tables for training the U-Net, UD-Net, M-Net and
MD-Net configurations
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Table A8.1: Training results for the U-Nets SGD optimizer and IoU as the evaluation metric.a

Model Backbone Optimizer Loss Learning rateb Pretrain Freeze IoUmax IoUmean IoUstd

U-Net VGG16 SGD Dice 1 ∗ 10−2 True True 0.8081 0.8050 0.0036
U-Net VGG16 SGD Dice 1 ∗ 10−2 True False 0.6455 0.6449 0.0004
U-Net VGG16 SGD Dice 1 ∗ 10−2 False False 0.5658 0.5564 0.0073
U-Net VGG16 SGD Dice 5 ∗ 10−3 True True 0.6855 0.6831 0.0025
U-Net VGG16 SGD Dice 5 ∗ 10−3 True False 0.5884 0.5396 0.0515
U-Net VGG16 SGD Dice 5 ∗ 10−3 False False 0.3970 0.3880 0.0111
U-Net VGG16 SGD Dice 1 ∗ 10−3 True True 0.5408 0.5032 0.0267
U-Net VGG16 SGD Dice 1 ∗ 10−3 True False 0.4091 0.4009 0.0084
U-Net VGG16 SGD Dice 1 ∗ 10−3 False False 0.3218 0.3155 0.0084
U-Net VGG16 SGD Focal 1 ∗ 10−2 True True 0.8124 0.7638 0.0344
U-Net VGG16 SGD Focal 1 ∗ 10−2 True False 0.6584 0.6537 0.0056
U-Net VGG16 SGD Focal 1 ∗ 10−2 False False 0.4910 0.4819 0.0082
U-Net VGG16 SGD Focal 5 ∗ 10−3 True True 0.7004 0.6931 0.0056
U-Net VGG16 SGD Focal 5 ∗ 10−3 True False 0.5958 0.5316 0.0454
U-Net VGG16 SGD Focal 5 ∗ 10−3 False False 0.4007 0.3875 0.0094
U-Net VGG16 SGD Focal 1 ∗ 10−3 True True 0.4860 0.4829 0.0035
U-Net VGG16 SGD Focal 1 ∗ 10−3 True False 0.4193 0.4029 0.0168
U-Net VGG16 SGD Focal 1 ∗ 10−3 False False 0.3118 0.2987 0.0098

U-Net ResNet34 SGD Dice 1 ∗ 10−2 True True 0.6596 0.6561 0.0025
U-Net ResNet34 SGD Dice 1 ∗ 10−2 True False 0.4712 0.4690 0.0016
U-Net ResNet34 SGD Dice 1 ∗ 10−2 False False 0.4253 0.4214 0.0028
U-Net ResNet34 SGD Dice 5 ∗ 10−3 True True 0.4757 0.4715 0.0035
U-Net ResNet34 SGD Dice 5 ∗ 10−3 True False 0.4259 0.4139 0.0085
U-Net ResNet34 SGD Dice 5 ∗ 10−3 False False 0.3680 0.3655 0.0026
U-Net ResNet34 SGD Dice 1 ∗ 10−3 True True 0.3021 0.2700 0.0248
U-Net ResNet34 SGD Dice 1 ∗ 10−3 True False - - -
U-Net ResNet34 SGD Dice 1 ∗ 10−3 False False - - -
U-Net ResNet34 SGD Focal 1 ∗ 10−2 True True 0.5242 0.5230 0.0009
U-Net ResNet34 SGD Focal 1 ∗ 10−2 True False 0.4699 0.4679 0.0020
U-Net ResNet34 SGD Focal 1e−4 False False 0.4182 0.4143 0.0031
U-Net ResNet34 SGD Focal 5 ∗ 10−3 True True 0.5240 0.5186 0.0058
U-Net ResNet34 SGD Focal 5 ∗ 10−3 True False 0.4142 0.3620 0.0445
U-Net ResNet34 SGD Focal 5 ∗ 10−3 False False 0.3600 0.3477 0.0136
U-Net ResNet34 SGD Focal 1 ∗ 10−3 True True 0.2478 0.1357 0.1008
U-Net ResNet34 SGD Focal 1 ∗ 10−3 True False - - -
U-Net ResNet34 SGD Focal 1 ∗ 10−3 False False 0.0061 0.0037 0.0021

a : Rows with green text indicate best modeling options for a respective modeling variant
regarding IoUmean and/or IoUmax

b : Initial learning rate, reduced by 20% every 10 epochs
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Table A8.2: Training results for the U-Nets Adam optimizer and IoU as the evaluation metric.a

Model Backbone Optimizer Loss Learning rateb Pretrain Freeze IoUmax IoUmean IoUstd

U-Net VGG16 Adam Dice 1 ∗ 10−4 True True 0.9100 0.9074 0.0026
U-Net VGG16 Adam Dice 1 ∗ 10−4 True False 0.9217 0.9187 0.0027
U-Net VGG16 Adam Dice 1 ∗ 10−4 False False 0.8179 0.8136 0.0042
U-Net VGG16 Adam Dice 5 ∗ 10−5 True True 0.9035 0.9015 0.0032
U-Net VGG16 Adam Dice 5 ∗ 10−5 True False 0.8983 0.8976 0.0006
U-Net VGG16 Adam Dice 5 ∗ 10−5 False False 0.8593 0.8564 0.0034
U-Net VGG16 Adam Dice 1 ∗ 10−5 True True 0.8892 0.8882 0.0009
U-Net VGG16 Adam Dice 1 ∗ 10−5 True False 0.8727 0.8702 0.0024
U-Net VGG16 Adam Dice 1 ∗ 10−5 False False 0.7362 0.7327 0.0030
U-Net VGG16 Adam Focal 1 ∗ 10−4 True True 0.9131 0.9129 0.0002
U-Net VGG16 Adam Focal 1 ∗ 10−4 True False 0.9164 0.9161 0.0005
U-Net VGG16 Adam Focal 1 ∗ 10−4 False False 0.8632 0.8603 0.0039
U-Net VGG16 Adam Focal 5 ∗ 10−5 True True 0.9059 0.9026 0.0032
U-Net VGG16 Adam Focal 5 ∗ 10−5 True False 0.9161 0.9153 0.0007
U-Net VGG16 Adam Focal 5 ∗ 10−5 False False 0.8688 0.8603 0.008
U-Net VGG16 Adam Focal 1 ∗ 10−5 True True 0.9048 0.9039 0.0013
U-Net VGG16 Adam Focal 1 ∗ 10−5 True False 0.8864 0.8695 0.0180
U-Net VGG16 Adam Focal 1 ∗ 10−5 False False 0.7428 0.7276 0.0247

