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An apparent contact angle is formed when a droplet is deposited on a solid substrate. Young’s law has
been employed to describe the equilibrium contact angle. Often in experiments, the equilibrium contact
angle deviates from Young’s law and depends on the volume of the droplet, known as the line tension effect.
However, the physical origin of the line tension is quite controversial. Especially, the sign and the quantity
of the line tension spanning 6 orders of magnitude are unsolved problems. Here, we quantify the line
energy in terms of physical parameters and demonstrate that both positive and negative line tensions exist.
The results are quantitatively compared with existing experiments as well as with previous theories.
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Wetting phenomena are broadly observed in our daily
lives, such as dew on plant leaves [1,2]. The wetting effect
is commonly described by an apparent contact angle at the
triple junction of solid, liquid, and gas [3–5]. Hitherto,
Thomas Young’s theory [6] has been widely applied to
describe the wetting effect and the equilibrium contact
angle, known as Young’s law. In this quintessential theory,
the contact angle does not depend on the size of the droplet.
However, decades of experiments show that the equilibrium
contact angle often deviates from Young’s law. Even
contrary to Young’s law, the experimental value of the
equilibrium contact angle has a strong dependence on the
size of the droplet, known as the line tension effect [7–9].
Yet, both the sign and the magnitude of the line tension are
quite controversial. Specially, the line tension spans 6
orders of magnitude in literature [10]; no existing theories
so far can fully address this fundamental problem.
The physical origin of the line tension is quite diverse in

literature. Four main concepts are summarized as follows:
FIG. 1. (a)(i) Schematic sectional view for a sessile droplet on a
solid surface. L, liquid; G gas; S, solid. (a)(ii) The penetration of
the liquid (blue circle) and gas (red circle) species into the solid
phase (gray) with a depth of l. (a)(iii) Sectional view for a
pendant droplet. (b)(i) Bond number Bo ≪ 1, where a spherical
cap is formed. (b)(ii) Bo ≫ 1, where a “pancake” droplet shape is
established. (b)(iii) Bo ∼ 1; the droplet shape is approximated by
an ellipsoidal cap with semiaxes of R=

ffiffiffi
α

p
and αR. Here, R

denotes the radius of an imaginary spherical cap (red dashed)
with the same volume as the ellipsoid.
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(A) Some researchers [11,12] argue that the line tension is
an artifact of experimental error. (B) The second concept is
the Tolman effect [13–15], where the surface tension of
liquid–gas has a dependence on the size of the droplet.
However, this leads to the puzzle for the sign and
magnitude of the Tolman length [16]. (C) The density is
nonuniform in the liquid [17]; especially near the solid
surface, the density of the liquid is modified [3,18–21]. The
variation of the density and the associated energy change
the equilibrium contact angle. (D) Standard models [22–25]
by adding a size-dependent line energy 2πrτ (r-base radius;
τ-line energy).
In this Letter, we consider the effect of the gravity on the

wetting phenomena; for the first time, we derive the line
energy in terms of physical parameters of the system. We
show that the gravity effect can indeed lead to a line energy
spanning from 10−11 to 10−6 N. We also demonstrate that
both negative and positive line tension exist. The under-
lying mechanism for the transition between negative and
positive line tensions is discussed.
We consider a droplet with the volume V ¼ 4πR3

0=3 (R0

is an imaginary radius) on a solid surface, forming an
apparent contact angle θ and a base radius r (Fig. 1). The
interfacial tension of liquid–gas, solid–liquid, and solid–
gas is denoted by σ, γSL, and γSG, respectively. We define
the Bond number, Bo ¼ ρR2

0g=σ, to measure the ratio of
gravity force to the surface tension force (g, gravity
acceleration; ρ, density of the droplet). According to the
value of Bo, we divide the wetting phenomena into three
categories. (I) Bo ≪ 1. The droplet has a spherical cap with
a cap radius R, see Fig. 1(b)(i). The distance of the droplet-
air interface to the substrate is denoted by hðxÞ, where x is
the radial coordinate in the cylindrical coordinate. We
consider both sessile and pendant states in the case I.
(II) Bo ≫ 1. The droplet forms a pancake shape [26,27],
whose thickness hðxÞ is nearly constant, see Fig. 1(b)(ii).
We only consider the sessile state in the case II, since the
pendant droplet may detach from the solid surface due to
strong gravity effect. (III) Bo ∼ 1. The droplet is depicted
by an ellipsoidal cap, which has been well confirmed by
experiments and numerical integrations [28–30]. The semi-
axes of the ellipsoid is R=

ffiffiffi
α

p
and αR, see Fig. 1(b)(iii);

