KIT | KIT-Bibliothek | Impressum | Datenschutz

Explanation of the Acoustic Features for Detecting a Cut Interruption in the Laser Cutting Process

Leiner, Kathrin ; Bosse, Tobias 1; Keck, Luca; Huber, Marco F.
1 Karlsruher Institut für Technologie (KIT)

Abstract:

The machine learning (ML) algorithm RandOm Convolutional KErnel Transform (ROCKET) is used to recognise a cut interruption during laser cutting to avoid rejects. For this purpose, an audio signal recorded at the laser cutting machine is categorised with help of ROCKET into three classes. These are: Good cut, transition region and cut interruption. However, when using ML algorithms, the user is not given any insight into the algorithm’s decisions. It is not possible to develop an understanding of the process, i.e. information about what indicates a cut interruption in the audio signal. For this reason, ML algorithms are often referred to as black box models. In this paper, reROCKET is introduced to make the ROCKET models more transparent. The randomly generated ROCKET kernels are analysed by reverse engineering. The effectiveness of the kernels is determined by calculating the quality of class separation by applying a kernel. The best kernels are then identified and provide information about the features in the audio signal. The performance of a ROCKET model with 500 kernels and a conventional kernel approach is compared. With a single kernel transformation, results close to the prediction of a 500-kernel ROCKET model are obtained. ... mehr

Zugehörige Institution(en) am KIT Institut für Fördertechnik und Logistiksysteme (IFL)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 27.11.2024
Sprache Englisch
Identifikator ISSN: 2212-8271
KITopen-ID: 1000179077
Erschienen in Procedia CIRP
Verlag Elsevier
Band 130
Seiten 1801 – 1808
Bemerkung zur Veröffentlichung Peer-review under responsibility of the scientific committee of the 57th CIRP Conference on Manufacturing Systems 2024 (CMS 2024)
Nachgewiesen in Dimensions
OpenAlex
Scopus

Verlagsausgabe §
DOI: 10.5445/IR/1000179077
Veröffentlicht am 14.02.2025
Seitenaufrufe: 15
seit 14.02.2025
Downloads: 7
seit 16.02.2025
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page