U-Net ResNet34 Adam Dice 1 ∗ 10−4 True True 0.8876 0.8854 0.0026
U-Net ResNet34 Adam Dice 1 ∗ 10−4 True False 0.9033 0.9005 0.0028
U-Net ResNet34 Adam Dice 1 ∗ 10−4 False False 0.7708 0.7658 0.0065
U-Net ResNet34 Adam Dice 5 ∗ 10−5 True True 0.8900 0.8890 0.0015
U-Net ResNet34 Adam Dice 5 ∗ 10−5 True False 0.8788 0.8396 0.0572
U-Net ResNet34 Adam Dice 5 ∗ 10−5 False False 0.7232 0.7031 0.0320
U-Net ResNet34 Adam Dice 1 ∗ 10−5 True True 0.8614 0.8577 0.0039
U-Net ResNet34 Adam Dice 1 ∗ 10−5 True False 0.6562 0.5764 0.0691
U-Net ResNet34 Adam Dice 1 ∗ 10−5 False False 0.6128 0.5801 0.0039
U-Net ResNet34 Adam Focal 1 ∗ 10−4 True True 0.8977 0.8970 0.0009
U-Net ResNet34 Adam Focal 1 ∗ 10−4 True False 0.8893 0.8850 0.0069
U-Net ResNet34 Adam Focal 1 ∗ 10−4 False False 0.7960 0.7935 0.0028
U-Net ResNet34 Adam Focal 5 ∗ 10−5 True True 0.8948 0.8915 0.0029
U-Net ResNet34 Adam Focal 5 ∗ 10−5 True False 0.7578 0.7527 0.0045
U-Net ResNet34 Adam Focal 5 ∗ 10−5 False False 0.7711 0.7431 0.0315
U-Net ResNet34 Adam Focal 1 ∗ 10−5 True True 0.7904 0.7629 0.0241
U-Net ResNet34 Adam Focal 1 ∗ 10−5 True False 0.5447 0.5436 0.0010
U-Net ResNet34 Adam Focal 1 ∗ 10−5 False False 0.5012 0.5005 0.0007

a : Rows with green text indicate best modeling options for a respective modeling variant
regarding IoUmean and/or IoUmax

b : Initial learning rate, reduced by 20% every 10 epochs
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Table A8.3: Training results for the M-Nets with IoU as the evaluation metric.a

Model Backbone Optimizer Loss Learning rateb Pretrain Freeze IoUmax IoUmean IoUstd

Mask-RCNN VGG16 Adam Default 1 ∗ 10−4 True True 0.9517 0.9462 0.0040
Mask-RCNN VGG16 Adam Default 1 ∗ 10−4 True False 0.9438 0.9383 0.0040
Mask-RCNN VGG16 Adam Default 1 ∗ 10−4 False False 0.9200 0.9166 0.0025
Mask-RCNN VGG16 Adam Default 5 ∗ 10−5 True True 0.9422 0.9380 0.0032
Mask-RCNN VGG16 Adam Default 5 ∗ 10−5 True False 0.9386 0.9344 0.0041
Mask-RCNN VGG16 Adam Default 5 ∗ 10−5 False False 0.9050 0.8967 0.0110
Mask-RCNN VGG16 Adam Default 1 ∗ 10−5 True True 0.9256 0.8972 0.0083
Mask-RCNN VGG16 Adam Default 1 ∗ 10−5 True False 0.9038 0.8972 0.0083
Mask-RCNN VGG16 Adam Default 1 ∗ 10−5 False False 0.8266 0.8213 0.0037
Mask-RCNN VGG16 SGD Default 1 ∗ 10−2 True True 0.9372 0.9323 0.0038
Mask-RCNN VGG16 SGD Default 1 ∗ 10−2 True False 0.9313 0.9254 0.0055
Mask-RCNN VGG16 SGD Default 1 ∗ 10−2 False False 0.9073 0.8979 0.0067
Mask-RCNN VGG16 SGD Default 5 ∗ 10−3 True True 0.9358 0.9323 0.0029
Mask-RCNN VGG16 SGD Default 5 ∗ 10−3 True False 0.9194 0.9144 0.0040
Mask-RCNN VGG16 SGD Default 5 ∗ 10−3 False False 0.8839 0.8708 0.0096
Mask-RCNN VGG16 SGD Default 1 ∗ 10−3 True True 0.9090 0.9066 0.0020
Mask-RCNN VGG16 SGD Default 1 ∗ 10−3 True False 0.8393 0.8261 0.0134
Mask-RCNN VGG16 SGD Default 1 ∗ 10−3 False False 0.8144 0.7943 0.0194

Mask-RCNN ResNet34 Adam Default 1 ∗ 10−4 True True 0.9566 0.9537 0.0026
Mask-RCNN ResNet34 Adam Default 1 ∗ 10−4 True False 0.9518 0.9487 0.0027
Mask-RCNN ResNet34 Adam Default 1 ∗ 10−4 False False 0.9294 0.9268 0.0033
Mask-RCNN ResNet34 Adam Default 5 ∗ 10−5 True True 0.9527 0.9482 0.0044
Mask-RCNN ResNet34 Adam Default 5 ∗ 10−5 True False 0.9466 0.9452 0.0014
Mask-RCNN ResNet34 Adam Default 5 ∗ 10−5 False False 0.9140 0.9041 0.0110
Mask-RCNN ResNet34 Adam Default 1 ∗ 10−5 True True 0.9393 0.9353 0.0030
Mask-RCNN ResNet34 Adam Default 1 ∗ 10−5 True False 0.9196 0.9150 0.0044
Mask-RCNN ResNet34 Adam Default 1 ∗ 10−5 False False 0.8307 0.8180 0.0093
Mask-RCNN ResNet34 SGD Default 1 ∗ 10−2 True True 0.9505 0.9488 0.0019
Mask-RCNN ResNet34 SGD Default 1 ∗ 10−2 True False 0.9449 0.9414 0.0033
Mask-RCNN ResNet34 SGD Default 1 ∗ 10−2 False False 0.9198 0.9106 0.0079
Mask-RCNN ResNet34 SGD Default 5 ∗ 10−3 True True 0.9457 0.9420 0.0030
Mask-RCNN ResNet34 SGD Default 5 ∗ 10−3 True False 0.9393 0.9358 0.0034
Mask-RCNN ResNet34 SGD Default 5 ∗ 10−3 False False 0.8981 0.8902 0.0059
Mask-RCNN ResNet34 SGD Default 1 ∗ 10−3 True True 0.9371 0.9292 0.0056
Mask-RCNN ResNet34 SGD Default 1 ∗ 10−3 True False 0.9089 0.9077 0.0010
Mask-RCNN ResNet34 SGD Default 1 ∗ 10−3 False False 0.8444 0.8252 0.0143

a : Rows with green text indicate best modeling options for a respective modeling variant
regarding IoUmean and/or IoUmax

b : Initial learning rate, reduced by 20% every 10 epochs
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Table A8.4: Training results for the UD-Nets with IoU as the evaluation metric.a

Model Fusion type Backbone Optimizer Loss Learning rateb Pretrain Freeze IoUmax IoUmean IoUstd

