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Abstract: With FaSS-MVS, we present a fast, surface-aware semi-global optimization approach for
multi-view stereo that allows for rapid depth and normal map estimation from monocular aerial
video data captured by unmanned aerial vehicles (UAVs). The data estimated by FaSS-MVS, in turn,
facilitate online 3D mapping, meaning that a 3D map of the scene is immediately and incrementally
generated as the image data are acquired or being received. FaSS-MVS is composed of a hierarchical
processing scheme in which depth and normal data, as well as corresponding confidence scores, are
estimated in a coarse-to-fine manner, allowing efficient processing of large scene depths, such as those
inherent in oblique images acquired by UAVs flying at low altitudes. The actual depth estimation uses
a plane-sweep algorithm for dense multi-image matching to produce depth hypotheses from which
the actual depth map is extracted by means of a surface-aware semi-global optimization, reducing the
fronto-parallel bias of Semi-Global Matching (SGM). Given the estimated depth map, the pixel-wise
surface normal information is then computed by reprojecting the depth map into a point cloud and
computing the normal vectors within a confined local neighborhood. In a thorough quantitative
and ablative study, we show that the accuracy of the 3D information computed by FaSS-MVS is
close to that of state-of-the-art offline multi-view stereo approaches, with the error not even an
order of magnitude higher than that of COLMAP. At the same time, however, the average runtime
of FaSS-MVS for estimating a single depth and normal map is less than 14% of that of COLMAP,
allowing us to perform online and incremental processing of full HD images at 1–2 Hz.

Keywords: multi-view stereo; plane-sweep multi-image matching; semi-global optimization; surface-
awareness; online processing; oblique aerial imagery; UAVs

1. Introduction

The image-based estimation of depth maps and geometry by dense image matching
(DIM) and multi-view stereo (MVS) is one of the fundamental tasks in photogrammetry,
remote sensing and computer vision. It enables a wide range of high-level applications
such as navigation and path planning for autonomous mobile robot (AMR) systems, urban
planning and monitoring, simulation and 3D modeling, as well as virtual, mixed and
augmented reality. The ongoing development and increasing availability of commercial
off-the-shelf (COTS) UAVs is opening up new possibilities and applications for image-
based 3D mapping, both offline and online. In recent years, for example, the use of COTS
UAVs by emergency services such as firefighters and medical rescue services has been
steadily increasing, which in turn facilitates rapid and large-scale situation assessment
or enables monitoring of areas inaccessible to ground forces [1,2]. In this context, image-
based techniques and photogrammetry based on aerial reconnaissance are a key element in
assisting the rescue workers, provided that the environmental conditions, e.g., weather and
daytime, allow a visual inspection [2].
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Meanwhile, there is a large collection of software toolboxes, such as COLMAP [3,4]
or OpenMVS (http://cdcseacave.github.io, accessed on 27 August 2024), for performing
offline photogrammetric 3D reconstruction, allowing to accurately reconstruct the disaster
site from aerial imagery. Highly accurate 3D reconstructions can be used to accurately
assess the damage caused by an incident or the structural integrity of a partially collapsed
building. First responders, however, require rapid and extensive 3D mapping of the disaster
site in a short period of time, rather than a highly accurate 3D reconstruction. This allows
them to quickly assess the situation, prioritize resources, and plan routes and operations
through hard-to-reach areas.

MVS methods can be divided into three categories based on the resulting scene
representation, namely volumetric, point cloud-based, and depth map-based [5]. While the
first two categories typically work on the full extent of the scene, depth map-based methods
typically separate the depth estimation process from the depth map fusion process. This
makes such methods typically more versatile, especially with respect to online and iterative
3D mapping, since the depth map estimation can be performed on a locally limited set
of images, resulting in separate depth maps that can be subsequently fused into different
scene representations, e.g., true orthophoto and 2.5D height map [6], 3D point cloud or
mesh [7]. With this in mind, this work proposes and investigates an approach for fast
multi-view stereo, by combining the SGM algorithm with a true multi-image matching
approach. In it, we propose to:

• use an efficient plane-sweep sampling to perform hierarchical dense multi-
image matching;

• adopt the SGM algorithm to work with depth hypotheses generated by plane-
sweep sampling;

• extend the SGM algorithm to favor not only fronto-parallel surfaces in the computation
of dense depth maps, by incorporating a surface-aware regularization based on local
surface normals;

• implement and deploy it on modern GPU hardware to efficiently compute dense
depth, normal and confidence maps online from image sequences.

Our fast, surface-aware semi-global optimization approach for multi-view stereo (FaSS-
MVS) is designed to assist specialized first responders in deploying a high-end COTS UAV
in combination with a ground control station (GCS) to rapidly assess the situation through
aerial reconnaissance. It is assumed that the image data are streamed down to the GCS
during the operation of the UAV, where they can be processed by more powerful hardware.
Even though this approach is proposed with the above use case in mind, it is not limited
to airborne data and can also be used to perform incremental and online 3D mapping
by a ground-based robot or sensor system. Although learning-based approaches using
deep neural networks [5,8–10] have made significant improvements in recent years, with
FaSS-MVS we still rely on a traditional processing pipeline to ensure a high reliability and
explainability in a practical application. We evaluate FaSS-MVS on two public datasets for
dense MVS with accurate ground truth, and on two use-case-specific datasets. It combines
and extends our previous work presented in Ruf et al. [11,12], by:

• a more detailed description of the algorithms used;
• extending the plane-sweep multi-image matching to use non-fronto-parallel

plane orientations;
• improving the surface-aware regularization of the SGM algorithm;
• using a different confidence measure for estimating the confidence map;
• a thorough evaluation and ablation study with respect to different aspects and config-

urations of the approach;
• providing a detailed discussion with respect to the support of rescue workers by

aerial reconnaissance.

An earlier and in some parts more elaborate version of this work has already been
published as part of the PhD thesis by Ruf [13]. In contrast to the first publication, we have

http://cdcseacave.github.io
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extended the evaluation and comparison of FaSS-MVS with respect to related approaches
from the literature.

1.1. Paper Outline

This paper is organized as follows. In Section 1.2, the related work on incremental
image-based 3D mapping for online processing as well as the reconstruction of non-fronto-
parallel surfaces using DIM and MVS are briefly summarized. In this, it is also delineated
how the presented approach differs from those presented in the related work. In Section 2,
the entire processing pipeline of the presented approach is illustrated and outlined with
a short overview. This is followed by a detailed description of the implementation and
methodology of each step of the processing pipeline as well as a description of the datasets
and error metrics used for evaluation. The results of the conducted experiments are
presented in Section 3. Subsequently, the results are discussed in Section 4 and put into
context of the considered use case, before a summary and concluding remarks, as well as a
short outlook on future work, are given in Section 5.

1.2. Related Work

Due to the ever-increasing demand for detailed 3D models, the research in the fields
of photogrammetry, remote sensing and computer vision has brought up a number of
software suites and applications that focus on estimating accurate and dense depth and
geometry information from a large set of input images using DIM and MVS. Prominent and
widely used representatives of such applications are MVE [14], PMVS [15], SURE [16,17],
COLMAP [4], ACMMP [18], and OpenMVS, to name a few. However, these approaches are
designed for offline processing, with the goal of accuracy and completeness of the resulting
3D model, assuming that all input data are available at the time of reconstruction and that
there are no critical constraints on computation time or hardware resources.

In contrast, the goal of FaSS-MVS is to extract dense depth and geometry information
from image sequences as they are acquired, or at least while the image data stream is being
received, in case direct processing is not possible due to the acquisition by a small UAV and
its limited hardware resources. The focus is therefore on incremental and online processing
of the input data by DIM and MVS.

1.2.1. Incremental Camera-Based Mapping for Online Processing

Early work on incremental and online camera-based mapping of the local environment
was primarily by robotics and augmented reality (AR) applications [19–21]. The main goal
was to robustly localize the camera pose, and thus the sensor carrier, with respect to its en-
vironment in order to navigate through the environment or to augment the camera images
with additional information. Since the focus of these so-called simultaneous localization
and mapping (SLAM) algorithms is on estimating the camera pose and trajectory, the
detailed and dense mapping of the environment was rather of secondary interest. In turn,
these approaches relied mainly on point features for tracking and mapping rather than
direct pixel matching. Since a dense and detailed model of the environment is essential
for a convincing AR experience, subsequent work [22,23] has proposed dense mapping si-
multaneously with image acquisition and camera localization. However, these approaches
aim at reconstructing rather small-scale environments and thus use short baseline video
clips for image matching, which in turn allows relying on dense optical flow methods to
find dense pixel correspondences [22]. In contrast, the input to the approach presented in
this paper is assumed to be image data captured by a UAV, typically flying several tens of
meters away from the object of interest. The approach presented here is thus designed to
densely map a large-scale environment, which in turn requires image matching on a wide
baseline, rather than tracking pixel-by-pixel correspondences between successive frames.

The works of Gallup et al. [24] and Pollefeys et al. [25] are part of the early approaches
to camera-based mapping and reconstruction of urban environments. They used the plane-
sweep algorithm [26] for true multi-image matching to map and reconstruct building
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facades in real time from images captured by a vehicle-mounted camera. They rely on
vanishing points detected in the input images and data from an additional inertial mea-
surement unit (IMU) to recover the orientations of the building facades and the ground
plane relative to the camera. To find the optimal plane configuration for each pixel and,
in turn, extract a depth map from the results of the DIM, Pollefeys et al. [25] employ a
Bayesian formulation with a subsequent selection of the winner-takes-it-all (WTA) solution,
while Gallup et al. [24] minimize a formulated energy functional. Other approaches to
urban reconstruction from ground-based imagery, such as those of Furukawa et al. [27],
Sinha et al. [28], and Gallup et al. [29], perform piecewise planar reconstruction by fitting
multiple differently oriented planes into the scene and optimizing photometric consistency.
They minimize an energy functional using a graph-cut algorithm that takes a few minutes
on a commodity CPU.

More recent approaches to online camera-based 3D mapping are presented by
Kern et al. [6] and Zhao et al. [30]. In their work, the authors propose complete processing
pipelines for online and real-time 3D mapping from aerial imagery, which are highly relevant
for the use case outlined in this paper. The design of the processing pipelines is similar to the
approach of Pollefeys et al. [25], consisting of camera pose estimation, DIM and depth map
fusion. For the image-based DIM, Kern et al. [6] relies on the so-called PlaneSweepLib [31],
which is based on the work of Gallup et al. [24] and Pollefeys et al. [25]. In contrast, the focus
of RTSfM [30] is on efficient and globally consistent Structure-from-Motion (SfM) in real
time. For the task of DIM, RTSfM relies on the two-view stereo approach ELAS [32], which
is run on image pairs to estimate the depth maps.

The presented approach also uses the plane-sweep algorithm to perform efficient
dense multi-image matching. The use of a plane-sweep algorithm for the task of DIM is
mainly motivated by its ability to generate depth hypotheses by matching an arbitrary
number of input images, as well as the fact that it can be efficiently optimized for massively
parallel execution on GPUs, making it particularly suitable for online processing. The use
of COTS UAVs as a sensor carrier introduces the need to efficiently handle large scene
depths and thus potentially large sampling spaces, due to the relatively low flight altitude
and the ability to freely pitch the camera. To limit the sampling space and thus the number
of depth hypotheses generated, we embed the plane-sweep algorithm in a hierarchical
processing scheme.

