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Abstract Vision Transformers (ViTs) have recently achieved
state-of-the-art performance in semantic segmentation tasks.
However, their deployment in critical applications necessitates
reliable uncertainty quantification to assess model confidence.
To tackle this challenge, we combine a state-of-the-art ViT with
the popular uncertainty quantification method Monte Carlo
Dropout (MCD) to predict both segmentation and uncertainty
maps. We focus on an industrial machine vision setting and
carry out the experiments on the T-LESS dataset. The evaluation
is carried out with regard to both the segmentation accuracy and
the predicted uncertainties using appropriate metrics.
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1 Introduction

In computer vision, deep-learning-based approaches like convolutional
neural networks (CNNs) have proven their success at solving the fun-
damental task of semantic segmentation of (RGB) images. Recently,
Vision Transformers (ViTs) have been applied to this task and have
gained much attention. The prediction of pixel-wise class labels in
images is relevant for applications such as autonomous driving, and
quality assurance in industry. These applications involve safety-critical
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and high-risk scenarios. Therefore, it is important to not only pre-
dict the class labels correctly but also to determine the prediction’s
reliability [1–4]. Estimating uncertainty of predictions allows to make
informed decisions and to identify potentially inaccurate predictions.

Most classification and segmentation tasks use softmax to estimate
class-wise pseudo probabilities to quantify the confidence in the pre-
dictions. It is well-known that softmax predictions tend to be over-
confident, especially in cases where the input data of the model is out-
of-domain [5, 6]. One popular method to quantify uncertainty in deep
learning is Monte-Carlo Dropout (MCD) [7] that uses dropout at in-
ference time. Multiple forward passes are used to sample from the
posterior distribution of the predictions and approximate it, e.g., with
a Gaussian distribution. The final segmentation map is determined by
assigning each pixel the class with the highest average softmax out-
put across all classes. The corresponding uncertainty map is either its
standard deviation (STD) over the samples or the entropy of the mean
values over the classes.

In this contribution, we combine a state-of-the-art ViT, the Seg-
Former [8], with MCD for semantic segmentation with uncertainty
quantification (UQ). We choose SegFormer as our ViT baseline because
of its efficient design and good performance, which both are relevant
criteria in industry. Our goal is to quantify the quality and reliability of
the SegFormer’s predicted semantic segmentation maps as well as the
corresponding uncertainty maps for industrial applications. Therefore,
we train the model on the T-LESS [9] dataset that consists of various
scenes of parts with characteristics that are typical for industry. As
part of the Benchmark for 6D Object Pose Estimation (BOP) [10], the
T-LESS training set can be augmented with physically-based rendered
(PBR) synthetic training data. While the real training images show
systematically captured and isolated views of each object respectively,
the PBR subset consists of cluttered scenes with varying image acqui-
sition conditions, scene backgrounds, and occlusions by both T-LESS
objects and those of other BOP datasets. Figure 1 shows two examples
of the T-LESS dataset from both a simple as well as a cluttered scene to-
gether with the corresponding segmentation and uncertainty maps that
our trained uncertainty-aware SegFormer model predicted. We use the
mean Intersection over Union (IoU) and the expected calibration error
(ECE) [11] as metrics to measure the segmentation quality and model
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Input image Ground truth Prediction STD map Entropy map

Scene 1, image 236.

Scene 18, image 206.

Figure 1: Example predictions of segmentation and uncertainty maps for images from a
simple (top row) and a complex scene (bottom row) of the T-LESS test dataset,
using the MCD with a dropout rate of 30 % and 20 samples. In the uncertainty
maps, brighter pixels represent higher uncertainty values.

calibration and the Patch Accuracy versus Patch Uncertainty (PAvPU),
p(accurate|certain), and p(uncertain|inaccurate) [12] for the uncer-
tainty evaluation.

After giving a short overview over the state-of-the-art approaches for
semantic segmentation with ViTs and uncertainty quantification in Sec-
tion 2, we explain our training and evaluation methodology in Section
3. In Section 4, we describe our experiments and present our results,
which are discussed in Section 5. Section 6 concludes our paper.

2 Related Work

Due to the success of ViTs for image classification, many publica-
tions have been dedicated to applying the method to the task of
semantic segmentation. Next to SegFormer, notable approaches in-
clude Segmenter [13], SETR [14], MaskFormer [15] and its successor
Mask2Former [16] as well as general ViT approaches for dense predic-
tions like Swin Transformer [17], DPT [18], and HRFormer [19].