UD-4D Early VGG16 Adam Dice 1 ∗ 10−4 True True 0.9075 0.9062 0.0018
UD-4D Early VGG16 Adam Dice 1 ∗ 10−4 True False 0.9124 0.9104 0.0014
UD-4D Early VGG16 Adam Dice 1 ∗ 10−4 False False 0.7883 0.7795 0.0101
UD-4D Early VGG16 Adam Dice 5 ∗ 10−5 True True 0.9135 0.9086 0.0039
UD-4D Early VGG16 Adam Dice 5 ∗ 10−5 True False 0.9095 0.9078 0.0012
UD-4D Early VGG16 Adam Dice 5 ∗ 10−5 False False 0.7956 0.7936 0.0020
UD-4D Early VGG16 Adam Focal 1 ∗ 10−4 True True 0.9165 0.9062 0.0045
UD-4D Early VGG16 Adam Focal 1 ∗ 10−4 True False 0.9162 0.9148 0.0011
UD-4D Early VGG16 Adam Focal 1 ∗ 10−4 False False 0.8066 0.7978 0.0069
UD-4D Early VGG16 Adam Focal 5 ∗ 10−5 True True 0.9119 0.9080 0.0029
UD-4D Early VGG16 Adam Focal 5 ∗ 10−5 True False 0.9096 0.9070 0.0029
UD-4D Early VGG16 Adam Focal 5 ∗ 10−5 False False 0.8169 0.8146 0.0028
UD-Add Intermediate VGG16 Adam Dice 1 ∗ 10−4 True True 0.9229 0.9220 0.0010
UD-Add Intermediate VGG16 Adam Dice 1 ∗ 10−4 True False 0.9259 0.9248 0.0013
UD-Add Intermediate VGG16 Adam Dice 1 ∗ 10−4 False False 0.8971 0.8828 0.0156
UD-Add Intermediate VGG16 Adam Dice 5 ∗ 10−5 True True 0.9113 0.9101 0.0010
UD-Add Intermediate VGG16 Adam Dice 5 ∗ 10−5 True False 0.9148 0.9140 0.0006
UD-Add Intermediate VGG16 Adam Dice 5 ∗ 10−5 False False 0.8913 0.8883 0.0022
UD-Add Intermediate VGG16 Adam Focal 1 ∗ 10−4 True True 0.9296 0.9291 0.0006
UD-Add Intermediate VGG16 Adam Focal 1 ∗ 10−4 True False 0.9254 0.9247 0.0006
UD-Add Intermediate VGG16 Adam Focal 1 ∗ 10−4 False False 0.9051 0.9036 0.0012
UD-Add Intermediate VGG16 Adam Focal 5 ∗ 10−5 True True 0.9210 0.9195 0.0013
UD-Add Intermediate VGG16 Adam Focal 5 ∗ 10−5 True False 0.9212 0.9190 0.0018
UD-Add Intermediate VGG16 Adam Focal 5 ∗ 10−5 False False 0.8886 0.8875 0.0008
UD-Add Late VGG16 Adam Dice 1 ∗ 10−4 True True 0.9214 0.9186 0.0022
UD-Add Late VGG16 Adam Dice 1 ∗ 10−4 True False 0.9272 0.9251 0.0015
UD-Add Late VGG16 Adam Dice 1 ∗ 10−4 False False 0.8635 0.8624 0.0010
UD-Add Late VGG16 Adam Dice 5 ∗ 10−5 True True 0.9251 0.9223 0.0029
UD-Add Late VGG16 Adam Dice 5 ∗ 10−5 True False 0.9171 0.9162 0.0011
UD-Add Late VGG16 Adam Dice 5 ∗ 10−5 False False 0.8873 0.8855 0.0014
UD-Add Late VGG16 Adam Focal 1 ∗ 10−4 True True 0.9201 0.9196 0.0004
UD-Add Late VGG16 Adam Focal 1 ∗ 10−4 True False 0.9223 0.9207 0.0015
UD-Add Late VGG16 Adam Focal 1 ∗ 10−4 False False 0.8955 0.8907 0.0035
UD-Add Late VGG16 Adam Focal 5 ∗ 10−5 True True 0.9174 0.9159 0.0014
UD-Add Late VGG16 Adam Focal 5 ∗ 10−5 True False 0.9152 0.9140 0.0009
UD-Add Late VGG16 Adam Focal 5 ∗ 10−5 True False 0.9002 0.8982 0.0016
UD-Net Intermediate VGG16 Adam Dice 1 ∗ 10−4 True True 0.8494 0.8472 0.0025
UD-Net Intermediate VGG16 Adam Dice 1 ∗ 10−4 True False 0.8361 0.8313 0.0035
UD-Net Intermediate VGG16 Adam Dice 1 ∗ 10−4 True False 0.7893 0.7746 0.0124
UD-Net Intermediate VGG16 Adam Dice 5 ∗ 10−5 True True 0.8844 0.8687 0.0179
UD-Net Intermediate VGG16 Adam Dice 5 ∗ 10−5 True False 0.8597 0.8554 0.0034
UD-Net Intermediate VGG16 Adam Dice 5 ∗ 10−5 True False 0.7823 0.7734 0.0079
UD-Net Intermediate VGG16 Adam Focal 1 ∗ 10−4 True True 0.9022 0.9017 0.0005
UD-Net Intermediate VGG16 Adam Focal 1 ∗ 10−4 True False 0.8877 0.8834 0.0031
UD-Net Intermediate VGG16 Adam Focal 1 ∗ 10−4 False False 0.8406 0.8247 0.0112
UD-Net Intermediate VGG16 Adam Focal 5 ∗ 10−5 True True 0.8974 0.8940 0.0025
UD-Net Intermediate VGG16 Adam Focal 5 ∗ 10−5 True False 0.8828 0.8732 0.0078
UD-Net Intermediate VGG16 Adam Focal 5 ∗ 10−5 False False 0.8272 0.8151 0.0132
UD-Net Late VGG16 Adam Dice 1 ∗ 10−4 True True 0.9029 0.8996 0.0040
UD-Net Late VGG16 Adam Dice 1 ∗ 10−4 True False 0.9028 0.9008 0.0017
UD-Net Late VGG16 Adam Dice 1 ∗ 10−4 False False 0.7887 0.7849 0.0027
UD-Net Late VGG16 Adam Dice 5 ∗ 10−5 True True 0.9087 0.9041 0.0050
UD-Net Late VGG16 Adam Dice 5 ∗ 10−5 True False 0.8935 0.8916 0.0013
UD-Net Late VGG16 Adam Dice 5 ∗ 10−5 False False 0.7930 0.7852 0.0055
UD-Net Late VGG16 Adam Focal 1 ∗ 10−4 True True 0.9137 0.9121 0.0020
UD-Net Late VGG16 Adam Focal 1 ∗ 10−4 True False 0.9141 0.9121 0.0018
UD-Net Late VGG16 Adam Focal 1 ∗ 10−4 False False 0.8430 0.8369 0.0044
UD-Net Late VGG16 Adam Focal 5 ∗ 10−5 True True 0.9143 0.9129 0.0016
UD-Net Late VGG16 Adam Focal 5 ∗ 10−5 True False 0.9073 0.9062 0.0011
UD-Net Late VGG16 Adam Focal 5 ∗ 10−5 False False 0.8457 0.8422 0.0026

a : Rows with green text indicate best modeling options for a respective modeling variant
regarding IoUmean and/or IoUmax

b : Initial learning rate, reduced by 20% every 10 epochs
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Table A8.5: Training results for the MD-Nets with IoU as the evaluation metric.a

Model Fusion type Backbone Optimizer Loss Learning rateb Pretrain Freeze IoUmax IoUmean IoUstd

MD-4D Early ResNet34 Adam Default 1 ∗ 10−4 True True 0.9547 0.9504 0.0038
MD-4D Early ResNet34 Adam Default 1 ∗ 10−4 True False 0.9462 0.9457 0.0006
MD-4D Early ResNet34 Adam Default 1 ∗ 10−4 False False 0.9315 0.9298 0.0015
MD-4D Early ResNet34 Adam Default 5 ∗ 10−5 True True 0.9542 0.9527 0.0013
MD-4D Early ResNet34 Adam Default 5 ∗ 10−5 True False 0.9553 0.9480 0.0054
MD-4D Early ResNet34 Adam Default 5 ∗ 10−5 False False 0.9314 0.9314 0.0030
MD-4D Early ResNet34 SGD Default 1 ∗ 10−2 True True 0.9461 0.9421 0.0030
MD-4D Early ResNet34 SGD Default 1 ∗ 10−2 True False 0.9390 0.9340 0.0037
MD-4D Early ResNet34 SGD Default 1 ∗ 10−2 False False 0.9123 0.9100 0.0019
MD-4D Early ResNet34 SGD Default 5 ∗ 10−3 True True 0.9445 0.9328 0.0085
MD-4D Early ResNet34 SGD Default 5 ∗ 10−3 True False 0.9344 0.9086 0.0313
MD-4D Early ResNet34 SGD Default 5 ∗ 10−3 False False 0.9230 0.8641 0.00842