1.2.2. Efficient Dense Image Matching Accounting for Non-Fronto-Parallel Surfaces

The so-called SGM algorithm proposed by Hirschmüller [33,34] has become one of
the most widely used approaches for both online and offline DIM due to its efficiency and
convincing results [16,17,35–37]. In their work, Sinha et al. [38] combine plane-sweep multi-
image matching with the SGM algorithm to estimate dense and highly accurate disparity
maps. In contrast to the presented approach, Sinha et al. [38] use local slanted planes
extracted from feature correspondences to generate disparity hypotheses and use the SGM
algorithm to recover a disparity map. They evaluate their approach on a high-resolution
stereo benchmark and achieve a significant improvement over the standard SGM algorithm
in terms of both runtime and accuracy. The runtime improvement is attributed to the fact
that the local plane-sweep allows us to test a locally limited part of the full disparity range
for each pixel, thus reducing the computational complexity of the optimization within the
SGM algorithm. Similar improvements to overcome the problem of high computational
complexity due to the large disparity range inherent in oblique aerial imagery were made
by Haala et al. [37] by embedding the SGM in a hierarchical coarse-to-fine processing.

Although many urban environments can be well abstracted by piecewise planar recon-
structions, not all structures are fronto-parallel, i.e., their surface orientations are not parallel
to the image plane. The original formulation of the SGM algorithm, however, only models
a first-order smoothness term and thus favors fronto-parallel surfaces, leading to staircase
artifacts when reconstructing slanted surfaces. This should be avoided, especially if the
goal is a visually appealing reconstruction of the environment. While Hermann et al. [39]
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and Ni et al. [40] propose to include a second-order smoothness assumption in the formu-
lation of the SGM energy function, Scharstein et al. [41] proposes a simpler yet effective
improvement to address this issue. Specifically, plane priors, which can be recovered from
normal maps or point correspondences, are used to adjust the zero-cost transition within
the path aggregation of the SGM, thus penalizing deviations from the surface orienta-
tion represented by the prior. The major advantage over the other approaches is that the
pixel-wise offset for the zero-cost transition can be computed in advance.

In this work, we use an improved implementation of the SGM algorithm to regularize
the cost volume and efficiently extract an accurate dense depth map from the pixel-wise
depth hypotheses generated by the plane-sweep DIM. We also adopt the approach pre-
sented by Scharstein et al. [41] to account for non-fronto-parallel surfaces by adjusting
the zero-cost transition based on surface information stored in a normal map. Moreover,
we also propose to reduce the fronto-parallel bias of the SGM algorithm by adjusting the
zero-cost transition in the path aggregation based on the gradient of the minimum-cost
path. And just like Haala et al. [37], we also embed the SGM in a hierarchical coarse-to-fine
processing. Very similar to FaSS-MVS seems to be the approach of Roth and Mayer [42].
They also rely on the improvements proposed by Scharstein et al. [41] and combine the
SGM with a plane-sweep DIM. However, their work focuses on estimating disparity images
from ground-based stereo image pairs and has only been evaluated on synthetic scenes.

1.2.3. Learning of Dense Image Matching and Multi-View Stereo Reconstruction

Due to the success of deep-learning-based methods in other areas of computer vision
and photogrammetry, the technological advances gained have also been transferred and
applied to the task of DIM and MVS, resulting in approaches [5,8,9,43] that outperform
state-of-the-art model-based approaches on numerous common benchmarks. Despite
recent improvements and highly accurate results, all of these approaches are trained in a
supervised manner and thus require datasets with appropriate ground truth. However, the
availability and versatility of appropriate datasets is not very high, especially with respect
to real-world scenarios, which still greatly hinders the practical use of deep-learning-based
MVS approaches. To overcome this problem, recent approaches [10,44] attempt to train
models in an unsupervised, or sometimes referred to as self-supervised, manner. But
again, their practical use and ability for generalization still needs more studies [44]. These
limitations are the reasons why learning-based approaches for the task of MVS are not
yet practical for the considered use case, namely to reliably support emergency forces
in incremental and online mapping of the operational area. In addition, we believe that
there are still a number of aspects related to traditional MVS approaches that need to be
addressed, such as runtime or fronto-parallel bias, which we aim to address in this work.

2. Materials and Methods

The processing pipeline of FaSS-MVS is outlined in Figure 1. Given an input bundle
(I , P)k ∈ Ω, consisting of k input images I extracted in sequential order from an image
sequence, and corresponding camera poses P, our approach computes depth, normal, and
confidence maps (D,N , C) for a defined reference image Iref, which is typically the center
image of the input bundle Ω. We assume that the input is calibrated, i.e., that the images
are free of lens distortion, and that the full projection matrices Pk = K[R t] are known.

Before any processing, a Gaussian image pyramid with n pyramid levels is computed
for each image of the input bundle, allowing hierarchical processing. The lowest pyramid
levels (l = 0) contain the input images with their original image size. This results in an
expansion of the input bundle Ω by n− 1 additional sets. In the following, a superscript is
used to mark the results and processes at a particular pyramid level. The pipeline is initial-
ized at the level with the smallest image size and executes three successive computations at
each pyramid level.
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(I , P)k ∈ Ω

Gaussian Pyramid Generation

Depth Estimation (Sections 2.1 & 2.2)

Plane-Sweep Image Matching

SGMx Optimization

Normal Estimation (Section 2.3)

l = (n− 1), Γ

(D) l

(D,N , C) l

(D,N , C)
l == 0

(
D̄, N̄

) l, Γ l−1
pRefinement & Filtering

Confidence Estimation (Section 2.4)

(D,N ) l

Upscaling

Recovering Local Depth Range

Post-Processing (Section 2.5)

Difference-of-Gaussian Filtering

Geometric Consistency Check

Figure 1. Overview of the processing pipeline for FaSS-MVS. Given a bundle of images and corre-
sponding camera poses (I , P)k of an input sequence, a hierarchical MVS estimation is performed to
recover a depth, normal and confidence map (D,N , C). Adapted from [12,45].

The first part of the actual processing, the depth estimation, computes a depth map Dl

and is in turn subdivided into a plane-sweep multi-image matching (Section 2.1), which
generates depth hypotheses, and the SGMx optimization (Section 2.2), which extracts the
optimal depth from the set of hypotheses. The latter adopts the SGM algorithm [33,34] to the
plane-sweep matching and extends it to account for non-fronto-parallel surface structures.
A concluding depth refinement and median filter with a kernel size of 5× 5 pixels is used
to remove small outliers in the resulting depth map.

In the second and third computational parts of the hierarchical processing, a normal
map N l (Section 2.3) and a confidence map C l (Section 2.4) are estimated from the pre-
viously computed depth map Dl . The confidence map contains pixel-wise confidence
values in the interval [0, 1] with respect to the depth estimates. These confidence scores are
computed based on the surface orientation at the considered pixel.

Inherent to a hierarchical coarse-to-fine processing, the depth map Dl and the normal
map N l computed at level l are used to initialize the depth map estimation at the next
pyramid level l − 1, as long as the lowest level of the image pyramid has not yet been
reached, i.e., while l > 0. Here, Dl and N l are upscaled to the image size of the next
pyramid level by nearest neighbor interpolation, yielding D̄l and N̄ l . Then, D̄l is first used
to compute the pixel-wise sampling range Γ l−1

p of the multi-image plane-sweep algorithm
at the next pyramid level. Here, the Γ l−1

p is computed separately for each pixel p based on
the previous depth estimate d̄ l

p = D̄ l(p) and a predefined window with a radius of ∆d
around d̄ l

p:

Γ l−1
p =

[
d l−1

p,min, d l−1
p,max

]
, with

d l−1
p,min = d̄ l

p − ∆d,

d l−1
p,max = d̄ l

p + ∆d.

(1)
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In the first iteration, the sampling range is set equally for all pixels and parameterized
by the minimum and maximum scene depth: Γ = [d min, d max]. The upscaled normal map
N̄ l is used by one of the proposed SGM extensions to account for surface orientation within
the scene. The final depth, normal, and confidence maps are the result of the processing at
the lowest pyramid level. They are labeled D, N , and C, respectively, and have the same
image size as the input images.

In a final post-processing step (Section 2.5), we use a Difference-of-Gaussian (DoG)
filter [46], as well as a geometric filtering to remove remaining outliers by masking out
regions with little image texture and enforcing geometric consistency.

2.1. Real-Time Dense Multi-Image Matching with Plane-Sweep Sampling

Given a multi-camera setup ci and an additional scene plane Π = (n, δ) positioned in
the field of view of the cameras, the image point pref in the image of a preselected reference
camera is mapped directly to the pixel pk in any other camera image via the homography
H induced by the plane Π. The scene plane Π is parameterized by its normal vector n and
its distance δ from the reference camera. Together with the corresponding camera poses,
this homographic projection is formulated by:

pk = H(Π, Pref, Pk) · pref , with

H(Π, Pref, Pk) = Kk ·
R− tn⊺

δ
·K−1

ref .
(2)

Here, Kref and Kk denote the intrinsic matrices of both cameras, and [R t] denotes the
relative transformation matrix of the neighboring pose Pk with respect to the reference pose
Pref. As shown in Figure 2, Equation (2) is interpreted geometrically by casting a viewing
ray through the pixel pref and intersecting it with the scene plane Π, yielding a scene point
xΠ, which is then projected into the second camera, resulting in the image point pk [47].

Πmax

Πmin

Π

δmin

δ
δmax

n

xΠ

c−1

cref

c+1

Iref

I−1

I+1

Href→+1
Href→−1 pref

p+1p−1

Figure 2. Illustration of the plane-sweep algorithm for multi-image matching. A scene is sampled by
a plane Π = (n, δ), where n is the normal vector of the plane and δ is the orthogonal distance of the
plane from cref. The plane is swept through space along its normal vector between two bounding
planes Πmax and Πmin. For each distance δ of Π, the reference pixel pref is projected by the plane-
induced homography Href→k into an arbitrary number of viewpoints where it is matched with the
corresponding pixel in Ik.

2.1.1. The Hierarchical Plane-Sweep Algorithm for Real-Time Multi-Image Matching

Based on the relationship between two or more cameras and a scene plane, Collins [26]
proposed an algorithm for true multi-image matching. This algorithm samples the scene
space between two bounding planes Πmin and Πmax, located at δmin and δmax, by sweeping
a plane along its normal vector n through space and matching the input images according
to Equation (2) for each distance δ ∈ [δmin, δmax] of the plane relative to the reference
camera. For each position of the plane, an arbitrary number of matching images are warped
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by the plane-induced homography H−1
ref→k into the view of the reference camera, where they

are matched against the reference image. If the scene plane is close to a three-dimensional
structure, then the corresponding image regions of the warped matching images overlap
with those in the reference image, allowing the scene depth of the corresponding object to be
derived from the parameterization of the corresponding plane (Figure 2). Initially referred
to as the space-sweep algorithm, it has been adopted by numerous studies on multi-image
matching and MVS [24,25,38], finally called the plane-sweep algorithm. This algorithm
has proven to be very efficient in generating pixel-wise depth hypotheses and is therefore
still widely used for the task of depth estimation [5,44,48] or novel view synthesis [49].
The presented hierarchical multi-image matching approach is based on the plane-sweep
algorithm introduced by Pollefeys et al. [25] and described in Algorithm 1.