α is a geometrical parameter measuring the deviation of
the droplet shape from a spherical cap with α ¼ 1. The
parameter R denotes the radius of an imaginary spherical
cap (red dashed line) with the same volume as the
ellipsoidal cap; the apex height of the imaginary spherical
cap is ð1 − cos θcÞR. We consider both sessile (α < 1) and
pendant (α > 1) states in the case III.
In all these three cases, the droplet shape is axisym-

metric. The total free energy E of the system and the
volume V of the droplet can be written as

E ¼
Z

r

0

f2πx½σð1þ h02Þ12 − Δγ� þ uþ lgdx; ð1Þ

V ¼
Z

r

0

2π xhðxÞdx ¼ const: ð2Þ

Here, we define Δγ ¼ γSG − γSL and the integrand for E as
E ¼ R

r
0 eðh; h0; xÞdx; h0 ¼ dh=dx. The first term in Eq. (1)

depicts the energy contribution from the droplet cap and the
base area. The u-term accounts for the bulk gravity effect
with the energy density u ¼ πxρgh2=2. The l-term is
expressed as l ¼ 2πλxh with the Lagrange multiplier λ
arising from the volume constraint. According to the
Bormashenko theory [31,32] (see also Blokhuis et al. [33]
and Ref. [34]), the minimization of E is equivalent to the
so-called transversality condition (TC) at the end point
x ¼ r, leading to Young’s law with the equilibrium contact
angle θ0, namely,

TC∶ ðe − h0∂e=∂h0Þx¼r ¼ 0 ⇒ σ cos θ0 ¼ Δγ: ð3Þ

Suffice to say, the bulk gravity effect does not affect the
formulation of Young’s law. However, the gravity does
affect the solid–liquid interfacial energy, as will be
addressed in the following.
In the case I, the volume V and the surface area Sc of the

spherical cap have a closed form, V ¼ πR3ð1 − cos θÞ2
ð2þ cos θÞ=3 and Sc ¼ 2πR2ð1 − cos θÞ. By using Eq. (3),
we obtain the total free energy of the system as [10,37]
(see Appendix)

EI

σð3V ffiffiffi
π

p Þ23 ¼
�
2þ Δγ

σ

�1
3

�
1 −

Δγ
σ

�2
3

: ð4Þ

In the case II, the total free energy is expressed
as a function of the pancake thickness h as EII ¼
πr2ðσ − ΔγÞ þ 1

2
ρgVh. By using the derivative ∂EII=∂h ¼

0 to address the energy minimum and the condition
πr2h ≈ V, we obtain the total free energy as

EII ¼ πR2
0

2
ffiffiffiffiffiffi
Bo

p

3sinðθ0=2Þ
ðσ−ΔγÞþρgVR0ffiffiffiffiffiffi

Bo
p sinðθ0=2Þ: ð5Þ

Here, θ0 depends on Δγ for a fixed surface tension σ, as
given by Eq. (3).
In the case III, with the closed form for the volume and

the surface area of an ellipsoidal cap, we obtain the total
free energy consisting of the droplet cap surface energy,
fluids-solid surface energy, and droplet bulk gravity
energy as

EIII

σπR2
¼ 1

α

�
1 − fðαÞ cos θ0 þ νðαÞ − sin2θ0

Δγ
σ

�

þ αBo2

12
ð1 − cos θ0Þ3ð3þ cos θ0Þ: ð6Þ
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The two functions fðαÞ and νðαÞ only depend on the
geometrical parameter α, as given in the Appendix; α has
to be found numerically via ∂αEIII ¼ 0.
When the volume V, surface tension σ, and density ρ are

fixed, the total free energy EI, EII, and EIII solely depends
on Δγ. In contrast to the assumption of constant solid–
liquid and solid–gas interfacial energies, we consider a
composition-dependent Δγ. The physical origin for this
consideration is a partial penetration of the fluid into
the solid with a depth l [Fig. 1(a)(ii)]. This concept is
consistent with Butt’s adaptation theory [38] and Tadmor’s
experimental suggestion [39]. At the solid–fluid interface,
we have nothing but a mixture of liquid and gas compo-
nents. In such a consideration, the free energy density
consists of internal energy, van der Waals interaction, and
entropy of liquid–gas mixture as