Regarding UQ in RGB image-based semantic segmentation tasks,
many works have successfully integrated MCD in their workflows,
including applications like landcover prediction from remote sensing
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images [20], medical imaging [21], autonomous driving, and robotics
[22–24]. To overcome the disadvantage of the additional runtime of
sample-based UQ methods, knowledge distillation can be applied [25].

Recently, successful efforts have been made to combine SegFormer
with UQ. While Chen et al. [26] propose their own UQ approach and
compare its performance against MCD and ensembling using Seg-
Former, Landgraf et al. [27] add monocular depth estimation and and
UQ with MCD to the SegFormer architecture. Both works conduct their
experiments in the context of autonomous driving.

3 Methodology

Our methodology aims to achieve two main goals: i) Training and
testing a SegFormer model to achieve the best possible segmentation
performance on T-LESS, and ii) combining SegFormer with MCD for
UQ. Both the segmentation and the uncertainty results are evaluated
by their respective metrics (see below). The first goal provides a ba-
sic training setup, including suitable hyperparameters such as learning
rate, model backbone, dataset settings, and data augmentations. This
also leads to a baseline model without UQ. Next to testing the segmen-
tation quality of the baseline model, it also includes the evaluation of
the mean segmentation maps of the trained MCD models and the influ-
ence of performing dropout at inference time. For this, the mean IoU
and the ECE metrics are used. The second goal that focuses on the UQ
with SegFormer includes model training with different dropout rates
for MCD and the evaluation of the predicted uncertainty maps with
different sample sizes.

The uncertainty evaluation metrics proposed by Mukhoti and Gal
(2018) [12] are computed based on the confusion matrix that includes
four categories of pixel counts: accurate and certain (nac), accurate and
uncertain (nau), inaccurate and certain (nic), and inaccurate and uncer-
tain (niu). To determine whether a prediction is certain or uncertain,
an uncertainty threshold has to be defined. Here, we use the mean
uncertainty over all pixels across the T-LESS test dataset. Based on
the estimated counts, two metrics are computed that are defined as
p(accurate|certain) = nac/(nac + nic) and p(uncertain|inaccurate) =
niu/(nic + niu). The former returns higher values if predictions are ac-
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curate when the model is certain. The latter returns higher values if
the model is uncertain when the predictions are inaccurate. Conse-
quently, meaningful uncertainty values lead to large values for both
metrics. Furthermore, the third metric PAvPU = (nac + niu)/(nac +
nau + nic + niu) combines the first two metrics and, hence, presents an
equivalent UQ metric to an overall accuracy. In the following, the met-
rics p(accurate|certain) and p(uncertain|inaccurate) are abbreviated
as pac and pui.

4 Experiments

To address our first goal described in Section 3, we test different com-
binations of hyperparameters and training settings. We find that the
best model performance in terms of mean IoU on the BOP test dataset
of T-LESS is achieved by combining both real and PBR training data,
a SegFormer-B5 backbone, and a learning rate of 6 · 10−5. The combi-
nation of real and synthetic training data increases the mean IoU by
roughly 50 %. Thus, we train all models in our experiments on both
training data subsets. Similarly, a subsequent increase in the size of
the backbone from B1 to B5 leads to increasing mean IoU scores and
decreasing ECE values. For instance, replacing the smaller SegFormer-
B1 architecture with the larger SegFormer-B5, which has the highest
parameter count, leads to a 19.23 % increase in mean IoU and a 5.38 %
reduction in ECE, as shown in Table 1. Thus, we select SegFormer-
B5 for testing different subsets of data augmentation techniques of
the AugSeg [28] framework. AugSeg includes geometric augmenta-
tions (random flip, random scale, and random crop) as well as a list of
intensity-based augmentations (e.g., blurring, brightness and contrast
modifications). The hyperparameter k denotes how many intensity-
based augmentation techniques are randomly selected for each train-
ing instance. The results in terms of mean IoU and ECE are shown in
Table 1.

We find that a combination of the geometric augmentations and the
random intensity-based augmentations with a random selection pa-
rameter k = 3 works best, both in terms of highest mean IoU of 79.40 %
and lowest ECE value of 4.29 %. We also test different learning rates
where a learning rate of 1 · 10−4 achieves the best results of a mean
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IoU of 80.70 % and an ECE of 2.88 %. As learning rates higher than
2 · 10−4 lead to model divergence during in our experiments at training
time, we adopted the learning rate of 6 · 10−5 of the original SegFromer
publication to guarantee a stable training procedure. For a better com-
parison, all models are trained for 100 epochs on a NVIDIA H100 hard-
ware.