Algorithm 1: Plane-sweep multi-image matching executed at a specific pyramid
level l of the proposed hierarchical processing scheme.

Data: a calibrated image bundle Ωl at the pyramid level l, a set of planes Π with a
normal vector n and varying distances δ as well as a local depth sampling
range Γ l

p = [d l
p,min, d l

p,max].
Result: three-dimensional cost volume S , holding the pixel-wise matching score

for each pixel pref ∈ I l
ref and plane Π.

1 determine bounding planes Πmin and Πmax located at δmin and δmax, so that the
local depth range Γ l

p is completely sampled (see Section 2.1.2).
2 foreach pixel pref ∈ I l

ref and distance δ ∈ [δmin, δmax] do
3 Configure scene plane Π = (n, δ).
4 Determine pixels p k in all matching images I l

k ∈ Ωl \ I l
ref :

p k = H
(

Π, Pl
ref, Pl

k

)
· pref.

5 Warp local image patches P l
k ∈ I

l
k around p k, with the same size as the

support region of the matching cost function C(·), into I l
ref :

P̃ l
k = H

(
Π, Pl

ref, Pl
k

)−1
· P l

k.

6 Compute the matching cost s(p, Π) between reference patch P l
ref ∈ I

l
ref and P̃ l

k
for left and right subset of cameras separately:

sL(p, Π) = ∑
k<ref

C
(
P l

ref, P̃
l
k

)
,

sR(p, Π) = ∑
k>ref

C
(
P l

ref, P̃
l
k

)
.

7 Store the minimum of left and right matching cost (accounting for occlusions
as described by Kang et al. [50]) into three-dimensional cost volume S :

S l(p, Π) = min{sL(p, Π), sR(p, Π)}.

8 end

As part of the actual image matching, the Hamming distance of the census transform
(CT) [51] and a negated, truncated and scaled form of the normalized cross-correlation
(NCC) [38,41] are used and evaluated as cost functions C(·). And since the approach
considers a bundle of input images with an equal number of matching images on either
side of the reference image, the approach presented by Kang et al. [50] is adopted to account
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for occlusions, using the minimum aggregated matching cost of the left and right subset of
matching images. The resulting three-dimensional cost volume S l is of size w l × h l × |δ l |,
where w l and h l are the width and height of the reference image and |δ l | is the number of
plane positions at which the matching is performed, all with respect to the current pyramid
level l. The cost volume S l is implemented as a dynamic cost volume [37] for all but the
top pyramid level, since the sampling range Γ l

p is determined independently for each pixel
p. Nevertheless, the complete set of plane distances δ ∈ [δmin, δmax], deduced from Γ, are
precomputed for each pyramid level l and are the same for all pixels. This in turn allows us
to precompute the homographic mappings for all planes Π.

2.1.2. Determining the Bounding Planes Corresponding to the Given Depth Range

As described before, it is assumed that two bounding planes, namely Πmin and Πmax
with corresponding distances δmin and δmax, between which the scene is to be sampled, are
known. In the case of a fronto-parallel sampling strategy, i.e., n = (0 0 −1)⊺ with respect to
the local camera coordinate system, the distances δmin and δmax are equal to the minimum
and maximum depths, namely dmin and dmax. This does not hold for non-fronto-parallel
plane orientations. To find the bounding planes for slanted plane orientations, first a
view-frustum is constructed, which corresponds to the reference camera for which the
depth is to be estimated. This view-frustum is represented by a pyramid similar to the
field of view of the camera, truncated by two fronto-parallel near and far planes located at
dmin and dmax. Given the four corner points of the view-frustum on the near plane xnear

i
and the four on the far plane xfar

i , the minimum and maximum distances δmin and δmax are
determined as follows:

δmin = min
i
(|n⊺ · xnear

i |) , and

δmax = max
i

(|n⊺ · xfar
i |).

(3)

To avoid an orientation flip of the images, all camera centers ci must lie before Πmin
with respect to the sweeping direction. Thus, for all cameras, n⊺ · ci + δmin > 0 must hold.

2.1.3. Finding the Sampling Steps by Utilizing the Cross-Ratio

As stated by Equation (2), the sampling planes Π of the plane-sweep algorithm
are parameterized by two parameters, namely the normal vector n, which denotes the
orientation and the sweeping direction of the plane, and the orthogonal distance δ from
the optical center of the reference camera cref. The latter one determines the step size with
which the scene is sampled. A simple approach would be to set the step size to sample
the scene with a desired resolution, i.e., sweeping the planes at equidistant unit intervals
through the scene space. However, there is no guarantee that a thorough sampling of the
scene with a small step size will result in higher accuracy. If the step size is not chosen
in accordance with the camera positions of the input images and the baseline between
the cameras, the matching results of two or more successive plane positions may not
reveal enough difference, thus introducing ambiguities between multiple plane hypotheses.
Furthermore, for efficiency, it is important to vary the sampling rate in scene space with
respect to the plane distance relative to the reference camera, since perspective projection
requires an increasingly smaller step size as the plane moves closer to the camera.

Therefore, a common approach is to select the sampling positions of the planes ac-
cording to the disparity change induced by two successive planes. The pixel-wise motion
between the distorted images of two successive planes should not exceed an absolute value
of 1 [25,52]. In this approach, we derive the distances of the sampling planes directly from
the correspondences in image space by relying on the cross-ratio, which is invariant under
perspective projection. Our approach to computing the distances δ of the sampling planes
Π with respect to the reference camera was published in [11] and is illustrated in Figure 3
and summarized by Algorithm 2.
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Algorithm 2: Finding plane distances δ by utilizing the cross-ratio.

Data: two cameras with full projection matrices Pref and Pk, an image point pref

inducing largest disparity when warped from Iref to Ik, as well as two
bounding planes Πmin and Πmax.

Result: list of orthogonal plane distances δ relative to cref, such that the maximum
pixel displacement between the warped images of two consecutive planes
is less than or equal to 1.

1 Calculate the viewing ray vref
p , going through cref and pref, and intersect it with

Πmin and Πmax, yielding the scene points xmin and xmax.
2 Project the optical center cref, as well as xmin and xmax onto the image plane of the

second camera, yielding the epipole ek
ref and the two image points pk

min and pk
max,

all lying on the epipolar line lk
p.

3 Determine the unit vector k =
pk

min−pk
max

||pk
min−pk

max||
, being the normalized direction of lk

p

and pointing from pk
max to pk

min.
4 for pk

i ← pk
max to pk

min by pk
i+1 = pk

i + k do
5 Given the viewing rays vk

eref
, vk

pmin
, vk

pi
and vk

pmax going through the optical
center of ck and ek

ref, pk
min, pk

i and pk
max respectively, apply the cross-ratio to

compute xi ∈ vref
p according to:

Q(vk
eref

, vk
pmin

, vk
pi

, vk
pmax) =

sin(α(vk
eref

, vk
pi
)) · sin(α(vk

pmin
, vk

pmax))

sin(α(vk
eref

, vk
pmax)) · sin(α(vk

pmin
, vk

pi
))

=
∆(cref, xi) · ∆(xmin, xmax)

∆(cref, xmax) · ∆(xmin, xi)
.

6 Since Q(cref, xmin, xi, xmax) = Q(cref, δmin, δ, δmax), derive δ relative to cref
according to:

δ · (δmax − δmin)

δmax · (δ− δmin)
=

sin(α(vk
eref

, vk
pi
)) · sin(α(vk

pmin
, vk

pmax))

sin(α(vk
eref

, vk
pmax)) · sin(α(vk

pmin
, vk

pi
))

.

7 end

For ck, we choose the camera that will induce the largest image offset, thus giving
an upper bound on the disparity range. As noted by Pollefeys et al. [25], this is typically
the camera farthest away from the reference camera. Similarly, we choose pref as the
pixel that induces the largest disparity when warped from Iref to Ik via H(Πmin, Pref, Pk),
typically one of the four corners. Furthermore, to account for all possible setups of cref
and ck, it is important to use Q(vk

eref
, vk

pmin
, vk

pi
, vk

pmax) in Algorithm 2, since ek
ref would flip

to the side of pk
max if the focal plane of the reference camera is behind ck. This approach

is computationally efficient and is not restricted to a fronto-parallel orientation of the
sampling planes, as long as the optical axis of the reference camera intersects the planes
and the sweeping vector has a component that is parallel to the optical axis.

2.2. Depth Map Computation with Surface-Aware Semi-Global Matching

The hierarchical plane-sweep algorithm for multi-image matching produces a three-
dimensional cost volume S l(p, Π) at each pyramid level, containing pixel-wise matching
costs, given plane Π located at a distance δ orthogonal to the location cref of the reference
camera. In the second stage of the depth estimation within FaSS-MVS, the cost volume is
regularized by a semi-global optimization scheme, yielding a dense depth map Dl . It is
based on the Semi-Global Matching (SGM) algorithm proposed by Hirschmüller [33,34]
for the task of disparity estimation as part of the stereo normal case. It uses dynamic
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programming to efficiently minimize a two-dimensional Markov Random Field (MRF)
energy function by aggregating the matching costs within the cost volume along numerous
concentric one-dimensional paths.

[R t]

ck

cref

Iref

Πmin

Πmax

lk
p

Π

δ

δmin

δmax

pref

xmin

xi

xmax

ek
ref

pk
min

pk
i

pk
max

vref
p

vk
eref

vk
pmin

vk
pi

vk
pmax

Figure 3. Illustration of determining the orthogonal distance parameter of the sampling planes of the
plane-sweep multi-image matching by using the cross-ratio and epipolar geometry. Here, cref and ck
represent the positions of the optical centers of the two cameras. Adapted from [11].

Building on the original SGM approach, we propose three different optimization
schemes (SGMx). Apart from a straightforward adaptation of the matching cost aggregation
to plane-sweep sampling, we also adopt the approach of Scharstein et al. [41] to also
favor slanted surfaces by taking into account surface information available in the form of
surface normals. Furthermore, we investigate a third extension that penalizes deviations
from the gradient of the minimum-cost path within the SGM optimization scheme. The
subsequent extraction of the depth map D is performed analogously to the extraction of the
disparity map within the SGM algorithm, where disparity is replaced by depth. If a fronto-
parallel plane orientation is considered during the plane-sweep, the depth can be extracted
directly from the plane parameterization. For non-fronto-parallel orientations, however,
D is computed by a pixel-wise intersection of the viewing rays with the corresponding
WTA solutions.