γ¼l½ϵþpþχLGϕð1−ϕÞþχSGð1−ϕÞþχSLϕ−Ts�; ð7Þ
where ϕ is the volume fraction of liquid species. According
to Eq. (7), we have the following definition of the
interfacial energies:

γSL¼ γðϕLÞ; γSG¼ γðϕGÞ; ð8Þ
where ϕL and ϕG stand for the volume fraction of liquid
species in the droplet and in the gas surrounding, respec-
tively [40]. The equilibrium values of ϕL and ϕG are
obtained by minimizing the total free energy, which will be
discussed in Fig. 3.
The first part in Eq. (7) is the internal energy which is

interpolated over the individual internal energy as ϵ ¼
ϵLϕþ ϵGð1 − ϕÞ (ϵL, internal energy of liquid; ϵG, internal
energy of gas). The second term in Eq. (7) depicts the
pressure; according to Dalton’s law, the static pressure is
expressed as p ¼ pLϕþ pGð1 − ϕÞ. Here, we consider the
pressure of 1 atm for the gas (pG ¼ 1 bar). The pressure of
the liquid phase consists of both enthalpy and entropy
contributions [45,46]. The latter one has been recently
estimated to account for the line tension effect in polymer
solutions [47]. However, the explicit form of the enthalpy
and entropy contributions to the pressure is generally
challenging to be formulated based on its physical origin,
but can be equivalently calculated by the Young-Laplace
equation as

I∶ pL ¼ pG þ 2σ

R
; Bo ≪ 1; ð9Þ

II∶ pL ¼ pG þ ρgV
ηπr2

; Bo ≫ 1; ð10Þ

III∶ pL ¼pGþσ

�
1

R1

þ 1

R2

�
� ρgV
ηπr2

; Bo∼1: ð11Þ

The parameters R1 and R2 in Eq. (11) stand for the principal
radii of the ellipsoid at the contact line; η ≥ 1 accounts for
the macroscopic roughness that modifies the effective

contact area between liquid and solid. Unless otherwise
stated, we set η ¼ 1 in the following discussion for brevity.
By choosing a reference plane z ¼ 0 on the solid surface,
the “þ” and “−” signs in Eq. (11) correspond to sessile and
pendant droplets, respectively.
The third, fourth, and fifth terms in Eq. (7) account for the

van der Waals interaction of liquid–gas, gas–solid, and
liquid–solid, respectively, similar to the consideration in the
Flory-Huggins theory [48–50]. The intermolecular potential
of liquid–gas, gas–solid, and liquid–solid is depicted by χLG,
χSG, and χSL, respectively [37], which can be quantified by
experiments [51,52] or molecular theory models [53]. The
last term in Eq. (7) describes the entropy contribution with
entropy density s and temperature T [54]. Considering all
these contributions, we express the difference of the gas–
solid and liquid–solid interfacial energies as

I∶ Δγ ¼ Δγ0 þ 2lΔϕσ=R; ð12Þ
II∶ Δγ ¼ Δγ0 þ lΔϕρgV=πr2; ð13Þ

III∶ Δγ ¼ Δγ0 þ lΔϕ
�
σ

�
1

R1

þ 1

R2

�
� ρgV

πr2

�
; ð14Þ

where Δϕ is defined as Δϕ ¼ ðϕG − ϕLÞ. The interfacial
energy difference Δγ0 corresponds to the rest terms except
the pressure for the difference in the internal energy and the
van derWaals force, as discussed in our previous work [37].
The last term depicts the contribution of the pressure, which
is the most central consideration of the current Letter. In
comparison with the definition for the line tension τ
according to σ cos θ ¼ σ cos θ0 þ τ=r [23], we obtain the
line energy as