Table 1: Ablation study using different model backbones and geometric and intensity-
based data augmentation techniques with different values of the random selec-
tion parameter k from AugSeg [28].

Augmentations Metrics in %
Model Geometric Intensity-based Mean IoU ↑ ECE ↓
SegFormer-B1 - - 44.69 9.92

- - 63.92 8.92
✓ - 74.81 6.65

SegFormer-B5 ✓ k = 1 76.35 6.07
✓ k = 3 79.40 4.29
✓ k = 5 79.22 5.30

In order to incorporate MCD for the second goal of UQ, we activate
the implemented but dormant dropout layers in the SegFormer archi-
tecture. We train the models with dropout rates of 10 %, 20 %, 30 %,
and 50 % resulting in four different models. In contrast to dropout
regularization, the dropout layers remain active for MCD at test time
to obtain samples. We evaluate each model with sample sizes of
N = {2, 5, 10, 20, 100} respectively and compare them using both mean
IoU and ECE for segmentation quality and pac, pui, and PAvPU for
uncertainty quality. The results are summarized in Table 2.

Our evaluations show that smaller dropout rates lead to a higher
mean IoU but not necessarily to lower ECE values. With regard to
UQ metrics, all models achieve similar scores. Furthermore, increasing
values for N result in increasing values in pac and pui, as expected.
However, they surprisingly also result in slightly lower PAvPU scores.
This is caused by decreasing counts of nac with increasing N. Never-
theless, these changes in PAvPU as well as in mean IoU and ECE are
not substantial as they are all smaller than 3 %. In terms of required
runtime, the minimum sample size of N = 2 takes around 89 ms while
N = 100 results in 3711 ms runtime. Therefore, in time-critical appli-
cations, it should be possible to decrease N in order to speed-up the
application without sacrificing too much predictive quality. For exam-
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ple, an uncertainty-aware prediction with N = 20 takes less than a
second at 751 ms.

Table 2: Performance of SegFormer-B5 with MCD. Tested were different dropout rates
and sample sizes N. The results were evaluated in terms of both the segmenta-
tion and uncertainty quality using the respective metrics described in Section 3.
The subscript ”std” indicates that the metrics are based on standard deviation,
while the subscript ”en” indicates that the metrics are based on entropy. All
metrics are in %.

N pac,std ↑ pui,std ↑ PAvPUstd ↑ pac,en ↑ pui,en ↑ PAvPUen ↑ Mean IoU ↑ ECE ↓
dropout rate = 10 %

2 98.88 ± 0.01 74.09 ± 0.15 92.41 ± 0.03 99.49 ± 0.01 88.14 ± 0.08 90.48 ± 0.03 76.93 ± 0.08 5.75 ± 0.13
5 99.28 ± 0.01 81.76 ± 0.11 91.74 ± 0.02 99.53 ± 0.01 88.60 ± 0.07 90.25 ± 0.02 77.13 ± 0.06 5.68 ± 0.11

10 99.34 ± 0.01 83.00 ± 0.07 91.42 ± 0.02 99.55 ± 0.01 88.83 ± 0.05 90.14 ± 0.02 77.24 ± 0.06 5.64 ± 0.10
20 99.38 ± 0.01 83.64 ± 0.07 91.17 ± 0.02 99.56 ± 0.01 88.96 ± 0.04 90.07 ± 0.02 77.25 ± 0.05 5.62 ± 0.09

100 99.43 ± 0.00 84.44 ± 0.03 90.82 ± 0.01 99.57 ± 0.00 89.12 ± 0.03 90.01 ± 0.01 77.25 ± 0.03 5.63 ± 0.02
dropout rate = 20 %

2 98.25 ± 0.02 73.16 ± 0.20 91.57 ± 0.05 99.09 ± 0.01 87.94 ± 0.11 89.68 ± 0.04 75.51 ± 0.12 6.09 ± 0.13
5 98.78 ± 0.01 81.70 ± 0.15 90.78 ± 0.05 99.19 ± 0.01 88.77 ± 0.09 89.35 ± 0.04 75.95 ± 0.09 6.12 ± 0.14

10 98.93 ± 0.01 83.27 ± 0.11 90.37 ± 0.03 99.24 ± 0.01 89.11 ± 0.08 89.17 ± 0.03 76.10 ± 0.07 6.10 ± 0.10
20 99.01 ± 0.01 84.14 ± 0.08 90.02 ± 0.02 99.27 ± 0.00 89.32 ± 0.05 89.03 ± 0.02 76.16 ± 0.07 6.06 ± 0.07