2.2.1. Resolving Plane Hypotheses with Semi-Global Matching

Since the plane-sweep algorithm does not compute hypotheses on disparities, but
rather pixel-wise plane distances relative to the reference camera and thus depth, the first
SGM extension we propose is a straightforward adaption of the standard SGM algorithm to
a multi-view plane-sweep sampling. In this, the formulation of the SGM path aggregation
is modified to

Lr(p, Π) = S(p, Π) + min
δ′

(
Lr(p− r, Π′) + VΠ(Π, Π′)

)
, (4)
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where Π is the sampling plane at distance δ. The smoothness term VΠ now penalizes the
selection of different planes between adjacent pixels along the path Lr, instead of disparities.
It is formulated as:

VΠ(Π, Π′) =


0 , if I(Π) = I(Π′)
φ1 , if |I(Π)− I(Π′)| = 1
φ2 , if |I(Π)− I(Π′)| > 1,

(5)

where I(·) is a function that returns the index of Π within the set of sampling planes (see
Figure 4, Column 2). We denote this extension as plane-wise SGM (SGMΠ). In our previous
publication [12], we have referred to this extension as fronto-parallel SGM (SGMfp), since we
have only considered a fronto-parallel sweeping direction so far. However, the extension is
not restricted to a fronto-parallel plane orientation in the plane-sweep sampling and will
also be evaluated with slanted planes in the scope of this work. Given a pixel-wise WTA
plane parameterization, the corresponding depth is extracted by intersecting the viewing
ray through pixel p = (px py)⊺ with the corresponding plane:

dp =
−δ

n⊺ ·K−1 · (px py 1)⊺
. (6)

p p′ = p + r

r
Π

S(p, Π)

p p′ = p + r

r
Π

Np

p p′ = p + r

r
Π

∇r∆ipg

- - - - - Minimum-Cost Path Lr

SGMΠ SGMΠ-sn SGMΠ-pg

S(p′, Π− 1)
S(p′, Π)
S(p′, Π + 1)
S(p′, Π + 2)

S(p, Π)

∆isn
S(p′, Π + ∆isn)

S(p′, Π + ∆isn − 1)

S(p′, Π + ∆isn + 1)

S(p, Π)

S(p′, Π + ∆ipg − 1)
S(p′, Π + ∆ipg)

S(p′, Π + ∆ipg + 1)

Figure 4. Illustration of the different path aggregation strategies along one path direction r within
the three presented SGMx optimization schemes. Column 1: Reference image and normal map of
a building. Illustrated area is marked with yellow line. Column 2: SGMΠ path aggregation. The
blue and pink lines represent the blue and pink surface orientations on the building facade. When
aggregating the path costs for pixel p at plane Π, SGMΠ will include the previous costs at the same
plane position (green) without additional penalty. The previous path costs at Π ± 1 (yellow) will be
penalized with φ1. The previous path costs located at Π + 2 (red), which is actually located on the
corresponding surface, will be penalized with the highest penalty φ2. Column 3: SGMΠ-sn uses the
normal vector np, which encodes the surface orientation at pixel p, and computes a discrete index
jump ∆isn, which ideally adjusts the zero-cost transition so that the previous path costs at Π+2 are
not penalized. Column 4: Similar to SGMΠ-sn, SGMΠ-pg adjusts the zero-cost transition. However,
the discrete index jump ∆ipg is derived from the running gradient ∇r of the minimum-cost path.
Adapted from [12].

2.2.2. Incorporating Surface Normals to Adjust the Zero-Cost Transition

The smoothness term of the initial SGM algorithm is formulated with discrete disparity
differences, penalizing discrete disparity jumps between neighboring pixels. In its opti-
mization scheme, it does not consider subpixel disparities and thus favors fronto-parallel
surface structures, leading to staircase artifacts if no post-processing is applied [41]. The
same applies to our first extension, SGMΠ. Although plane-sweep sampling also supports
non-fronto-parallel plane orientations, the smoothness term of SGMΠ (see Equation (5))
does not, and strongly penalizes index jumps in the sampling planes greater than 1. While
this is desired if the plane orientation coincides with the surface orientation, it will still lead
to staircasing artifacts if the surface and plane orientations do not align. To overcome the
favoring of fronto-parallel structures and to adjust the smoothness term of SGM to surfaces
that are slanted with respect to the sampling direction, Scharstein et al. [41] suggest adding
an offset to the smoothness term. This offset can be extracted from additional information
about the surface orientation, e.g., surface normals, which will make the zero-cost transi-
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tion coincide with the surface orientation. We adopt this approach as part of our second
extension, and thus call it surface normal SGM (SGMΠ-sn).

In our hierarchical approach, we extract the normal vectors from the normal mapN l+1,
which was estimated in the previous level of the pyramid (see Figure 1). The pixel-wise
normal vectors nx = N l+1(p) indicate the surface orientation at the scene point x, which
is computed by intersecting the viewing ray through p with the plane Π. From this, the
discrete index jump ∆isn through the set of sampling planes can be calculated, which is
caused by the tangent plane to nx. Since the plane-sweep sampling is not restricted to
fronto-parallel plane orientations, the index jump ∆isn must be calculated based on the
difference between the tangent plane at xΠ and the orientation of the sampling planes in
the direction r of the currently considered aggregation path. With ∆isn, the smoothness
term used by our extension SGMΠ-sn is adjusted according to

VΠ-sn(Π, Π′) =


0 , if I(Π) + ∆isn = I(Π′)
φ1 , if |I(Π) + ∆isn − I(Π′)| = 1
φ2 , if |I(Π) + ∆isn − I(Π′)| > 1,

(7)

This allows the zero-cost transition of the SGM path aggregation to be aligned with
the surface orientation of the scene (see Figure 4, Column 3). The pixel-wise discrete index
jumps can be computed once for each pixel p and each path direction r, as also noted by
Scharstein et al. [41], with little computational overhead.

2.2.3. Penalizing Deviations from the Gradient of the Minimum-Cost Path

Instead of relying on additional information, e.g., normal vectors, the third of our
proposed extensions computes the running gradient ∇r of the minimum-cost path in scene
space in order to adjust the zero-cost transition in the aggregation of path costs. Hence, it is
denoted as path gradient SGM (SGMΠ-pg).

The gradient vector ∇r = x − x′ in scene space is computed dynamically while
traversing the path r. Again, x is the scene point found by intersecting the viewing ray
through p with Π, while x′ is the scene point parameterized by p′ and the plane Π̂′. Here,
p′ = p + r represents the predecessor of p along the path r and Π̂′ denotes the plane at
distance δ̂ = arg minδ Lr(p′, Π) associated with the previous minimum costs.

From this, a discrete index jump ∆ipg is computed, which is again used to account
for possibly slanted surfaces in scene space by adjusting the zero-cost transition of the
smoothness term according to

VΠ-pg(Π, Π′) =


0 , if I(Π) + ∆ipg = I(Π′)
φ1 , if

∣∣I(Π) + ∆ipg − I(Π′)
∣∣ = 1

φ2 , if
∣∣I(Π) + ∆ipg − I(Π′)

∣∣ > 1,

(8)

This implicitly penalizes deviations from the running gradient between two scene
points corresponding to two consecutive pixels on the aggregation path r (see Figure 4,
Column 4).

2.3. Extraction of Surface Normals from Depth Maps

From the estimated depth map D, our approach computes a normal map N , which
holds the local surface orientations in the form of three-dimensional normal vectors. The
surface normal vectors np = hp × vp are computed using the cross-product, where hp is
the difference vector between the reprojected scene points of two neighboring pixels to p in
horizontal direction and vp is the difference vector in vertical direction.

Using only the cross-product to compute the surface orientation does not include any
local smoothness assumption. Therefore, we use an appearance-based weighted Gaussian
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smoothing in a local two-dimensional windowWp around p, which adjusts the smoothing
strength depending on the intensity difference between q ∈ Wp and p:

N (p) =
n̄p∣∣n̄p
∣∣ , (9)

with

n̄p = np + ∑
q∈Wp

nq ·
1√

2πσ2
· exp

(
− (q− p)2

2σ2 −
∆Ipq

β

)
. (10)

In this, β is set to 10, while σ is fixed to the radius ofWp.

2.4. Estimation of Confidence Measures Based on Surface Orientation

Besides the depth map D and the normal map N , the presented approach also com-
putes confidence measures for the depth estimates in the range of [0, 1] and stores them
in a confidence map C. Such confidence measures allow subsequent reasoning about the
certainty of the corresponding estimates and thus improve further processing. Thus, confi-
dence maps are useful by-products for subsequent steps such as depth map fusion or scene
interpretation. Furthermore, they allow us to gain more insight into the effects of different
configurations of the presented approach.

The computation of the pixel-wise confidence measures is based on the geometric
properties of the estimated depth map and is derived from the normal vectors stored
inside the normal map N and the plane orientations of the plane-sweep sampling. In
particular, the geometric confidence measure is based on the enclosed angles between the
local surface orientation stored inside the normal map np = N (p), the orientation of the
sampling plane nΠ, and the inverted viewing direction v. This is taken from the geometric
weighting factor proposed by Kolev et al. [53]. They argue that a depth estimate is more
accurate when the surface orientation of the observed geometry is fronto-parallel to the
image plane of the camera, and less accurate when the camera observes slanted surfaces.
This correlation is modeled by the scalar product between the surface orientation and the
inverted viewing direction. Since image warping, as part of image matching, can be aligned
with the surface orientation by adjusting the normal vector of the plane-sweep algorithm,
the plane orientation is also taken into account. Thus, the geometry-based weighting factor
is calculated as follows:

C(p) =
{ ⟨np,nΠ⟩⟨nΠ ,v⟩ − cos ρ

1 − cos ρ , if {∢(np, nΠ) ∧∢(nΠ, v)} ≤ ρ

0 , otherwise .
(11)

All of the above vectors are assumed to be normalized and given with respect to
the local coordinate system of the camera; thus, v = (0 0 −1)⊺. As in the work of
Kolev et al. [53], a critical angle ρ = 60◦ is used to mark the measurements, for which
the enclosed angles exceed this threshold, as unreliable. The additional consideration of
nΠ in Equation (11) implicitly models the indirect matching of the input images via the
plane-induced homography.

2.5. Post-Processing and Depth Map Filtering

In a final post-processing step, remaining outliers are removed from the depth, normal
and confidence maps by applying a Difference-of-Gaussian (DoG) filtering (Section 2.5.1)
and an outlier removal based on geometric consistency (Section 2.5.2).

2.5.1. Difference-of-Gaussian Filtering

As proposed by Wenzel [46], the DoG filter allows us to remove estimates ofD,N , and
C by masking pixels in image regions that provide little textural information (e.g., blurred
or overexposed areas). It is assumed that image matching in such regions is ambiguous
and leads to less accurate results. The DoG filter is used to detect weakly textured areas
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within the reference image Iref and to build a binary image mask that is used to remove
the estimates from the corresponding maps. Algorithm 3 provides an overview of the
implementation of the DoG filter used, which is similar to the one proposed in [46].

Algorithm 3: The Difference-of-Gaussian filter to invalidate all image pixels
belonging to weakly textured areas.

Data: unfiltered depth, normal and confidence maps (D, N and C) as well as
corresponding reference image Iref.

Result: filtered D, N and C, in which all estimates corresponding to
weakly-textured areas in Iref are removed.

1 Use a Gaussian filter with a kernel of 7× 7 pixels to smooth the reference frame
Iref, yielding Ismooth

ref .
2 Compute the DoG image depicting local image gradients, according to:
IDoG

ref = Iref − Ismooth
ref .

3 Apply a binary threshold to compute the DoG maskMDoG, marking all image
areas in which the intensity change is greater than 0.5.

4 Remove activation areas smaller than 7 pixels inMDoG by applying a speckle
filter.

5 DilateMDoG with a kernel size of 3× 3 pixels to fill small holes in activation areas.
6 Remove deactivation areas smaller than 21 pixels by applying a speckle filter to

the inverted DoG maskMDoG-inv = 1−MDoG.
7 Invalidate pixels in D, N and C for whichMDoG = 1.