I∶ τ1 ¼ 2lΔϕσ sin θ0; Bo ≪ 1; ð15Þ

II∶ τ2 ¼ lΔϕρgV=ðπrÞ; Bo ≫ 1; ð16Þ

III∶ τ�3 ¼lΔϕ
�
rσ

�
1

R1

þ 1

R2

�
�ρgV

πr

�
; Bo∼1: ð17Þ

From the above equations (15)–(17), we see two important
conclusions: (i) The magnitude of the line energy is
controlled by lσ as well as lρgV=ðπrÞ. (ii) The sign of
the line energy is manipulated by two factors: Δϕ, which
will be discussed later, and pendant or sessile states (see
Appendix). For sessile droplets, whenΔϕ > 0, we have the
positive line energy; when Δϕ < 0, we have the negative
line energy.
Note that the surface tension σ in the above equations can

have a strong dependence on the droplet size for nanoscaled
droplets, known as the Tolman effect [15], which results in
an additional line tension effect; this discussion has been
presented in Refs. [14,17,20].
In the case III, we evaluate the mean curvature of the

ellipsoidal cap at the contact line and obtain the line energy as
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τ�3 ¼ l
�
2σφ1 �

1

3
ρgr2

2þ cos θ0
ð1þ cos θ0Þ2

φ2

�
Δϕ sin θ0: ð18Þ

Here, the two factors φ1 and φ2 are expressed as

φ1¼
2þðα−3−1Þð1þ cos2θ0Þ
2½α−3cos2θ0þ sin2θ0�32

; φ2¼ α
3
2: ð19Þ

Whenα ¼ 1 corresponding to a spherical cap, both factorsφ1

and φ2 are equal to 1.
Figure 2(a) depicts the line energy τþ3 of sessile water

droplets as a function of the base radius r. Parameters
are σ ¼ 0.072 N=m, g ¼ 9.81 m=s2, ρ ¼ 1000 kg=m3,
Δϕ ¼ 1, and l ¼ 10 nm. The red solid line depicts the
line energy for the spherical cap model by setting α ¼ 1 in
Eq. (18), while the red triangle symbols describe the line
energy for an ellipsoidal cap, both for θ0 ¼ 30°. In the
ellipsoidal model, α in the coefficients φ1 and φ2 is
obtained numerically via solving ∂αEIII ¼ 0. In both
models, the line energy ranges from 0.5 to about
100 nN. The results between spherical and ellipsoidal caps
overlap when the base radius is less than about 0.01 m. In
this case, the liner energy τþ3 converges to a constant value,
as given by τ1; it is sufficient to use Eq. (15) to calculate the
line energy. When the base radius is greater than 0.01 m,
the difference between the spherical cap model and the
ellipsoidal cap model increases with r. For other Young’s
contact angles, θ0 ¼ 60°, 120°, similar results are observed;
for a fixed droplet size, an increase in the Young’s contact
angle θ0 leads to an increase in the line energy. For
comparison, the line energy of the pancake model τ2 is
illustrated by the dot-dot-dashed line in Fig. 2(a). The
ellipsoidal model is nearly the same as the pancake model
for relatively large base radius.
Figures 2(b) and 2(c) present a quantitative comparison

of τ1 versus T − Tc with experiments [41] and existing
theories (Ising model, τIsing; Indekeu model, τI; Joanny–de
Gennes model, τJ, see Appendix) near the critical temper-
ature Tc for continuous wetting. For the positive line
tension, we set Δϕ ¼ 1; τ1 decays to zero until the critical
temperature (red line), showing a good agreement with
experiments (triangle). For the negative line tension
[Fig. 2(c)], we set Δϕ ¼ −1; τ1 exhibits a good consistency
with Indekeu theory τI [42,43] as well as with Joanny–de
Gennes theory τJ, but deviates from the linear Ising model
−τIsing1 . Here, the surface tension and the contact angle
vary with temperature as σ ¼ σ0ðT − TcÞ1.3 and θ0 ∼
ðT − TcÞ0.4 [42,55,56]. To ensure the same level of com-
parison, we set the scaling factor τ0 in our model,
τ1 ¼ τ0ðT − TcÞ1.3Δϕ sin θ0, Indekeu theory, Joanny–de
Gennes model, and Ising model, the same via τ0 ¼
σ0l ¼ 1 pN. Note that our result has an additional factor
sin θ0. This can be used to explain the vanishing line
tension at the first order wetting transition temperature Tw,
where the contact angle becomes zero, being consistent

with the conclusion of Starov and co-workers [57] and
Widom and Clark [58]. The factor sin θ0 can also explain
the counterintuitive result that sometimes the line tension
increases with temperature [59], since θ0 can increase with
temperature [60].
Next, we address the sign of Δϕ by deriving the

