KIT | KIT-Bibliothek | Impressum | Datenschutz

How Domain Knowledge can Improve Machine Learning Surrogates for Manufacturing Process Optimization – a Comparative Study

Böhnke, Bela H. 1; Eismont, Aleksandr 1; Zimmerling, Clemens ORCID iD icon 2; Kärger, Luise ORCID iD icon 2; Böhm, Klemens 1
1 Institut für Programmstrukturen und Datenorganisation (IPD), Karlsruher Institut für Technologie (KIT)
2 Institut für Fahrzeugsystemtechnik (FAST), Karlsruher Institut für Technologie (KIT)

Abstract:

In various industries, optimizing manufacturing parameters is vital for the efficient production of high-quality products. Traditional methods involve costly production trials and process tuning – particularly when dealing with complex processes and materials such as composites. High-fidelity simulations offer a cost-effective alternative. However, they can be computationally intensive, which often renders them impracticable for iterative optimization. Surrogate model-based optimization (SuMO) provides a solution by using efficient, data-driven approximations. However, existing approaches often overlook valuable domain knowledge, such as material behavior, spatial relationships and optimization objective. We investigate different types of knowledge varying in complexity, difficulty to incorporate and transferability to other domains. In numerical studies on composite manufacturing – specifically, textile draping – we demonstrate that integrating such domain knowledge improves prediction accuracy, reduces optimization iterations, and enhances overall outcomes.

Zugehörige Institution(en) am KIT Institut für Fahrzeugsystemtechnik (FAST)
Institut für Programmstrukturen und Datenorganisation (IPD)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 2212-8271
KITopen-ID: 1000179069
Erschienen in Procedia CIRP
Verlag Elsevier
Band 130
Seiten 145–153
Nachgewiesen in Scopus
Dimensions
OpenAlex
Globale Ziele für nachhaltige Entwicklung Ziel 9 – Industrie, Innovation und Infrastruktur

Verlagsausgabe §
DOI: 10.5445/IR/1000179069
Veröffentlicht am 14.02.2025
Seitenaufrufe: 30
seit 16.02.2025
Downloads: 14
seit 18.02.2025
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page