2.5.2. Geometric Consistency Based on Mutual Reprojection Error

If multiple depth maps Dk with corresponding projection matrices Pk are available,
e.g., when performing reconstruction by MVS or when considering a sequence of im-
ages as input and a temporal consistency is to be established, a geometric consistency
check can be performed by relying on the mutual reprojection error. As formulated by
Schönberger et al. [4], each pixel pref of a selected reference depth map Dref with a depth
estimate d ref

p is projected into the view of another depth map Dk by Hp, according to d ref
p

and the corresponding projection matrices Pref and Pk, resulting in the image point pk.
Given pk and the corresponding depth d k

p from Dk, the image point pk is projected back
into the view of Dref by Hk

p, resulting in p̃ref. Finally, if the Euclidean distance between pref

and p̃ref, i.e., the reprojection error ϵk
r (p), exceeds a given threshold ηr, the estimate at pref

is invalidated.
We adopt this approach to perform a final geometry-based filtering between a set of

depth maps within a sliding window. This is not part of the actual hierarchical processing
pipeline, but rather a separate post-processing step, since it requires the results of other
image bundles of the input sequence. If possible, the middle depth map of the sliding
window Ψ is chosen as the reference view on which the filtering is performed. At the
beginning or end of the sequence, where the sliding window would exceed the boundaries,
the window is shifted to either side of the reference view, so that it is always within
the boundaries of the sequence and no depth map is filtered multiple times. Besides
the threshold of the reprojection error ϵk

r , another criterion is introduced to evaluate the
geometric consistency, namely the number of neighboring views for which the reprojection
error is within the threshold, i.e., the number of hits: ϵh(p) = ∑k[ϵ

k
r (p) < ηr], where [·]

is the Iverson bracket. Algorithm 4 gives an overview of geometric consistency and the
corresponding filtering of the depth, normal, and confidence maps. In this work, the sliding
window size is empirically set to |Ψ| = 5, the reprojection error threshold to ηr = 10, and
the consistency threshold to ηh = 3.
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Algorithm 4: The geometric consistency filter for multiple depth maps.
Data: depth, normal and confidence maps (Dk, Nk and Ck) within a sliding

window Ψ of the input sequence as well as corresponding projection
matrices Pk.

Result: filtered Dref, Nref and Cref of reference view, in which all estimates that are
not geometrically consistent are removed.

1 Select Dref, Nref and Cref corresponding to the center-most view within the sliding
window Ψ.

2 foreach pixel pref ∈ Dref and neighboring view k ∈ Ψ do
3 Calculate number of hits for which reprojection error is below threshold:

ϵh(p) = ∑
k
[ϵk

r (p) < ηr], with ϵk
r (p) =

∣∣∣p−Hk
p ·Hp · p

∣∣∣.
4 If ϵh < ηh, invalidate pixel p in Dref, Nref and Cref, by setting it to 0.
5 end

2.6. Evaluation Datasets

The presented approach is quantitatively evaluated on two public datasets, namely
the DTU Robot MVS dataset [54,55] and the 3DOMcity Benchmark dataset [56], which also
provide appropriate ground truth. These two datasets are based on images of scale modeled
buildings and an urban landscape from which an accurate ground truth is acquired. For
a qualitative evaluation and discussion of the applicability of the presented approach
for online dense image matching and 3D reconstruction, two privately captured datasets
of real-world scenes are used, hereafter referred to as the TMB and FB datasets. In the
following, the characteristics of these datasets are briefly introduced. In particular, we
discuss which parts of the datasets are used and what kind of ground truth is available for
the evaluation. The key characteristics are summarized in Table 1.

2.6.1. DTU Robot MVS Dataset

The DTU Robot MVS dataset (Figure 5, Column 1) consists of 124 different tabletop
scenes, of which we used 21 scans of different building models, as these scenes are closest
to the target use case. For each scene, there are input images taken from 49 locations
distributed in an orbital pattern around the tabletop scene. In addition, a ground truth is
provided for each scene in the form of a detailed point cloud captured by a structured-light
scanner. For the quantitative evaluation, the already undistorted images with a resolution
of 1600× 1200 pixels, together with the provided intrinsic and extrinsic camera projection
matrices, were used as input data for the approach. Since the focus of this work is on the
estimation of depth and normal maps only, corresponding ground truth data are rendered
from the detailed point cloud data.

2.6.2. 3DOMcity Benchmark Dataset

Depending on the aircraft and its environment, an orbital trajectory as shown by the
DTU benchmark data may not always be feasible or desirable. The data provided as part
of the 3DOMcity Benchmark [56] (Figure 5, Column 2), however, simulate a grid flight
where the aircraft flies linearly over the area of interest with a fixed camera orientation
relative to the sensor carrier. In this case, images of a scaled urban scene consisting of
buildings of various sizes and shapes, as well as roads and vegetation, are captured with
a DSLR camera that is moved in parallel lines over the model along a rigid bar. To use
the data of the 3DOMcity Benchmark for a quantitative evaluation of the performance of
the presented approach, the already undistorted images are first downscaled to a size of
1798× 1200 pixels, preserving the initial aspect ratio, before the intrinsic camera parameters
are estimated with the help of COLMAP [3]. The extrinsic camera data are extracted from
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the reference provided as part of the benchmark. To evaluate the accuracy of the depth
maps, the reference point cloud computed by the semi-global dense image matching (DIM)
algorithm is rendered from the viewpoints of the input images, as in the case of the DTU
Benchmark dataset.

2.6.3. Real-World Use-Case-Specific TMB and FB Datasets

The strength and purpose of the DTU and 3DOMcity benchmark datasets is their small
size and the associated ability to record or compute accurate reference data, which in turn
facilitates a quantitative evaluation of the accuracy of the evaluated algorithms. However,
these datasets were recorded in controlled environments and do not fully address the use
case targeted by the presented approach. In order to perform a qualitative evaluation on
real data, appropriate test data were collected in private datasets.

This dataset is two-fold. The first part, the TMB dataset (Figure 5, Column 3), consists
of four sequences captured by a DJI Phantom (DJI, Shenzhen, China) 3 Professional flying
around a freestanding house and containers at altitudes between 8 m and 15 m. The second
part, referred to as the Fire Brigade (FB) dataset (Figure 5, Column 4), was captured during
a fire training exercise around a large industrial building. The data were collected using a
DJI Matrice 200 with a Zenmuse XT2 sensor flying linearly over the area where the exercise
was conducted. For all sequences, images were captured at a frame rate of approximately
1 FPS and downsampled to an image size of 1920× 1080 pixels. Images that are not suitable
as input for the presented approach, e.g., by providing too little offset, are discarded.

Figure 5. Overview of the datasets used for performance evaluation of FaSS-MVS. Column 1: Two
building models from the DTU Robot MVS dataset. Column 2: Example images in oblique and nadir
view from the 3DOMcity Benchmark dataset. Column 3: Excerpt of the privately acquired TMB
dataset. Column 4: Use-case-specific dataset acquired during an exercise of the local fire brigade.

Table 1. Summary of the key characteristics of the four evaluation datasets. (i): intrinsic calibration,
(e): extrinsic calibration.

Dataset # Images Image Size Calibration Reference Scene Flight Pattern

DTU 1029 1600 × 1200

(i)
pre-calibration,

(e)
pre-calibration

structured-light
sensor

scale-modeled
buildings orbital

3DOMcity 245 1798 × 1200
(i) COLMAP,

(e) pre-
calibration

semi-global
offline DIM

scale-modeled
urban area linear

TMB 2013 1920 × 1080 (i) COLMAP,
(e) COLMAP

COLMAP
(geometric

depth)
rural area orbital

FB 202 1920 × 1080 (i) COLMAP,
(e) COLMAP

COLMAP
(geometric

depth)
industrial area linear



Sensors 2024, 24, 6397 18 of 38

2.7. Error Measures

To directly quantify error between the estimated depth map Dest and the correspond-
ing ground truth Dgt during the experiments, absolute and relative L1 measures are used:

L1-abs(Dest,Dgt) =
1
|V| ∑

p∈V
|Dest(p)−Dgt(p)| , and (12)

L1-rel(Dest,Dgt) =
1
|V| ∑

p∈V

|Dest(p)−Dgt(p)|
Dgt(p)

. (13)

Here, V denotes the set of pixels for which both Dest and Dgt have valid depth
measurements. While L1-abs provides an absolute and thus interpretable insight into
the mean error of the estimated depth map, it is rather unsuitable for comparing results
across multiple datasets with different depth ranges. This is because the error of depth
measurements typically increases with depth, resulting in a higher absolute error for
datasets with greater scene depth. To compensate for this effect, the relative L1-rel measure
normalizes the absolute difference by the depth stored at the corresponding ground truth
pixel. This reduces the effect that erroneous pixels in distant areas of the scene have on the
error score, while increasing the weight of pixels close to the camera.

The two error measures introduced above provide a simple strategy for evaluating the
error of the estimates. However, they do not allow one to reason about the completeness
and density of the estimated depth map. Since the focus of this work is on dense MVS, it
is also of great interest to know how many pixels of Dest are actually filled with correct
estimates. Two closely related error measures are used for this, namely the accuracy (Accθ)
and the completeness (Cplθ). These scores are typically used to evaluate classification tasks,
but in recent years, they have also been used to evaluate range measurements [57,58]. On
the one hand, the accuracy Accθ indicates the number of pixels within the estimated depth
map Dest for which the corresponding depth value is within a given threshold θ to the
ground truth:

Accθ(Dest,Dgt) =
1
|E | ∑

p∈V

[
max

(
Dest(p)
Dgt(p)

,
Dgt(p)
Dest(p)

)
< θ

]
. (14)

The completeness Cplθ , on the other hand, indicates the fraction of the ground truth
pixels for which estimates exist that are within the given distance threshold to the reference:

Cplθ(Dest,Dgt) =
1
|G| ∑

p∈V

[
max

(
Dest(p)
Dgt(p)

,
Dgt(p)
Dest(p)

)
< θ

]
. (15)

Again, V holds the set of pixels for which both Dest and Dgt have valid depth measure-
ments. Similarly, E denotes the set of pixels with valid estimates, while G holds the pixels
with valid ground truth values. In both Equations (14) and (15), the operator [·] refers to
the Iverson bracket. The threshold θ is given as a percentage of the corresponding ground
truth value. For example, Acc1.25 and Cpl1.25 give the fraction of pixels with respect to the
Dest and Dgt for which the difference between the estimate and the ground truth is less
than 25% of the corresponding ground truth depth. These two measures are combined into
a single score, the Fθ score, which is the harmonic mean of Accθ and Cplθ :

Fθ(Dest,Dgt) = 2 ·
Accθ ·Cplθ

Accθ + Cplθ

. (16)

Thus, a high Fθ-score indicates a good trade-off between the achieved accuracy of the
depth map and its completeness with respect to the ground truth.
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3. Results

The following sections present the results of the experiments conducted. They evaluate
and analyze different aspects of the presented approach, such as accuracy, efficiency, and
application-specific usability. First, the chosen configuration of the hyperparameters,
i.e., those of the hierarchical processing scheme, similarity metrics and cost function, is
outlined in Section 3.1. In Section 3.2, the ability of the three SGM extensions to reconstruct
non-fronto-parallel surface structures is evaluated and compared to the effects of using
a non-fronto-parallel plane orientation within plane-sweep sampling. An evaluation of
the improvements obtained by post-filtering is presented in Section 3.3. In Section 3.4
and Section 3.5, FaSS-MVS is evaluated and compared with related approaches from the
literature, both in terms of accuracy and runtime. Finally, the results of use-case-specific
experiments are presented and qualitatively illustrated in Section 3.6.