MD-Add Intermediate ResNet34 Adam Default 1 ∗ 10−4 True True 0.9436 0.9410 0.0021
MD-Add Intermediate ResNet34 Adam Default 1 ∗ 10−4 True False 0.9434 0.9388 0.0033
MD-Add Intermediate ResNet34 Adam Default 1 ∗ 10−4 False False 0.9373 0.9358 0.0018
MD-Add Intermediate ResNet34 Adam Default 5 ∗ 10−5 True True 0.9389 0.9343 0.0044
MD-Add Intermediate ResNet34 Adam Default 5 ∗ 10−5 True False 0.9420 0.9356 0.0069
MD-Add Intermediate ResNet34 Adam Default 5 ∗ 10−5 False False 0.9238 0.9381 0.0044
MD-Add Intermediate ResNet34 SGD Default 1 ∗ 10−2 True True 0.9322 0.9303 0.0014
MD-Add Intermediate ResNet34 SGD Default 1 ∗ 10−2 True False 0.9164 0.8192 0.1339
MD-Add Intermediate ResNet34 SGD Default 1 ∗ 10−2 False False 0.9220 0.9082 0.0177
MD-Add Intermediate ResNet34 SGD Default 5 ∗ 10−3 True True - - -
MD-Add Intermediate ResNet34 SGD Default 5 ∗ 10−3 True False - - -
MD-Add Intermediate ResNet34 SGD Default 5 ∗ 10−3 False False - - -
MD-Net Intermediate ResNet34 Adam Default 1 ∗ 10−4 True True 0.9400 0.9337 0.0047
MD-Net Intermediate ResNet34 Adam Default 1 ∗ 10−4 True False 0.9259 0.9223 0.0031
MD-Net Intermediate ResNet34 Adam Default 1 ∗ 10−4 False False 0.9278 0.9255 0.0021
MD-Net Intermediate ResNet34 Adam Default 5 ∗ 10−5 True True 0.9339 0.9233 0.0087
MD-Net Intermediate ResNet34 Adam Default 5 ∗ 10−5 True False 0.9374 0.9268 0.0083
MD-Net Intermediate ResNet34 Adam Default 5 ∗ 10−5 False False 0.9337 0.9319 0.0017
MD-Net Intermediate ResNet34 SGD Default 1 ∗ 10−2 True True 0.9206 0.9139 0.0092
MD-Net Intermediate ResNet34 SGD Default 1 ∗ 10−2 True False 0.8361 0.8313 0.0035
MD-Net Intermediate ResNet34 SGD Default 1 ∗ 10−2 False False 0.9016 0.8860 0.0113
MD-Net Intermediate ResNet34 SGD Default 5 ∗ 10−3 True True 0.9325 0.9294 0.0029
MD-Net Intermediate ResNet34 SGD Default 5 ∗ 10−3 True False 0.9045 0.8978 0.0048
MD-Net Intermediate ResNet34 SGD Default 5 ∗ 10−3 False False 0.9249 0.9214 0.0029
MD-Late Late ResNet34 Adam Default 1 ∗ 10−4 True True 0.9515 0.9482 0.0023
MD-Late Late ResNet34 Adam Default 1 ∗ 10−4 True False 0.9545 0.9485 0.0043
MD-Late Late ResNet34 Adam Default 1 ∗ 10−4 False False 0.9294 0.9279 0.0017
MD-Late Late ResNet34 Adam Default 5 ∗ 10−5 True True 0.9420 0.9390 0.0022
MD-Late Late ResNet34 Adam Default 5 ∗ 10−5 True False 0.9302 0.9293 0.0007
MD-Late Late ResNet34 Adam Default 5 ∗ 10−5 False False 0.9084 0.9024 0.0058
MD-Late Late ResNet34 SGD Default 1 ∗ 10−2 True True 0.9366 0.9232 0.0137
MD-Late Late ResNet34 SGD Default 1 ∗ 10−2 True False 0.9290 0.9257 0.0042
MD-Late Late ResNet34 SGD Default 1 ∗ 10−2 False False 0.9025 0.8260 0.0705
MD-Late Late ResNet34 SGD Default 5 ∗ 10−3 True True 0.9336 0.9316 0.0022
MD-Late Late ResNet34 SGD Default 5 ∗ 10−3 True False 0.9263 0.9232 0.0031
MD-Late Late ResNet34 SGD Default 5 ∗ 10−3 False False 0.8830 0.8768 0.0053

a : Rows with green text indicate best modeling options for a respective modeling variant
regarding IoUmean and/or IoUmax

b : Initial learning rate, reduced by 20% every 10 epochs
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A9 Evaluation metrics for the semantic segmentation
approach using uncertainty-based filtering

The following elaborations are based on Powers (2020).

Precision (P) and Recall (R)
Precision (P) and recall (R) are the two fundamental metrics in classification tasks, focusing
on the accuracy (P) and completeness (R) of the positive predictions.

Precision is the ratio of true positive (TP) predictions (correct predictions) to all positive
predictions. All positive predictions consist of the sum of all true positive (TP) predictions
and false positive (FP) predictions. False positives (FP) denote predictions where a model
predicts an outcome to be true where it should be false.

The precision is defined as:

P = TP

TP + FP
A9.17

Recall, or sensitivity, measures the ratio of true positive (TP) outcomes to all actual positives.
All positives consist of the sum of all true positives (TP) and false negatives (FN). False
negatives (FN) denote instances, where the model predicts an outcome to be false, where it
should be true. The recall reflects the classifier’s ability to identify all relevant instances. It is
defined as:

R = TP

TP + FN
A9.18

F1 Score
The F1 Score is the harmonic mean of precision (P ) and recall (R). It is defined as:

F1 = 2 PR

P + R
A9.19

A high F1 score indicates both high precision and high recall. It indicates, that the classifier
correctly identifies most true positives (TP) while minimizing false positives (FP). A low F1
score suggests that the classifier is performing poorly in terms of either precision (P), recall
(R), or both.

False Discovery Rate (FDR)
False Discovery Rate is the proportion of false positives (FP) among all positive predictions.
It is defined as:

FDR = FP

FP + TP
A9.20
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A high FDR indicates that a large proportion of positive predictions are false positives, implying
low precision (P ). A low FDR means that the classifier has a higher accuracy in predicting
positives, making it more reliable for identifying true positive outcomes.

False Positive Rate (FPR) False Positive Rate is the proportion of negative instances that
are incorrectly classified as positive. It is defined as:

FPR = FP

FP + TN
A9.21

A high FPR indicates that the classifier frequently misclassifies negative instances as positive.
This can be problematic in applications where false positives are costly. A low FPR suggests
that the classifier is effective at identifying negative instances accurately, minimizing the
occurrence of false positives.
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A10 Details on the SCP benchmark algorithms used in this
work

To solve the VPP with the two benchmark algorithms SCPΨ and SCPΨ,d, proceed as
follows:

• First, 900 random positions are sampled in the space around the object to be inspected.
The VP then results from the automated orientation to the origin of the inspection object.