expression for the equilibrium compositions of liquid
beneath the droplet ϕe

L and in the gas ϕe
G. We assume that

the equilibrium compositions ϕe
L and ϕe

G are not signifi-
cantly affected by the pressure [61]. In the case I,
substituting Δγ0 into Eq. (4) and minimizing the total free
energy EIðϕL;ϕGÞ subjected to the constraint 0 ≤ ϕL ≤ 1
and 0 ≤ ϕG ≤ 1 for constant V and σ, we obtain two sets of
equilibrium composition of ϕe

L and ϕe
G as

micro-Cassie∶ ϕe
G ¼ 1

2

�
1−

Δϵ−Δχ
χLG

�
; ϕe

L ¼ 0; ð20Þ

 1

 10

 100

 1000

 0.0001  0.001  0.01  0.1  1

 0.01  1  100

Sessile

τ2 , θ0 =30°

τ 3
+
, 
τ 2

, 
[n

N
]

r, [m]

Bo

θ0 =30°

θ0 =60°

θ0 =120°

Ellipsoid Sphere

(a)

(b) (c)

 0

 2

 4

 6

 8

−6 −4 −2  0

τ 1
, 

[p
N

]

T−Tc, [°C]

τIsing

Experiments

Eq. (15)

−8

−6

−4

−2

 0

−6 −4 −2  0  2

Δφ=−1

Δφ=1

τ 1
, 

[p
N

]

T−Tc, [°C]

τI

τJ

−τIsing

Eq. (15)

FIG. 2. (a) The line energy τþ3 [Eq. (18)] and τ2 [Eq. (16)] for
sessile water droplets versus the base radius r for different
Young’s contact angles θ0. Lines, the spherical cap model with
α ¼ 1; symbols, the ellipsoidal cap model with α < 1. The Bond
number, Bo for θ0 ¼ 30° is shown in the top axis. (b) Comparison
of τ1 according to Eq. (15) with experiments [41] and Ising model
τIsing. (c) Comparison of τ1 with Ising model −τIsing, Indekeu
theory τI [42,43], and Joanny–de Gennes theory τJ [44].
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micro-Wenzel∶ ϕe
G ¼ 1

2

�
1−

Δϵ−Δχ
χLG

�
; ϕe

L ¼ 1; ð21Þ

where Δϵ ¼ ϵG − ϵL denotes the difference in the internal
energy of gas and liquid, and Δχ ¼ χSL − χSG represents
the difference in the van der Waals force of solid–gas and
solid–liquid. Differentiating by the equilibrium composi-
tion of the liquid in the solid beneath the droplet, we call
these two states in Eqs. (20) and (21) as micro-Cassie and
micro-Wenzel states, respectively. In the micro-Cassie
state, the liquid composition in the solid is 0; in the
micro-Wenzel state, the liquid composition in the solid
phase is 1. Based on Eqs. (20) and (21), we address the sign
of the line tension according to Δϕ ¼ ϕG − ϕL for sessile
droplets as

positive line tension∶ Δϕ ¼ ϕe
G > 0; ð22Þ

negative line tension∶ Δϕ ¼ ϕe
G − 1 < 0: ð23Þ

An example of the energy map EIðϕL;ϕGÞ is shown in
Fig. 3(a) for ðΔϵ − ΔχÞ=χLG ¼ 0.5. Two local minima are
observed in the energy map: ðϕe

L;ϕ
e
GÞ ¼ ð0; 0.25Þ (left

minimum) and ðϕe
L;ϕ

e
GÞ ¼ ð1; 0.25Þ (right minimum),

which are well consistent with Eqs. (20) and (21).
In the cases II and III, the energy maps are illustrated in

Figs. 3(b) and 3(c), respectively. Here, we set a Bond
number of 100 in the case II and a Bond number of 1 in the
case III. As demonstrated by the energy maps in both cases,
the position of the energy minimum is almost not affected;
only the magnitude of the total energy is modified (see the
color legend).
In conclusion, we have proposed an alternative concept

quantifying the gravity effect on the line tension; for the
first time, to the best knowledge of the authors, we derive
the line energy in terms of physical parameters. Our finding
can be used to explain previous experimental data of line
energy spanning from 1 × 10−11 to 1 × 10−6 N, shedding
light on the controversial issue of gravity effect on the
wetting phenomena. Moreover, we address that the sign of

the line energy is controlled by two key factors: micro-
Cassie or micro-Wenzel states, sessile or pendant states.
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End Matter