The entire processing pipeline of the presented approach, except for the generation of
the Gaussian image pyramids and the parameterization of the plane-sweep algorithm, is
implemented in CUDA and thus optimized for massively parallel computing by general
purpose computation on a GPU (GPGPU), which in turn is embedded in a C++ applica-
tion. All experiments and timing measurements were performed on an NVIDIA Titan
X (Santa Clara, CA, USA) GPU and an Intel XEON CPU E5-2650 (Santa Clara, CA, USA)
running at 2.20 GHz. Although the CPU is designed for a server architecture, only a small
part of our approach is run on the CPU, and thus its superiority over commodity desktop
hardware is insignificant.

3.1. Configuration of the Hierarchical Plane-Sweep Dense Multi-Image Matching

To find the best parameterization for the hierarchical DIM, i.e., the optimal number
of pyramid levels, the best similarity measure and cost function for the plane-sweep DIM,
as well as the appropriate plane orientation, we performed several ablation studies as
described in Appendix A, Appendix B, and Appendix C, respectively. In summary, the
input bundle size is set to |Ω| = 5 and the pyramid height is set to n = 3 for the DTU
dataset and n = 2 for the 3DOMcity dataset. A fronto-parallel plane orientation, i.e.,
n = (0 0 −1)⊺, is used for the plane-sweep sampling. As a similarity measure and cost
function in the DIM, the truncated, inverted and scaled NCC with a support region of
5× 5 pixels is used. Although the NCC with a support region of 9× 9 pixels achieves the
best results, NCC5×5 is chosen for further experiments, since the error increase is small,
but the computational complexity is significantly lower and the throughput higher than
that of NCC9×9 as measured by Ruf et al. [36]. Based on the chosen cost function, we set
the SGM penalty φ1 to 100. To preserve depth discontinuities at object boundaries, we
adaptively adjust the second penalty φ2 based on the absolute intensity difference between
two neighboring pixels, as formulated by Scharstein et al. [41], with α = 8 and β = 10.
And since the presented approach uses multiple matching images, the SGM penalties are
multiplied by the number of input images within the left and right subsets with respect to
Iref, since the matching costs are summed within these image sets. These hyperparameters
will be used for all subsequent experiments.

3.2. Evaluation of the Surface-Aware Extensions to SGM

As described in Section 2.2, in addition to the straightforward combination of SGM
with plane-sweep sampling (SGMΠ), this work includes two further surface-aware exten-
sions to SGM, namely the incorporation of surface normals to adjust the zero-cost transition
in SGM path aggregation (SGMΠ-sn) and the penalization of deviations from the gradient of
the minimum-cost path (SGMΠ-pg). In the following, the results obtained by SGMΠ-sn and
SGMΠ-pg in combination with a fronto-parallel sampling plane orientation are evaluated
and compared with those obtained by SGMΠ.
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The quantitative results presented in Table 2 show only small differences in the L1 error
between the different implementations of the SGM optimization. While for the DTU dataset,
the best results are achieved by the SGMΠ-pg implementation, for the 3DOMcity dataset,
the standard adaptation of the SGM optimization to plane-sweep sampling, i.e., SGMΠ,
achieves the lowest error. The relative L1 error shows no difference. This is due to the
fact that the individual L1-rel values only start to differ after the fourth decimal place.
Nevertheless, the ranking of the L1-rel scores is the same as that of the L1-abs scores. In a
qualitative comparison, Figure 6 shows that SGMΠ-sn leads to a seemingly smoother depth
and normal map (e.g., on the ground plane), but at the same time loses small details and
increases unwanted depth discontinuities in some areas, such as the building facade. A
close comparison of the normal maps between SGMΠ and SGMΠ-pg shows slightly less
staircasing artifacts in the case of SGMΠ-pg, which also supports the slightly lower error
in Table 2. However, a qualitative comparison of the results on the 3DOMcity dataset in
Figure 7 does not show any noticeable differences between the different implementations.
The reason for the small L1-abs error achieved by SGMΠ on the 3DOMcity dataset is
thought to be due to the fact that the 3DOMcity dataset also contains a subset of nadir
images in which there are few slanted surfaces and the fronto-parallel orientation of the
sampling planes coincides with most of the scene structure.

Table 2. Quantitative comparison of the results obtained by different implementations and adapta-
tions of the SGM algorithm in combination with a fronto-parallel sweeping direction. The best results
are underlined.

Dataset Metric SGMΠ SGMΠ-sn SGMΠ-pg

DTU

L1-abs 19.832 19.768 19.684
(in mm) ±16.225 ±16.192 ±16.154
L1-rel 0.027 0.027 0.027

±0.021 ±0.021 ±0.021

3DOMcity

L1-abs 14.615 14.673 15.074
(in mm) ±6.254 ±6.229 ±6.133
L1-rel 0.012 0.012 0.012

±0.007 ±0.007 ±0.006

To further quantify the strengths and weaknesses of the three different SGM aggrega-
tion strategies, three receiver operating characteristic (ROC) curves, one for each extension,
are plotted for each dataset in Figure 8. These curves illustrate the error rate achieved
by the corresponding SGM extension as a function of increasing density of the estimated
depth map. The density of the depth map is varied by sampling the number of pixels
in steps of 5% based on their ordered confidence stored in C, going from a high to a low
confidence estimate. The average error rate is quantified by 1-Acc1.05 (see Equation (14))
and indicates the number of sampled pixels in D whose absolute difference from the
ground truth exceeds 5% of the ground truth value. Thus, at a low density of D, i.e., a high
confidence threshold, the error rate should ideally be at its minimum and then increase
with increasing density, reaching the total error of D at a density of 100%. The plots start at
a density of 5%, since the error rate at a density of 0% is undefined. However, analyzing
the ROC curves of each method individually is not very meaningful. So in Table 3, we
also provide data on the area under curve (AUC) along with the optimal AUC (AUC-Opt.)
and the difference between the two (∆AUC) for the three different SGM implementations,
as discussed by Mehltretter and Heipke [59], to quantitatively assess the accuracy of the
estimated depth and confidence map. Since the AUC-Opt. represents the area under
curve for an optimal confidence map, the smaller the difference ∆AUC, the more accurate
the confidence map. The curves in Figure 8 as well as the results in Table 3 support the
superiority of the surface-aware SGM extensions over the standard SGM adaptation to
plane-sweep sampling. For both datasets, the curves and the difference of the AUC to the
AUC-Opt. of SGMΠ-sn and SGMΠ-pg are lower than those of SGMΠ, indicating lower error
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rates. However, the fact that most of the ROC curves start with a high error rate at a density
of 5%, and then drop before rising again, suggests that the estimated confidence values do
not adequately represent the certainty of the depth estimates. The reasons for this are many
and will be discussed further in Section 4.4.

Ground Truth Depth Ground Truth Normal Reference Image

Depth Normal Confidence

SG
M

Π
SG

M
Π

-s
n

SG
M

Π
-p

g

Depth Difference

Figure 6. Qualitative comparison of the results achieved by the three different SGM implementations
on the DTU dataset. Row 1: Reference data from the dataset, i.e., the ground truth depth and
normal map, as well as the reference image for which the data are computed. Rows 2–4: Data,
i.e., depth, normal and confidence maps, computed by SGMΠ, SGMΠ-sn and SGMΠ-pg, respectively.
Furthermore, difference maps are provided which hold the pixel-wise absolute difference between
the estimated depth map and the ground truth. The color encoding reaches from dark blue (low
error) via green to yellow (high error). The depth range within the depth maps reaches from 580 mm
(blue) to 830 mm (red). The estimated maps are masked according to the ground truth.

Table 3. The AUC together with the AUC-Opt. and the difference between those two (∆AUC) for the
three different SGM implementations. The best results are underlined.

Dataset Metric SGMΠ SGMΠ-sn SGMΠ-pg

DTU
AUC 1245.5 1157.5 1150.3
AUC-Opt. 180.5 180.5 180.8
∆AUC 1065.0 977.0 969.6

3DOMcity
AUC 338.0 312.2 290.0
AUC-Opt. 192.6 192.6 193.0
∆AUC 145.4 119.6 96.9
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Figure 7. Qualitative comparison of the results achieved by the three different SGM implementations
on the 3DOMcity dataset. Row 1: Reference data from the dataset, i.e., the ground truth depth
and normal map, as well as the reference image for which the data are computed. Rows 2–4: Data,
i.e., depth, normal and confidence maps, computed by SGMΠ, SGMΠ-sn and SGMΠ-pg, respectively.
Furthermore, difference maps are provided which hold the pixel-wise absolute difference between
the estimated depth map and the ground truth. The depth range within the depth maps reaches
from 1 m (blue) to 1.8 m (red). The estimated maps are masked according to the ground truth. For
visualization in this figure, the resulting images have been rotated counterclockwise by 90◦. Thus, the
color encoding of the normal maps differs from that used in the other figures. Here, red represents an
upwards orientation, while green represents an orientation to the left.
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Figure 8. ROC curves illustrating the error rate achieved by the three different SGM implementations
as a function of increasing density of the estimated depth map.

3.3. Improvements Gained by Post-Filtering

In the following, the effects of the implemented post-filtering methods to remove
remaining outliers and supposedly wrong estimates by Difference-of-Gaussian (DoG)
filtering (see Section 2.5.1) and a geometric consistency check (GCC) (see Section 2.5.2) are
examined. While the latter relies on the actual estimates, the DoG filter is based on the
assumption that image regions with low texture could lead to ambiguities in the image
matching and, in turn, incorrect estimates. However, this can lead to the erroneous removal
of good or even correct estimates.

Instead of using the absolute and relative L1 metrics to quantitatively evaluate the
results achieved when using post-filtering, the effects are evaluated using the accuracy mea-
sure Accθ (see Equation (14)) and the completeness measure Cplθ (see Equation (15)). This
is because they indirectly contain information about the density of the resulting depth maps,
which should ideally be as high as possible. Since the individual sequences of the 3DOMcity
dataset consist of too few images to perform a GCC with the parameterization mentioned
in Section 2.5.2, this experiment is only performed on the DTU benchmark dataset. Figure 9
shows the results of different post-filtering strategies, i.e., DoG filtering, GCC, and a combi-
nation of both, performed in combination with the three different SGM extensions and a
fronto-parallel sampling. For reference, the accuracy–completeness curves resulting from
the corresponding configurations without post-filtering are also shown. When constructing
the curves, the threshold θ is varied within the list of {1.25, 1.20, 1.15, 1.10, 1.05, 1.01}. Note
that, as the threshold decreases, the accuracy and completeness rates also decrease. The
highest values are obtained with θ = 1.25.