• For each VP, a simulation of the acquisition process takes place first, whereby it is
determined which surfaces of the inspection object are acquired with the respective VP.

• After simulating the acquisition process for all sampled VP, an iterative selection of
the VP to be chosen is then carried out according to the following scheme for the two
variants of the SCP algorithm:

– SCPΨ: The VP that acquires the maximum remaining surface area of the inspection
object to be acquired based on the acquisition state is selected next. The objective
is to choose the VP so that the percentage of newly covered object surface ( ∆Ψt

Ψrem,t−1
)

of the inspection object is maximized.

– SCPΨ,d: The VP is selected next, which, based on the acquisition state, maximizes
the mean value of the percentage coverage of the object surface still to be acquired
( ∆Ψt

Ψrem,t−1
) and the quotient ( dV P

dmax
) of the travel distance from the last selected VP to

the current VP (dV P ) to the maximum travel distance of the last VP to any VP in
the set of all VP (dmax).
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zur kostenorientierten, parallelen Entwicklung von Produkt und Montage 
system 



Band 50
Dr.-Ing. Peter Ganghoff

Wissensbasierte Unterstützung der Planung technischer Systeme: 
Konzeption eines Planungswerkzeuges und exemplarische Anwendung 
im Bereich der Montagesystemplanung

Band 51
Dr.-Ing. Frank Maier

Rechnergestützte Prozessregelung beim flexiblen Gesenkbiegen durch  
Rückführung von Qualitätsinformationen 

Band 52
Dr.-Ing. Frank Debus

Ansatz eines rechnerunterstützten Planungsmanagements für die Planung  
in verteilten Strukturen 

Band 53
Dr.-Ing. Joachim Weinbrecht

Ein Verfahren zur zielorientierten Reaktion auf Planabweichungen in der 
Werkstattregelung 

Band 54
Dr.-Ing. Gerd Herrmann

Reduzierung des Entwicklungsaufwandes für anwendungsspezifische  
Zellenrechnersoftware durch Rechnerunterstützung 

Band 55
Dr.-Ing. Robert Wassmer

Verschleissentwicklung im tribologischen System Fräsen: Beiträge 
zur Methodik der Prozessmodellierung auf der Basis tribologisher  
Untersuchungen beim Fräsen 

Band 56
Dr.-Ing. Peter Uebelhoer

Inprocess-Geometriemessung beim Honen 

Band 57
Dr.-Ing. Hans-Joachim Schelberg

Objektorientierte Projektierung von SPS-Software 



Band 58
Dr.-Ing. Klaus Boes

Integration der Qualitätsentwicklung in featurebasierte CAD/CAM-Prozessketten 

Band 59
Dr.-Ing. Martin Schreiber

Wirtschaftliche Investitionsbewertung komplexer Produktions- 
systeme unter Berücksichtigung von Unsicherheit 

Band 60
Dr.-Ing. Ralf Steuernagel

Offenes adaptives Engineering-Werkzeug zur automatisierten 
Erstellung von entscheidungsunterstützenden Informationssystemen 

Band 62
Dr.-Ing. Uwe Schauer

Qualitätsorientierte Feinbearbeitung mit Industrierobotern: Regelungsansatz 
für die Freiformflächenfertigung des Werkzeug- und Formenbaus 

Band 63
Dr.-Ing. Simone Loeper

Kennzahlengestütztes Beratungssystem zur Verbesserung der
Logistikleistung in der Werkstattfertigung 

Band 64
Dr.-Ing. Achim Raab

Räumen mit hartstoffbeschichteten HSS-Werkzeugen 

Band 65, 
Dr.-Ing. Jan Erik Burghardt

Unterstützung der NC-Verfahrenskette durch ein bearbeitungs- 
elementorientiertes, lernfähiges Technologieplanungssystem 

Band 66
Dr.-Ing. Christian Tritsch

Flexible Demontage technischer Gebrauchsgüter: Ansatz zur Planung und 
(teil-)automatisierten Durchführung industrieller Demontageprozesse

Band 67
Dr.-Ing. Oliver Eitrich

Prozessorientiertes Kostenmodell für die entwicklungsbegleitende Vorkalkulation 



Band 68
Dr.-Ing. Oliver Wilke

Optimierte Antriebskonzepte für Räummaschinen - Potentiale zur Leistungs-
steigerung 

Band 69
Dr.-Ing. Thilo Sieth

Rechnergestützte Modellierungsmethodik zerspantechnologischer Prozesse 

Band 70
Dr.-Ing. Jan Linnenbuerger

Entwicklung neuer Verfahren zur automatisierten Erfassung der geometri-
schen Abweichungen an Linearachsen und Drehschwenkköpfen 

Band 71
Dr.-Ing. Mathias Klimmek

Fraktionierung technischer Produkte mittels eines frei beweglichen  
Wasserstrahlwerkzeuges 

Band 72
Dr.-Ing. Marko Hartel

Kennzahlenbasiertes Bewertungssystem zur Beurteilung der 
Demontage- und Recyclingeignung von Produkten 

Band 73
Dr.-Ing. Jörg Schaupp

Wechselwirkung zwischen der Maschinen- und Hauptspindelantriebsdynamik 
und dem Zerspanprozess beim Fräsen 

Band 74
Dr.-Ing. Bernhard Neisius

Konzeption und Realisierung eines experimentellen Telemanipulators  
für die Laparoskopie 

Band 75
Dr.-Ing. Wolfgang Walter

Erfolgsversprechende Muster für betriebliche Ideenfindungsprozesse. 
Ein Beitrag zur Steigerung der Innovationsfähigkeit 



Band 76
Dr.-Ing. Julian Weber

Ein Ansatz zur Bewertung von Entwicklungsergebnissen in virtuellen Szenarien 

Band 77
Dr.-Ing. Dipl. Wirtsch.-Ing. Markus Posur

Unterstützung der Auftragsdurchsetzung in der Fertigung durch  
Kommunikation über mobile Rechner 

Band 78
Dr.-Ing. Frank Fleissner

Prozessorientierte Prüfplanung auf Basis von Bearbeitungsobjekten für die 
Kleinserienfertigung am Beispiel der Bohr- und Fräsbearbeitung 

Band 79
Dr.-Ing. Anton Haberkern

Leistungsfähigere Kugelgewindetriebe durch Beschichtung 

Band 80
Dr.-Ing. Dominik Matt

Objektorientierte Prozess- und Strukturinnovation (OPUS) 

Band 81
Dr.-Ing. Jürgen Andres

Robotersysteme für den Wohnungsbau: Beitrag zur Automatisierung des 
Mauerwerkabaus und der Elektroinstallation auf Baustellen 

Band 82
Dr.-Ing. Dipl.Wirtschaftsing. Simone Riedmiller

Der Prozesskalender - Eine Methodik zur marktorientierten 
Entwicklung von Prozessen 

Band 83
Dr.-Ing. Dietmar Tilch

Analyse der Geometrieparameter von Präzisionsgewinden auf der Basis einer 
Least-Squares-Estimation 

Band 84
Dr.-Ing. Dipl.-Kfm. Oliver Stiefbold

Konzeption eines reaktionsschnellen Planungssystems für Logistikketten auf 
Basis von Software-Agenten 



Band 85
Dr.-Ing. Ulrich Walter

Einfluss von Kühlschmierstoff auf den Zerspanprozess beim Fräsen: Beitrag 
zum Prozessverständniss auf Basis von zerspantechnischen Untersuchungen 