Appendix—Derivation of the total free energy, effect
of pendant and sessile states, and existing theories for
line tension.
Case I: Spherical cap The volume V and the surface Sc

of a spherical cap with a radius R read

V¼ πR3

3
ð1− cosθÞ2ð2þ cosθÞ; Sc ¼ 2πR2ð1− cosθÞ:

The total interfacial energy of the system reads

EI ¼ σSc þ ΔγπR2sin2θ þ γSGΓ;

in which the last term is scaled by the total surface area of
the solid surface Γ and is considered as a reference value.
Neglecting the reference value ΓγSG, we obtain the total
free energy as

EI ¼ εð1 − cos θÞð2þ cos θÞ½2σ − Δγð1þ cos θÞ�;
with the factor ε ¼ ð9πV2Þ1=3=½ð1 − cos θÞ43ð2þ cos θÞ53�.
Next, we differentiate EI to θ, yielding

PHYSICAL REVIEW LETTERS 133, 246201 (2024)

246201-6

https://doi.org/10.1021/j150580a021
https://doi.org/10.1017/jfm.2023.561
https://doi.org/10.1017/jfm.2023.561
https://doi.org/10.1063/5.0168394
https://doi.org/10.1063/5.0168394
https://doi.org/10.1063/5.0044914
https://doi.org/10.1021/j100009a041
https://doi.org/10.1063/1.2799990
https://doi.org/10.1063/1.2799990
https://doi.org/10.1016/j.colsurfb.2017.10.056
https://doi.org/10.1017/S0022112082001797
https://doi.org/10.1093/qjmam/36.1.55
https://doi.org/10.1016/j.jcis.2008.11.040
https://doi.org/10.1016/j.jcis.2008.11.040
https://doi.org/10.1021/la202077w
https://doi.org/10.1021/acsomega.0c03700
https://doi.org/10.1016/j.colsurfa.2009.04.054
https://doi.org/10.1080/01694243.2019.1663030
https://doi.org/10.1080/00268979500102461
https://doi.org/10.1080/00268979500102461
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.246201
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.246201
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.246201
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.246201
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.246201
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.246201
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.246201
https://doi.org/10.1063/1.1563828
https://doi.org/10.1103/PhysRevLett.132.126202
https://doi.org/10.1021/acs.langmuir.8b01783
https://doi.org/10.1103/PhysRevLett.103.266101
https://doi.org/10.1529/biophysj.107.128421
https://doi.org/10.1529/biophysj.107.128421
https://doi.org/10.1142/S0217979294000129
https://doi.org/10.1016/0378-4371(92)90294-Z
https://doi.org/10.1016/0021-9797(86)90010-X
https://doi.org/10.1016/0021-9797(86)90010-X
https://doi.org/10.1103/PhysRevE.75.056309
https://doi.org/10.3390/e20090712
https://doi.org/10.1063/1.1723621
https://doi.org/10.1063/1.1750930
https://doi.org/10.1002/adma.201806733
https://doi.org/10.1016/S0006-3495(91)82180-4
https://doi.org/10.1063/1.5110581
https://doi.org/10.1063/1.5110581
https://doi.org/10.1103/PhysRevLett.119.017801
https://doi.org/10.1103/PhysRevLett.119.017801
https://doi.org/10.1063/1.434402
https://doi.org/10.1016/0021-9797(82)90115-1
https://doi.org/10.1016/0021-9797(82)90115-1
https://doi.org/10.1016/0378-4371(90)90366-Z
https://doi.org/10.1016/0378-4371(90)90366-Z
https://doi.org/10.1074/jbc.M706162200
https://doi.org/10.1074/jbc.M706162200
https://doi.org/10.1016/j.cis.2020.102339
https://doi.org/10.1016/j.cis.2020.102339


dEI

dθ
¼

�
9πV2

ð1 − cos θÞ4ð2þ cos θÞ5
�1

3

2ðΔγ − σ cos θÞ sin θ:

The solution of dEI=dθ ¼ 0 gives rise to Young’s equation:
Δγ ¼ σ cos θ0. Substituting the Young’s equation into the
above equation for EI, we obtain Eq. (4).
Case II: Pancake shape At very strong gravity impact,

the droplet is drastically deformed into a pancake shape, as
illustrated in Fig. 1(b)(ii). In this case, the droplet volume
V ≈ πr2h is associated with the pancake height h and the
base radius r. The total free energy can be written as

EII ¼ πr2ðσ − ΔγÞ þ 1

2
ρgVh:

The first term denotes the total surface energy, while the
last term stands for the bulk gravitational energy. The
equilibrium droplet shape is addressed via ∂EII=∂h ¼ 0,
which leads to

h ¼ 2R0 sinðθ0=2Þ=
ffiffiffiffiffiffi
Bo

p
;

r ¼
ffiffiffi
2

3

r
R0Bo

1
4=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinðθ0=2Þ

p
:

Thus, the total free energy EII is expressed by Eq. (5).
Case III: Ellipsoidal cap Considering the gravity effect

on the formation of an oblate ellipsoidal cap, we write
the ellipsoidal contour with the following parametric
equation as

α3x2 þ ðz − αRÞ2 ¼ α2R2:

Here, two hemiaxes are scaled by R=
ffiffiffi
α

p
and αR, as

depicted in Fig. 1(b)(iii); R is the radius of an imaginary
spherical cap with the same volume. The volume V of the
ellipsoidal cap by using the parametric equation and upon
integration is expressed as

V ¼ πR3

3
ð1 − cos θ0Þ2ð2þ cos θ0Þ:

At equilibrium, we assume θc ≈ θ0 (see Fig. 1). The surface
area of the whole ellipsoid according to the integra-

tion S ¼ 2
R R=

ffiffi
α

p
0 adx, where a ¼ 2πx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðh0Þ2

p
is

written as

S¼ 2πR2

α

�
1þα3

2k
ln
1þk
1−k

�
; k¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1−α3

p
:

The surface area of the ellipsoidal cap Sc is obtained by

subtracting S0 from S; S0 ¼ R R sin θ0=
ffiffi
α

p
0 adx denotes the

surface area of the ellipsoid truncated by the substrate.
Hence, the surface area of the ellipsoidal cap reads

Sc ¼ S − S0 ¼ πR2

α
½1 − fðαÞ cos θ0 þ νðαÞ�;

where we have defined two functions fðαÞ and νðαÞ
as νðαÞ ¼ ðα3=kÞ lnf½−k cos θ0 þ fðαÞ�=ð1 − kÞg; fðαÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2 sin2 θ0

p
. The contact area of the droplet with the

solid substrate is formulated as Sb ¼ πR2 sin2 θ0=α. Thus,
the total surface energy of the droplet reads

Es

σπR2
¼ 1

α

�
1 − fðαÞ cos θ0 þ νðαÞ − sin2θ0

Δγ
σ

�
:

The bulk gravity energy of the droplet with the height of the
centroid z̄ is expressed as

Eg ¼ ρgVz̄ ¼ αρgπR4

12
ð1 − cos θ0Þ3ð3þ cos θ0Þ;

so that the total energy of the whole droplet including
surface and bulk gravity energies reads EIII ¼ Es þ Eg,
leading to Eq. (6).
Existing theories For Bo ≪ 1, the line tension versus

temperature according to Ising model τIsing, Indekeu theory
τI [42,43], and Joanny–de Gennes theory τJ [44] reads

τIsing ¼ τ0ðT − TcÞ;
τI ¼ −lσθ0 ¼ −τ0ðT − TcÞ1.3θ0;
τJ ¼ −lσðln θ0 þ 1Þ ¼ −τ0ðT − TcÞ1.3ðln θ0 þ 1Þ:

Effect of pendant and sessile states For the pendant
state, a negative sign occurs in the second term in Eq. (18).
The competing effect of surface tension with gravity leads
to a variation in the sign of the line tension. The critical base
radius rc for the sign transition is

rc ¼
ffiffiffiffiffiffiffiffiffiffi
6σφ1

ρgφ2

s
ð1þ cos θ0Þð2þ cos θ0Þ−1

2:

When the base radius is less than rc, the surface tension
related pressure dominates the gravity related pressure. For
large radius droplets with r > rc, the main contribution to
the line energy is the gravity.
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