Most evidently, Figure 9 again shows that there is not much difference in the overall
error between the three SGM implementations. However, the accuracy–completeness
curves clearly show the differences between the post-filtering strategies. Unsurprisingly,
the reference configuration with no filtering achieves the highest completeness, since no
estimates are removed from the predicted depth map, which results in the lowest accuracy.
The use of DoG filtering significantly improves this, as it is likely to remove a significant
number of false estimates from poorly textured areas. However, as expected, the DoG
filter probably also removes a number of correct estimates, as the use of filtering based
on geometric consistency achieves a similar completeness, but with a higher accuracy. In
particular, looking at the values for θ = 1.01, i.e., the lower left end of each curve, the use
of a GCC achieves an increase in completeness of about 5%, while exceeding the accuracy
of the DoG filter by more than 10%. However, a clear recommendation as to which filter to
use cannot be made, since both filtering strategies have their strengths and weaknesses,
especially with respect to online processing, as discussed in Section 4.3. A combination of
both filters is not motivated. Although the accuracy increases slightly, the completeness
decreases by more than 20% in some cases. Moreover, this effect can also be achieved
by lowering the threshold of the reprojection error ηr in the geometric consistency check,
which will probably increase the accuracy even more.
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Figure 9. Accuracy–completeness curves of different post-filtering strategies, i.e., DoG filtering,
GCC as well as a combination of both, executed in combination with the three different SGM
extensions and a fronto-parallel sampling. In this, the threshold θ is varied within the list of
{1.25, 1.20, 1.15, 1.10, 1.05, 1.01}. By decreasing θ, the accuracy and completeness rates drop.

Finally, to directly compare the different SGM extensions in combination with the
GCC that gives the best results, the corresponding F-scores (see Equation (16)) for each
evaluated θ are listed in Table 4. Just like the results shown in Table 2, the F-scores reveal
the superiority of SGMΠ-pg over the other two implementations, since for all θ but one,
SGMΠ-pg achieves the highest F-score.

Table 4. F-scores achieved by the SGMx approaches together with the post-filtering based on GCC.
The best results are underlined.

Approach F1.25 F1.20 F1.15 F1.10 F1.05 F1.01
(in %) (in %) (in %) (in %) (in %) (in %)

SGMΠ 74.2 74.1 74.0 73.7 71.5 51.9
SGMΠ-sn 74.1 74.1 74.0 73.6 71.5 52.3
SGMΠ-pg 75.6 75.5 75.4 75.1 72.9 51.4

3.4. Comparison to Related Approaches from Literature

Based on the previous experiments and the knowledge gained about the best perform-
ing configuration, we now perform a series of experiments on the DTU dataset to compare
FaSS-MVS with related approaches from the literature. On the one hand, we compare our
results with those of a related approach for online dense MVS, namely the PlaneSweepLib
(PSL) [31], which is also used by OpenREALM [6]. The algorithm provided by the PSL
is very similar to ours, but does not have hierarchical processing and does not perform
post-processing based on geometric queues. In addition, the PSL uses a Bayesian formula-
tion to extract the depth map from the generated depth hypotheses, while FaSS-MVS relies
on optimizing an MRF using dynamic programming. In the following experiments, we
configure the PSL to also use five input images, 128 planes to generate depth hypotheses,
the NCC as similarity measure, and the reference split [50] to account for occlusions. We
compare the performance of the PSL with different sized support regions for the NCC,
namely with a neighborhood size of 5× 5 pixels and 11× 11 pixels. And since the PSL does
not include a geometric verification of the estimates, we also combine it with the filtering
based on GCC in the same configuration as described above.

We also evaluate FaSS-MVS against two offline MVS approaches, namely the widely
used and open source COLMAP toolbox and the more recent ACMMP [18]. While
COLMAP provides the complete reconstruction pipeline, i.e., including the estimation
of camera poses by SfM and the fusion of the depth maps into a 3D point cloud, only
the geometric depth maps estimated by the provided MVS approach [4] with the default
configuration are used for comparison. Like many other MVS techniques, COLMAP as well
as FaSS-MVS and PSL have difficulty estimating reliable pixel correspondences and thus
depth values in poorly textured image regions. The recent ACMMP approach enhances
MVS depth estimation with multi-scale geometric consistency and a planar prior to reduce
ambiguity in image regions with little texture information, resulting in denser depth maps.
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The results achieved by FaSS-MVS with its three different SGM strategies, as well as
the results obtained by the three other approaches, are listed in Table 5. While SGMΠ-pg

outperforms the other two SGM extensions in terms of F-score, SGMΠ-sn has the lowest L1
error. This can be explained by the density of the depth maps. When SGMΠ-pg is used, more
estimates pass the geometric consistency check, resulting in depth maps that are slightly
more dense than those produced by SGMΠ and SGMΠ-sn, increasing the F-score but also
increasing the L1 error. Quantitatively speaking, however, the difference is only marginal,
and a conclusion as to whether one particular SGM extension should be preferred over the
others depends on the use case and should be drawn based on qualitative comparisons.

Table 5. Quantitative comparison of FaSS-MVS with its three SGM extensions, combined with post-
filtering based on geometric consistency checking, with related approaches from the literature on
the data of the DTU benchmark. As a reference, the results of the PSL [31] for online MVS, with
differently sized support regions for the NCC, as well as with GCC are given. The results of two
offline MVS approaches, namely COLMAP [4] and ACMMP [18], are provided for reference. The
best results are underlined.

Approach L1-abs L1-rel F1.25 F1.20 F1.15 F1.10 F1.05 F1.01
(in mm) (in %) (in %) (in %) (in %) (in %) (in %)

FaSS-MVS-SGMΠ 8.549 ± 7.509 0.012 ± 0.011 74.2 74.1 74.0 73.7 71.5 51.9
FaSS-MVS-SGMΠ-sn 8.479 ± 7.559 0.012 ± 0.011 74.1 74.1 74.0 73.6 71.5 52.3
FaSS-MVS-SGMΠ-pg 8.722 ± 7.255 0.013 ± 0.010 75.6 75.5 75.4 75.1 72.9 51.4

PSL-NCC5×5 73.924 ± 23.686 0.106 ± 0.027 67.3 62.5 56.5 48.4 35.3 9.9
PSL-NCC5×5-GCC 2.32 ± 1.26 0.003 ± 0.002 32.5 32.5 32.5 32.5 32.4 31.2
PSL-NCC11×11 51.229 ± 28.209 0.071 ± 0.035 72.2 69.5 66.0 61.1 51.0 21.9
PSL-NCC11×11-GCC 2.17 ± 1.23 0.003 ± 0.002 61.1 61.1 61.1 61.1 61.0 58.9

COLMAP 3.745 ± 5.498 0.006 ± 0.004 80.2 80.2 80.1 80.0 79.6 74.4
ACMMP 12.963 ± 13.379 0.018 ± 0.018 77.5 77.2 76.6 75.5 73.0 55.2

Compared to PSL in the configuration proposed by Häne et al. [31], i.e., without
geometric post-processing, FaSS-MVS performs significantly better. This is due to the fact
that the PSL does not include outlier removal, resulting in a high L1 error and a lower
F-score. When combined with outlier filtering based on geometric consistency, the L1 of
the resulting depth maps is the lowest of all the approaches evaluated, even lower than
that of the two offline MVS approaches. However, the F-score is also significantly reduced
due to the low completeness of the depth maps, as can be seen in Figure 10.

Offline MVS approaches are said to be superior to online approaches due to the
availability of more input images and the absence of runtime constraints. And while
COLMAP is slightly outperformed by PSL in combination with GCC in terms of the L1
error, it clearly achieves overall superiority in terms of the F-score and thus the trade-off
between accuracy and completeness. When comparing the mean density of the resulting
depth maps, ACMMP outperforms COLMAP by more than 24%. Surprisingly, however,
ACMMP has a high L1 error and a low F-score. This suggests that the estimates computed
by ACMMP in low-texture areas, where the other approaches do not provide estimates,
are not very accurate. The significance of a comparison between online and offline MVS
approaches can be questioned, however, since the two types of approaches make different
assumptions and focus on different aspects within the processing, as further discussed in
Section 4.1.

3.5. Runtime Comparison

As motivated above, the presented approach aims at incremental and online process-
ing, i.e., the computation should ideally keep up with the input stream. Therefore, the
total runtime of FaSS-MVS with its three SGM extensions compared to the comparable
approach of PSL is evaluated in Table 6. In addition to the standard use of eight aggregation
paths within the SGM optimization, which achieves the lowest error and has been used
in previous experiments, the runtime and accuracy reduction of using only four aggre-
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gation paths is listed. This is motivated by a number of studies [35,36,60] that show that
reducing the number of aggregation paths from eight to four can significantly reduce the
computational time of SGM aggregation, while only marginally increasing its error. All
measurements were conducted without any post-processing, i.e., DoG filtering or filtering
based on geometric consistency.
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Figure 10. Qualitative comparison of FaSS-MVS with its three SGM extensions and GCC, the PSL
with differently sized support regions for the NCC, as well as with GCC.
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Table 6. Runtime comparison of FaSS-MVS with its three SGM extensions and the comparable
approach from the PSL [31]. Measurements were performed on the DTU benchmark dataset and
represent the average runtime required by the different approaches to estimate a single depth map.
With respect to FaSS-MVS, the difference between using 8 and 4 aggregation paths within the SGM
optimization is also evaluated. The best results are underlined.

Metric FaSS-MVS-SGMΠ FaSS-MVS-SGMΠ-sn FaSS-MVS-SGMΠ-pg PSL
8-Path 4-Path 8-Path 4-Path 8-Path 4-Path NCC5×5

Runtime (in ms) 640 413 895 546 2079 1132 139
∆ L1-abs (in %) +6.3 +6.7 + 6.2

The measurements clearly show that the PSL is much faster than FaSS-MVS. However,
as the use-case-specific experiments in the following section show, the runtime of FaSS-MVS
can vary greatly due to the variable number of sampling planes, depending on the distance
between the input images and thus the observable depth range. The measurements also
show that especially the SGMΠ-pg extension introduces a large computational complexity
compared to SGMΠ and SGMΠ-sn. However, reducing the number of aggregation paths
has a large impact on the runtime, reducing it by up to 45%, while having only a marginal
impact on the error. Whether the listed runtime is sufficient for online processing is further
discussed in Section 4.3.

3.6. Use-Case-Specific Experiments Conducted on Real-World Datasets

Finally, to demonstrate the performance of the presented approach on use-case-specific
and real-world datasets, experiments are performed using SGMΠ-pg with four aggregation
paths and the above configuration on the TMB and FB datasets. Samples of the computed
depth, normal, and confidence maps is shown in Figure 11, along with the corresponding
depth maps estimated by COLMAP as a reference. The average processing time for the TMB
dataset is 690 ms, but can vary between 320 ms and 1218 ms depending on the arrangement
of the input data and the number of plane distances δ at which the scene is sampled. For
the FB dataset, the average processing time is 800 ms, again varying between 514 ms and
1419 ms depending on the arrangement of the input images.