100 99.12 ± 0.01 85.23 ± 0.03 89.50 ± 0.02 99.30 ± 0.00 89.55 ± 0.02 88.93 ± 0.01 76.27 ± 0.04 6.00 ± 0.04
dropout rate = 30 %

2 98.49 ± 0.02 74.39 ± 0.28 91.54 ± 0.04 99.28 ± 0.01 89.02 ± 0.13 89.58 ± 0.04 74.52 ± 0.17 5.57 ± 0.20
5 98.04 ± 0.01 83.35 ± 0.17 90.56 ± 0.04 99.39 ± 0.01 89.95 ± 0.09 89.15 ± 0.04 75.00 ± 0.15 5.51 ± 0.17

10 98.20 ± 0.01 85.09 ± 0.09 90.03 ± 0.03 99.45 ± 0.01 90.42 ± 0.08 88.90 ± 0.02 75.24 ± 0.11 5.45 ± 0.13
20 99.28 ± 0.01 86.09 ± 0.10 89.62 ± 0.03 99.48 ± 0.01 90.70 ± 0.07 88.75 ± 0.03 75.34 ± 0.09 5.42 ± 0.14

100 99.39 ± 0.01 87.36 ± 0.07 88.96 ± 0.02 99.51 ± 0.00 90.99 ± 0.04 88.61 ± 0.02 75.41 ± 0.04 5.43 ± 0.06
dropout rate = 50 %

2 95.84 ± 0.03 66.93 ± 0.33 88.12 ± 0.04 97.48 ± 0.03 83.34 ± 0.13 86.93 ± 0.03 68.66 ± 0.22 7.78 ± 0.16
5 96.86 ± 0.05 77.47 ± 0.36 87.17 ± 0.08 97.70 ± 0.03 85.02 ± 0.18 86.40 ± 0.07 69.54 ± 0.12 8.05 ± 0.18

10 97.17 ± 0.03 80.04 ± 0.18 86.53 ± 0.07 97.81 ± 0.02 85.80 ± 0.13 86.08 ± 0.06 69.84 ± 0.12 8.17 ± 0.17
20 97.37 ± 0.02 81.65 ± 0.09 85.99 ± 0.04 97.89 ± 0.01 86.32 ± 0.07 85.87 ± 0.04 70.06 ± 0.11 8.15 ± 0.10

100 97.67 ± 0.02 83.99 ± 0.11 85.14 ± 0.04 97.96 ± 0.01 86.85 ± 0.06 85.77 ± 0.03 70.24 ± 0.04 8.17 ± 0.06

Figure 2 shows some qualitative results for different dropout rates
and with N = 20 on an example image of a complex scene in the T-
LESS test dataset. Next to the predicted segmentation and uncertainty
maps, the accuracy and the binary uncertainty maps are shown. For
the binary uncertainty maps, we applied the same mean uncertainty
threshold mentioned in Section 3 that is used for the estimation of the
UQ metrics. Overall, it shows that accurate pixel predictions corre-
spond to low uncertainty patches and vice versa. Increasing dropout
rates lead to higher uncertainty values, which can be seen in the bi-
nary uncertainty maps. In case of the 10 % dropout model, the falsely
segmented object in the lower right part of the image and background
pixels exhibit high uncertainties.
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Dropout 10 % Dropout 20 % Dropout 30 % Dropout 50 %

Predictions.

Binary accuracy maps.

Standard deviation maps.

Binary uncertainty maps based on standard deviation.

Entropy maps.

Binary uncertainty maps based on entropy.

Figure 2: Comparison of uncertainty maps for the image from a complex scene (Scene 17,
image 50) across different dropout rates. Predictions and uncertainties are gen-
erated with 20 samples. In uncertainty maps, brighter pixels represent higher
uncertainty. In accuracy/uncertainty binary maps, white pixels represent ac-
curate/uncertain pixels.
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5 Discussion

Our experiments demonstrate that increasing the sample size generally
improves the segmentation accuracy and calibration in terms of mean
IoU and ECE, while also enhancing the reliability of uncertainty es-
timation, as indicated by higher pac and pui scores. However, PAvPU
decreases with larger sample sizes due to an increase in accurately clas-
sified but uncertain pixels, nau, suggesting a more cautious model that
flags more pixels as uncertain. It has to be noted that the UQ metrics
depend on the chosen uncertainty threshold used to generate the un-
derlying confusion matrix as described in Section 3 and may therefore
vary with different thresholds.