Band 86
Dr.-Ing. Bernd Werner

Konzeption von teilautonomer Gruppenarbeit unter Berücksichtigung  
kultureller Einflüsse 

Band 87
Dr.-Ing. Ulf Osmers

Projektieren Speicherprogrammierbarer Steuerungen mit Virtual Reality 

Band 88
Dr.-Ing. Oliver Doerfel

Optimierung der Zerspantechnik beim Fertigungsverfahren 
Wälzstossen: Analyse des Potentials zur Trockenbearbeitung 

Band 89
Dr.-Ing. Peter Baumgartner

Stufenmethode zur Schnittstellengestaltung in der internationalen Produktion

Band 90
Dr.-Ing. Dirk Vossmann

Wissensmanagement in der Produktentwicklung durch Qualitäts- 
methodenverbund und Qualitätsmethodenintegration

Band 91
Dr.-Ing. Martin Plass

Beitrag zur Optimierung des Honprozesses durch den Aufbau einer  
Honprozessregelung 

Band 92
Dr.-Ing. Titus Konold

Optimierung der Fünfachsfräsbearbeitung durch eine kennzahlen- 
unterstützte CAM-Umgebung 



Band 93
Dr.-Ing. Jürgen Brath

Unterstützung der Produktionsplanung in der Halbleiterfertigung durch 
risikoberücksichtigende Betriebskennlinien 

Band 94
Dr.-Ing. Dirk Geisinger

Ein Konzept zur marktorientierten Produktentwicklung 

Band 95
Dr.-Ing. Marco Lanza

Entwurf der Systemunterstützung des verteilten Engineering mit Axiomatic 
Design 

Band 96
Dr.-Ing. Volker Hüntrup

Untersuchungen zur Mikrostrukturierbarkeit von Stählen durch das Ferti-
gungsverfahren Fräsen 

Band 97
Dr.-Ing. Frank Reinboth

Interne Stützung zur Genauigkeitsverbesserung in der Inertialmesstechnik: 
Beitrag zur Senkung der Anforderungen an Inertialsensoren 

Band 98
Dr.-Ing. Lutz Trender

Entwicklungsintegrierte Kalkulation von Produktlebenszykluskosten auf Basis 
der ressourcenorientierten Prozesskostenrechnung 

Band 99
Dr.-Ing. Cornelia Kafka

Konzeption und Umsetzung eines Leitfadens zum industriellen 
Einsatz von Data-Mining 

Band 100
Dr.-Ing. Gebhard Selinger

Rechnerunterstützung der informellen Kommunikation in verteilten  
Unternehmensstrukturen 



Band 101
Dr.-Ing. Thomas Windmüller

Verbesserung bestehender Geschäftsprozesse durch eine 
mitarbeiterorientierte Informationsversorgung 

Band 102
Dr.-Ing. Knud Lembke

Theoretische und experimentelle Untersuchung eines bistabilen 
elektrohydraulischen Linearantriebs 

Band 103
Dr.-Ing. Ulrich Thies

Methode zur Unterstützung der variantengerechten Konstruktion von  
industriell eingesetzten Kleingeräten 

Band 104
Dr.-Ing. Andreas Schmälzle

Bewertungssystem für die Generalüberholung von Montageanlagen      – Ein 
Beitrag zur wirtschaftlichen Gestaltung geschlossener Facility- Managment-
Systeme im Anlagenbau 

Band 105
Dr.-Ing. Thorsten Frank

Vergleichende Untersuchungen schneller elektromechanischer 
Vorschubachsen mit Kugelgewindetrieb 

Band 106
Dr.-Ing. Achim Agostini

Reihenfolgeplanung unter Berücksichtigung von Interaktionen: 
Beitrag zur ganzheitlichen Strukturierung und Verarbeitung von
Interaktionen von Bearbeitungsobjekten 

Band 107
Dr.-Ing. Thomas Barrho

Flexible, zeitfenstergesteuerte Auftragseinplanung in segmentierten 
Fertigungsstrukturen 

Band 108
Dr.-Ing. Michael Scharer

Quality Gate-Ansatz mit integriertem Risikomanagement 



Band 109
Dr.-Ing. Ulrich Suchy

Entwicklung und Untersuchung eines neuartigen Mischkopfes für das Wasser 
Abrasivstrahlschneiden 

Band 110
Dr.-Ing. Sellal Mussa

Aktive Korrektur von Verlagerungsfehlern in Werkzeugmaschinen 

Band 111
Dr.-Ing. Andreas Hühsam

Modellbildung und experimentelle Untersuchung des Wälzschälprozesses 

Band 112
Dr.-Ing. Axel Plutowsky

Charakterisierung eines optischen Messsystems und den Bedingungen des 
Arbeitsraums einer Werkzeugmaschine 

Band 113
Dr.-Ing. Robert Landwehr

Konsequent dezentralisierte Steuerung mit Industrial Ethernet und offenen 
Applikationsprotokollen 

Band 114
Dr.-Ing. Christoph Dill

Turbulenzreaktionsprozesse 

Band 115
Dr.-Ing. Michael Baumeister

Fabrikplanung im turbulenten Umfeld 

Band 116
Dr.-Ing. Christoph Gönnheimer

Konzept zur Verbesserung der Elektromagnetischen Verträglichkeit (EMV) in 
Produktionssystemen durch intelligente Sensor/Aktor-Anbindung 

Band 117
Dr.-Ing. Lutz Demuß

Ein Reifemodell für die Bewertung und Entwicklung von Dienstleistungs-
organisationen: Das Service Management Maturity Modell (SMMM) 



Band 118
Dr.-Ing. Jörg Söhner

Beitrag zur Simulation zerspanungstechnologischer Vorgänge mit Hilfe der 
Finite-Element-Methode 

Band 119
Dr.-Ing. Judith Elsner

Informationsmanagement für mehrstufige Mikro-Fertigungsprozesse 

Band 120
Dr.-Ing. Lijing Xie

Estimation Of Two-dimension Tool Wear Based On Finite Element Method

Band 121
Dr.-Ing. Ansgar Blessing

Geometrischer Entwurf mikromechatronischer Systeme 

Band 122
Dr.-Ing. Rainer Ebner

Steigerung der Effizienz mehrachsiger Fräsprozesse durch neue 
Planungsmethoden mit hoher Benutzerunterstützung 

Band 123
Dr.-Ing. Silja Klinkel

Multikriterielle Feinplanung in teilautonomen Produktionsbereichen – Ein  
Beitrag zur produkt- und prozessorientierten Planung und Steuerung 

Band 124
Dr.-Ing. Wolfgang Neithardt

Methodik zur Simulation und Optimierung von Werkzeugmaschinen in der 
Konzept- und Entwurfsphase auf Basis der Mehrkörpersimulation 

Band 125
Dr.-Ing. Andreas Mehr

Hartfeinbearbeitung von Verzahnungen mit kristallinen diamantbeschichte-
ten Werkzeugen beim Fertigungsverfahren Wälzstoßen 

Band 126
Dr.-Ing. Martin Gutmann

Entwicklung einer methodischen Vorgehensweise zur Diagnose von 
hydraulischen Produktionsmaschinen 



Im Shaker Verlag erschienene Bände:

Band 132
Dr.-Ing. Andreas Bechle

Beitrag zur prozesssicheren Bearbeitung beim Hochleistungs- 
fertigungsverfahren Wälzschälen

Band 133
Dr.-Ing. Markus Herm

Konfiguration globaler Wertschöpfungsnetzwerke auf 
Basis von Business Capabilities