Lower dropout rates result in better segmentation accuracy and
model calibration, with the best performance observed when dropout
is deactivated. However, a 30 % dropout rate optimizes pui, which is
critical for detecting potentially incorrect predictions while reducing
the calibration and segmentation quality only by 1.19 % ECE and 4.30 %
mean IoU on average compared to the baseline model of our first goal.
Thus, a 30 % dropout rate balances accurate segmentation and effective
uncertainty estimation, making it optimal for practical applications.

Entropy is identified as a more suitable uncertainty metric than stan-
dard deviation, as it provides higher pui, indicating a better capacity
to flag incorrect predictions. Although entropy-based metrics slightly
reduce PAvPU, the trade-off is justified by a significant improvement
in detecting uncertain inaccuracies.

Overall, the results suggest that using 20 samples, a 30 % dropout
rate, and entropy as the uncertainty metric provides an optimal con-
figuration for balancing segmentation accuracy, calibration, and uncer-
tainty quantification quality in the SegFormer model with MCD.

6 Conclusion

In this contribution, we successfully trained SegFormer, a ViT variant,
on the T-LESS dataset for the task of semantic segmentation with UQ
in an industrial application. In combination with MCD, SegFormer is
able to effectively handle challenging objects in varying complex scenes
while producing meaningful uncertainty estimates. In future work, we
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want to extend the methodology for instance segmentation, which al-
lows the integration of an ViT model in a deep-learning-based 6D object
pose estimation pipeline. In the evaluation, we want to include addi-
tional UQ metrics like UCS [29,30]. While MCD is easy to implement, it
does not capture the full uncertainty in the predictions [23]. Therefore,
in future work, we aim to combine SegFormer with other state-of-the-
art UQ methods like the recently proposed Deep Deterministic Uncer-
tainty (DDU) [31] approach to produce robust uncertainty estimates
even under data shift.
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10. T. Hodaň, Y. Labbé, F. Michel, E. Brachmann, W. Kehl, A. GlentBuch,
D. Kraft, B. Drost, J. Vidal, S. Ihrke, X. Zabulis, C. Sahin, F. Manhardt,
F. Tombari, T.-K. Kim, J. Matas, and C. Rother, “BOP: Benchmark for 6D
Object Pose Estimation,” in ECCV, 2018.

11. M. P. Naeini, G. Cooper, and M. Hausknecht, “Obtaining well calibrated
probabilities using bayesian binning,” in AAAI, vol. 29, 2015, pp. 2901–
2907.

12. J. Mukhoti and Y. Gal, “Evaluating bayesian deep learning methods for
semantic segmentation,” arXiv e-prints, vol. arXiv:1811.12709, 2018.

13. R. Strudel, R. Garcia, I. Laptev, and C. Schmid, “Segmenter: Transformer
for semantic segmentation,” in IEEE/CVF ICCV, 2021, pp. 7262–7272.

14. S. Zheng, J. Lu, H. Zhao, X. Zhu, Z. Luo, Y. Wang, Y. Fu, J. Feng, T. Xiang,
P. H. Torr et al., “Rethinking semantic segmentation from a sequence-to-
sequence perspective with transformers,” in IEEE/CVF CVPR, 2021, pp.
6881–6890.

15. B. Cheng, A. Schwing, and A. Kirillov, “Per-pixel classification is not all
you need for semantic segmentation,” NeurIPS, vol. 34, pp. 17 864–17 875,
2021.

16. B. Cheng, I. Misra, A. G. Schwing, A. Kirillov, and R. Girdhar,
“Masked-attention mask transformer for universal image segmentation,”
in IEEE/CVF CVPR, 2022, pp. 1290–1299.

17. Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin
transformer: Hierarchical vision transformer using shifted windows,” in
IEEE/CVF IICCV, 2021, pp. 10 012–10 022.

18. R. Ranftl, A. Bochkovskiy, and V. Koltun, “Vision transformers for dense
prediction,” in IEEE/CVF ICCV, 2021, pp. 12 179–12 188.

19. Y. Yuan, R. Fu, L. Huang, W. Lin, C. Zhang, X. Chen, and J. Wang,
“Hrformer: High-resolution transformer for dense prediction,” arXiv e-
prints, vol. arXiv:2110.09408, 2021.

145



K. Wursthorn et al.

20. C. Dechesne, P. Lassalle, and S. Lefèvre, “Bayesian deep learning with
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