Band 134
Dr.-Ing. Hanno Tritschler

Werkzeug- und Zerspanprozessoptimierung beim Hartfräsen 
von Mikrostrukturen in Stahl

Band 127
Dr.-Ing. Gisela Lanza

Simulative Anlaufunterstützung auf Basis der Qualitätsfähigkeiten von 
Produktionsprozessen 

Band 128
Dr.-Ing. Ulf Dambacher

Kugelgewindetrieb mit hohem Druckwinkel 

Band 129
Dr.-Ing. Carsten Buchholz

Systematische Konzeption und Aufbau einer automatisierten 
Produktionszelle für pulverspritzgegossene Mikrobauteile 

Band 130
Dr.-Ing. Heiner Lang

Trocken-Räumen mit hohen Schnittgeschwindigkeiten 

Band 131
Dr.-Ing. Daniel Nesges

Prognose operationeller Verfügbarkeiten von Werkzeugmaschinen unter  
Berücksichtigung von Serviceleistungen 



Band 135
Dr.-Ing. Christian Munzinger

Adaptronische Strebe zur Steifigkeitssteigerung 
von Werkzeugmaschinen

Band 136
Dr.-Ing. Andreas Stepping

Fabrikplanung im Umfeld von Wertschöpfungsnetzwerken und 
ganzheitlichen Produktionssystemen

Band 137
Dr.-Ing. Martin Dyck

Beitrag zur Analyse thermische bedingter Werkstückdeformationen 
in Trockenbearbeitungsprozessen

Band 138
Dr.-Ing. Siegfried Schmalzried

Dreidimensionales optisches Messsystem für eine effizientere 
geometrische Maschinenbeurteilung

Band 139
Dr.-Ing. Marc Wawerla

Risikomanagement von Garantieleistungen

Band 140
Dr.-Ing. Ivesa Buchholz

Strategien zur Qualitätssicherung mikromechanischer Bauteile 
mittels multisensorieller Koordinatenmesstechnik

Band 141
Dr.-Ing. Jan Kotschenreuther

Empirische Erweiterung von Modellen der Makrozerspanung 
auf den Bereich der Mikrobearbeitung

Band 142
Dr.-Ing. Andreas Knödel

Adaptronische hydrostatische Drucktascheneinheit

Band 143
Dr.-Ing. Gregor Stengel

Fliegendes Abtrennen räumlich gekrümmter Strangpressprofile mittels 
Industrierobotern



Band 144
Dr.-Ing. Udo Weismann

Lebenszyklusorientiertes interorganisationelles Anlagencontrolling

Band 145
Dr.-Ing. Rüdiger Pabst

Mathematische Modellierung der Wärmestromdichte zur Simulation 
des thermischen Bauteilverhaltens bei der Trockenbearbeitung

Band 146
Dr.-Ing. Jan Wieser

Intelligente Instandhaltung zur Verfügbarkeitssteigerung 
von Werkzeugmaschinen

Band 147
Dr.-Ing. Sebastian Haupt

Effiziente und kostenoptimale Herstellung von Mikrostrukturen durch 
eine Verfahrenskombination von Bahnerosion und Laserablation

Band 148
Dr.-Ing. Matthias Schlipf

Statistische Prozessregelung von Fertigungs- und Messprozess zur 
Erreichung einer variabilitätsarmen Produktion mikromechanischer Bauteile

Band 149
Dr.-Ing. Jan Philipp Schmidt-Ewig

Methodische Erarbeitung und Umsetzung eines neuartigen 
Maschinenkonzeptes zur produktflexiblen Bearbeitung räumlich 
gekrümmter Strangpressprofile

Band 150
Dr.-Ing. Thomas Ender

Prognose von Personalbedarfen im Produktionsanlauf
unter Berücksichtigung dynamischer Planungsgrößen

Band 151
Dr.-Ing. Kathrin Peter

Bewertung und Optimierung der Effektivität von Lean Methoden 
in der Kleinserienproduktion



Band 152
Dr.-Ing. Matthias Schopp

Sensorbasierte Zustandsdiagnose und -prognose von Kugelgewindetrieben

Band 153
Dr.-Ing. Martin Kipfmüller

Aufwandsoptimierte Simulation von Werkzeugmaschinen

Band 154
Dr.-Ing. Carsten Schmidt

Development of a database to consider multi wear mechanisms 
within chip forming simulation

Band 155
Dr.-Ing. Stephan Niggeschmidt

Ausfallgerechte Ersatzteilbereitstellung im Maschinen- und Anlagenbau  
mittels lastabhängiger Lebensdauerprognose

Band 156
Dr.-Ing. Jochen Conrad Peters

Bewertung des Einflusses von Formabweichungen in der 
Mikro-Koordinatenmesstechnik

Band 157
Dr.-Ing. Jörg Ude

Entscheidungsunterstützung für die Konfiguration 
globaler Wertschöpfungsnetzwerke

Band 158
Dr.-Ing. Stefan Weiler

Strategien zur wirtschaftlichen Gestaltung der globalen Beschaffung

Band 159
Dr.-Ing. Jan Rühl

Monetäre Flexibilitäts- und Risikobewertung



Band 160
Dr.-Ing. Daniel Ruch

Positions- und Konturerfassung räumlich gekrümmter Profile auf Basis 
bauteilimmanenter Markierungen

Band 161
Dr.-Ing. Manuel Tröndle

Flexible Zuführung von Mikrobauteilen mit piezoelektrischen
Schwingförderern

Band 162
Dr.-Ing. Benjamin Viering

Mikroverzahnungsnormal

Band 163
Dr.-Ing. Chris Becke

Prozesskraftrichtungsangepasste Frässtrategien zur schädigungsarmen
Bohrungsbearbeitung an faserverstärkten Kunststoffen

Band 164
Dr.-Ing. Patrick Werner

Dynamische Optimierung und Unsicherheitsbewertung der lastabhängigen 
präventiven Instandhaltung von Maschinenkomponenten

Band 165
Dr.-Ing. Martin Weis

Kompensation systematischer Fehler bei Werkzeugmaschinen durch
self-sensing Aktoren

Band 166
Dr.-Ing. Markus Schneider

Kompensation von Konturabweichungen bei gerundeten Strangpressprofilen 
durch robotergestützte Führungswerkzeuge

Band 167
Dr.-Ing. Ester M. R. Ruprecht

Prozesskette zur Herstellung schichtbasierter Systeme mit integrierten
Kavitäten



Band 168
Dr.-Ing. Alexander Broos

Simulationsgestützte Ermittlung der Komponentenbelastung für die
Lebensdauerprognose an Werkzeugmaschinen

Band 169
Dr.-Ing. Frederik Zanger

Segmentspanbildung, Werkzeugverschleiß, Randschichtzustand und
Bauteileigenschaften: Numerische Analysen zur Optimierung des
Zerspanungsprozesses am Beispiel von Ti-6Al-4V

Band 170
Dr.-Ing. Benjamin Behmann

Servicefähigkeit 

Band 171
Dr.-Ing. Annabel Gabriele Jondral

Simulationsgestützte Optimierung und Wirtschaftlichkeitsbewertung
des Lean-Methodeneinsatzes

Band 172
Dr.-Ing. Christoph Ruhs

Automatisierte Prozessabfolge zur qualitätssicheren Herstellung von
Kavitäten mittels Mikrobahnerosion

Band 173
Dr.-Ing. Steven Peters

Markoffsche Entscheidungsprozesse zur Kapazitäts- und Investitionsplanung
von Produktionssystemen

Band 174
Dr.-Ing. Christoph Kühlewein

Untersuchung und Optimierung des Wälzschälverfahrens mit Hilfe von
3D-FEM-Simulation – 3D-FEM Kinematik- und Spanbildungssimulation

Band 175
Dr.-Ing. Adam-Mwanga Dieckmann

Auslegung und Fertigungsprozessgestaltung sintergefügter Verbindungen
für µMIM-Bauteile



Band 176
Dr.-Ing. Heiko Hennrich

Aufbau eines kombinierten belastungs- und zustandsorientierten Diagnose-
und Prognosesystems für Kugelgewindetriebe

Band 177
Dr.-Ing. Stefan Herder

Piezoelektrischer Self-Sensing-Aktor zur Vorspannungsregelung in
adaptronischen Kugelgewindetrieben

Band 178
Dr.-Ing. Alexander Ochs

Ultraschall-Strömungsgreifer für die Handhabung textiler Halbzeuge
bei der automatisierten Fertigung von RTM-Bauteilen

Band 179
Dr.-Ing. Jürgen Michna

Numerische und experimentelle Untersuchung zerspanungsbedingter
Gefügeumwandlungen und Modellierung des thermo-mechanischen
Lastkollektivs beim Bohren von 42CrMo4

Band 180
Dr.-Ing. Jörg Elser

Vorrichtungsfreie räumliche Anordnung von Fügepartnern auf Basis
von Bauteilmarkierungen

Band 181
Dr.-Ing. Katharina Klimscha

Einfluss des Fügespalts auf die erreichbare Verbindungsqualität beim  
Sinterfügen

Band 182
Dr.-Ing. Patricia Weber

Steigerung der Prozesswiederholbarkeit mittels Analyse akustischer  
Emissionen bei der Mikrolaserablation mit UV-Pikosekundenlasern

Band 183
Dr.-Ing. Jochen Schädel

Automatisiertes Fügen von Tragprofilen mittels Faserwickeln



Band 184
Dr.-Ing. Martin Krauße

Aufwandsoptimierte Simulation von Produktionsanlagen durch Vergrößerung 
der Geltungsbereiche von Teilmodellen

Band 185
Dr.-Ing. Raphael Moser

Strategische Planung globaler Produktionsnetzwerke
Bestimmung von Wandlungsbedarf und Wandlungszeitpunkt mittels
multikriterieller Optimierung

Band 186
Dr.-Ing. Martin Otter

Methode zur Kompensation fertigungsbedingter Gestaltabweichungen für 
die Montage von Aluminium Space-Frame-Strukturen

Band 187
Dr.-Ing. Urs Leberle

Produktive und flexible Gleitförderung kleiner Bauteile auf phasenflexiblen 
Schwingförderern mit piezoelektrischen 2D-Antriebselementen

Band 188
Dr.-Ing. Johannes Book

Modellierung und Bewertung von Qualitätsmanagementstrategien in  
globalen Wertschöpfungsnetzwerken

Band 189
Dr.-Ing. Florian Ambrosy

Optimierung von Zerspanungsprozessen zur prozesssicheren Fertigung nano-
kristalliner Randschichten am Beispiel von 42CrMo4

Band 190
Dr.-Ing. Adrian Kölmel

Integrierte Messtechnik für Prozessketten unreifer Technologien am Beispiel 
der Batterieproduktion für Elektrofahrzeuge

Band 191
Dr.-Ing. Henning Wagner

Featurebasierte Technologieplanung zum Preforming von textilen Halbzeugen



Band 192
Dr.-Ing. Johannes Gebhardt

Strukturoptimierung von in FVK eingebetteten metallischen 
Lasteinleitungselementen

Band 193
Dr.-Ing. Jörg Bauer

Hochintegriertes hydraulisches Vorschubsystem für die Bearbeitung kleiner 
Werkstücke mit hohen Fertigungsanforderungen

Band 194
Dr.-Ing. Nicole Stricker

Robustheit verketteter Produktionssysteme
Robustheitsevaluation und Selektion des Kennzahlensystems der Robustheit

Band 195
Dr.-Ing. Anna Sauer

Konfiguration von Montagelinien unreifer Produkttechnologien am Beispiel 
der Batteriemontage für Elektrofahrzeuge

Band 196
Dr.-Ing. Florian Sell-Le Blanc

Prozessmodell für das Linearwickeln unrunder Zahnspulen
Ein Beitrag zur orthozyklischen Spulenwickeltechnik

Band 197
Dr.-Ing. Frederic Förster

Geregeltes Handhabungssystem zum zuverlässigen und energieeffizienten 
Handling textiler Kohlenstofffaserzuschnitte

Band 198
Dr.-Ing. Nikolay Boev

Numerische Beschreibung von Wechselwirkungen zwischen Zerspanprozess 
und Maschine am Beispiel Räumen

Band 199
Dr.-Ing. Sebastian Greinacher

Simulationsgestützte Mehrzieloptimierung schlanker und ressourcen- 
effizienter Produktionssysteme



Band 200
Dr.-Ing. Benjamin Häfner

Lebensdauerprognose in Abhängigkeit der Fertigungsabweichungen  
bei Mikroverzahnungen

Band 201
Dr.-Ing. Stefan Klotz

Dynamische Parameteranpassung bei der Bohrungsherstellung in 
faserverstärkten Kunststoffen unter zusätzlicher Berücksichtigung 
der Einspannsituation

Band 202
Dr.-Ing. Johannes Stoll

Bewertung konkurrierender Fertigungsfolgen mittels Kostensimulation und 
stochastischer Mehrzieloptimierung
Anwendung am Beispiel der Blechpaketfertigung für automobile Elektromotoren

Band 203
Dr.-Ing. Simon-Frederik Koch

Fügen von Metall-Faserverbund-Hybridwellen im Schleuderverfahren
ein Beitrag zur fertigungsgerechten intrinsischen Hybridisierung

Band 204
Dr.-Ing. Julius Ficht

Numerische Untersuchung der Eigenspannungsentwicklung für sequenzielle 
Zerspanungsprozesse

Band 205
Dr.-Ing. Manuel Baumeister

Automatisierte Fertigung von Einzelblattstapeln in der Lithium-Ionen-
Zellproduktion

Band 206
Dr.-Ing. Daniel Bertsch

Optimierung der Werkzeug- und Prozessauslegung für das Wälzschälen von 
Innenverzahnungen



Band 207
Dr.-Ing. Kyle James Kippenbrock

Deconvolution of Industrial Measurement and Manufacturing Processes 
for Improved Process Capability Assessments

Band 208
Dr.-Ing. Farboud Bejnoud

Experimentelle Prozesskettenbetrachtung für Räumbauteile am Beispiel 
einer einsatzgehärteten PKW-Schiebemuffe

Band 209
Dr.-Ing. Steffen Dosch

Herstellungsübergreifende Informationsübertragung zur effizienten  
Produktion von Werkzeugmaschinen am Beispiel von Kugelgewindetrieben

Band 210
Dr.-Ing. Emanuel Moser

Migrationsplanung globaler Produktionsnetzwerke
Bestimmung robuster Migrationspfade und risiko-effizienter Wandlungsbefähiger

Band 211
Dr.-Ing. Jan Hochdörffer

Integrierte Produktallokationsstrategie und Konfigurationssequenz in 
globalen Produktionsnetzwerken

Band 212
Dr.-Ing. Tobias Arndt
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