Reference Image COLMAP Depth SGMΠ-pg Depth SGMΠ-pg Normal SGMΠ-pg Confidence

Figure 11. Qualitative results of SGMΠ-pg with 4 aggregation paths achieved on the two real-world
and use-case-specific datasets, namely the TMB dataset and the FB dataset. As comparison, the
corresponding depth maps estimated by COLMAP are also visualized. Rows 1 and 2: TMB Building
scene captured from an altitude of 15 m and 8 m, respectively. Rows 3 and 4: TMB Container scene.
Rows 5 and 6: Two excerpts from the FB dataset.
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4. Discussion

In the following, the results of the conducted experiments are discussed with respect
to different aspects, namely the overall accuracy (Section 4.1), the ability of the presented
approach to reconstruct slanted surface structures (Section 4.2), the runtime and support
for online processing (Section 4.3), and the effects of the post-filtering algorithms used and
the relevance of the confidence estimates (Section 4.4).

4.1. Overall Accuracy

In Table 5, FaSS-MVS is evaluated against a comparable online MVS approach from
the PSL. Considering the results achieved by the approach provided by the PSL, it is
clearly outperformed by FaSS-MVS. The comparison is somewhat unfair, however, since
the results presented by FaSS-MVS have undergone filtering based on a GCC. For this
reason, additional experiments were performed in which the same filtering was applied to
the PSL results, showing a superiority of the PSL with GCC over FaSS-MVS with respect to
the L1 error. However, as suggested by the lower F-score and as shown by the extracts in
Figure 10, the post-filtering leads to the removal of quite a few estimates in the depth maps
computed by PSL. This again underlines the strength of FaSS-MVS in computing dense
depth maps with high consistency and accuracy.

Furthermore, as the results in Table 5 show, the overall accuracies of the depth maps
estimated by the presented approach are lower than those achieved by the two offline
MVS approaches, i.e., COLMAP and ACMMP. This is not surprising, since the procedure
and assumptions involved are very different between online approaches, such as the
one presented in this paper, and offline approaches. Offline approaches assume that all
input images are available at the time of reconstruction, allowing them to optimize the
set of input images considered for the reconstruction of a given viewpoint. In contrast,
online approaches, which perform MVS incrementally, only consider input images within a
temporally limited window, at most all images acquired up to a certain point in time. In
addition, offline approaches typically do not have time constraints either. Nevertheless,
the quantitative differences between the results obtained with the presented approach
and COLMAP are not that large, less than an order of magnitude, and even exceed those
obtained with ACMMP. Furthermore, a qualitative comparison on use-case-specific input
data makes the results of the presented approach very satisfactory. Compared to the
geometric depth maps of COLMAP, the depth maps of SGMΠ-pg lack the fine-grained
details, such as the roof structures in rows 5 and 6 of Figure 11, which are caused by the
coarse-to-fine processing. However, larger structures are well represented and the quality
of their reconstruction is comparable, as is the overall density. Although the fronto-parallel
bias of SGM is reduced, some artifacts of fronto-parallel sampling are still visible, especially
in the normal maps of Figure 11.

4.2. Ability to Account for Non-Fronto-Parallel Surfaces

To further increase the accuracy of the reconstruction of slanted, non-fronto-parallel
surface structures, this work proposes, in addition to SGMΠ, two extensions to the SGM
algorithm that should reduce the fronto-parallel bias. Namely, the incorporation of surface
normals to adjust the zero-cost transition in the SGM path aggregation (SGMΠ-sn) and
the penalization of deviations from the gradient of the minimum-cost path (SGMΠ-pg).
The experiments conducted show that these extensions provide only a slight quantitative
improvement over the standard SGM adaptation (SGMΠ) to plane-sweep sampling. This
finding is in contrast to the experiments of Scharstein et al. [41]. There are at least two
reasons for this discrepancy. First, Scharstein et al. [41] demonstrate their implementation
on a two-view stereo dataset, where the input images are captured by two cameras mounted
on a fixed rig and oriented in the same direction. In addition, prior to processing, the images
are rectified, i.e., transformed, so that both lie in the same image plane and the epipolar
lines coincide with the image rows. Thus, in the dense image matching process, the images
are sampled equidistantly with a step size of 1 pixel. In the case of the presented approach,
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however, the distances of the sampling planes and thus the sampling points are chosen
in such a way that the disparity shift along the epipolar line between two consecutive
planes is less than or equal to 1. This results in sampling with a much higher density, which
already reduces the staircase effect in the case of SGMΠ. And secondly, Scharstein et al. [41]
proposes to use a ground truth normal map to adjust the zero-cost transition, whereas in the
presented approach, the upscaled normal map of the previous iteration of the hierarchical
processing is used. This is bootstrapped with SGMΠ at the highest pyramid level, which
introduces inaccuracies that probably cannot be fully compensated for. However, the
qualitative analysis shows that SGMΠ-sn and SGMΠ-pg clearly lead to smoother normal
maps and reduce staircase artifacts in the depth maps, which is why only SGMΠ-pg is
considered in the use-case-specific experiments.

In addition to reducing the fronto-parallel bias in the SGM path aggregation, the plane-
sweep algorithm in our approach allows us to adapt the image matching to the surface
structures in the scene by selecting appropriate normal vectors and sweeping directions. In
a short qualitative experiment (see Figure A1), the effects of a horizontal plane sampling
compared to a fronto-parallel sampling, both in combination with SGMΠ, are investigated.
The results show that horizontal sampling leads to more consistent depth estimates with
little or no staircasing artifacts in areas where the surface structure coincides with the plane
orientation, e.g., the ground plane. However, in areas where the surface structure is not
horizontal, non-fronto-parallel sampling introduces significant errors. To overcome this
effect, one can consider dividing the scene into local regions that are individually sampled
with different plane orientations, similar to the local-plane-sweep approach presented
by Sinha et al. [38]. However, this comes at the cost of higher computational complexity.
Another remedy is to repeat the plane-sweep image matching several times on the whole
image domain prior to the SGM optimization, with different sweeping directions, and to
perform a pixel-wise pre-selection of the best plane orientation based on the matching
costs, similar to the approach of Pollefeys et al. [25]. This results in a smaller increase in
computational complexity compared to the first option.

4.3. Runtime and Online Processing

Given the runtime measurements in Table 6, the presented approach is obviously not
capable of real-time and low-latency processing, in the sense that for each input frame,
a depth map is computed at similar frame rates as given for the input stream. However,
considering the nature of the approach and the expected input data, the runtime is generally
sufficient for online processing, which will be explained in the following section. The
presented approach takes a bundle of three or more input images, with a bundle size of
five images actually yielding better results, and performs MVS on a reference image of the
input bundle, typically the middle one. While these input images could be provided by
individual cameras, it is assumed that the images are extracted from an input sequence
captured by a single camera moving around a static scene. In addition, not every frame
of the input sequence can be used, since a suitable baseline must lie between each input
frame to enable scene depth estimation. This, of course, depends on the depth range to
be sampled and the scene structure. In the case of the TMB dataset, the average distance
between the individual input images is 1.8 m and 1.03 m for a flight altitude of 15 m and
8 m, respectively. This increases at higher altitudes due to greater scene depth. Modern
COTS rotor-based UAVs can fly up to a speed of over 10 m/s. However, the typical flight
speed for image acquisition is closer to 1–3 m/s [61,62]. Thus, if the sets of input images
are disjoint, then an estimation needs to be performed at least every 3 s, considering a low
flight altitude together with a high flight speed of about 3 m/s and an input bundle size of
three images. If a maximum overlap between the input bundles is desired, i.e., a new depth
map estimation is triggered with each new suitable input frame and it reuses four images
from the previous bundle, the required runtime is significantly lower. However, as the
use-case-specific experiments for the TMB and FB datasets show, the average processing
time of SGMΠ-pg, which is the most computationally expensive variant, is between 1 and
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2 Hz, depending on the arrangement of the input images. Another way to reduce the
runtime is to use higher Gaussian pyramids, which again comes at the cost of a reduced
level of detail, as already pointed out in the discussion on overall accuracy (see Section 4.1).
In short, there are a number of possible settings both in the acquisition of the input data,
e.g., regarding the flight speed or the size and overlap of the input bundles, and in the
configuration of the presented approach, e.g., regarding the Gaussian pyramid height, the
depth range or the optimization strategy, which allow us to adapt the runtime to the rate of
the input images and thus to allow online processing.

The emergence of high-performance systems-on-a-chip (SoCs) with embedded GPUs,
such as the NVIDIA Jetson series, allows approaches like FaSS-MVS to be brought directly
to the sensor platform, e.g., the UAV, for on-board processing. To evaluate the feasibility of
running FaSS-MVS on-board an embedded device, some additional runtime measurements
were performed on the NVIDIA Jetson AGX, equipped with an 8-core 64-bit ARMv8.2
CPU and a 512-core Volta GPU. On an excerpt of the TMB dataset with an image size of
1920× 1080 pixels, FaSS-MVS with SGMΠ achieves an average runtime of 727 ms on the
Jetson AGX, compared to an average runtime of about 403 ms on the NVIDIA Titan X. As
already discussed, the runtime can be further reduced by increasing the pyramid height to
n = 4 and n = 5, for example, while accepting a decrease in the quality of the results. This
results in average runtimes of 444 ms and 385 ms, respectively. These experiments show
that FaSS-MVS is capable of on-board processing using a high-performance embedded
SoC such as the NVIDIA Jetson AGX. This may be of particular interest when considering
deployment on a sensor carrier that does not suffer from severe power constraints.

4.4. Post-Filtering and the Relevance of the Estimated Confidence Values

A comparison of the L1 errors in Table 5 with those listed in Table 2 shows that
using post-filtering based on geometric consistency can drastically reduce the mean errors
by about 40%. The trade-off for this improvement is a loss of density in the depth map
and an increase in latency between input and results. The latter is due to the additional
sliding window introduced by geometric consistency-based filtering. In addition to the
bundle of input images for which only one set of estimates is produced, the geometric
filter also requires two or more depth maps for processing. The geometric filter is also
more computationally expensive than the DoG filter. Again, whether to use the DoG or
the geometric filter depends on the application. For example, if the presented approach
is used for the task of online 3D reconstruction, i.e., a subsequent depth map fusion step
is used [7], the geometric-consistency-based filtering is typically performed in the depth
map fusion and can thus be omitted. The DoG filter, on the other hand, is very efficient
and does not introduce any additional latency. However, as mentioned in the experiments,
the DoG filter may also remove potentially good estimates, since it is performed only on
the data provided by the input image. Nevertheless, the DoG filter is of great benefit,
especially when working with input data containing many homogeneous areas with little
or no texture, e.g., a clear or cloudy sky in case of extreme viewing angles.

Finally, as a third output, the presented approach computes a confidence map con-
taining pixel-wise confidence values corresponding to the depth estimates. In this work,
these confidence measures are used to perform a comparison between the different SGM
extensions based on an ROC analysis (see Figure 8). As noted above, the fact that some of
the curves are not monotonically increasing suggests that the confidence values do not ade-
quately represent the certainty of the estimates. For example, the fact that the scene in row 6
of Figure 11 consists mostly of fronto-parallel structures leads to a confidence map with
high certainty values, while the confidence map in row 2 of Figure 11 makes the estimation
of the roof of the building, which appears qualitatively very accurate, completely uncertain.
A similar observation can be seen in the confidence maps shown in Figure 6. Only because
the ground plane is highly tilted with respect to the image plane, the confidence of the
corresponding estimates becomes very low, even though they do not appear qualitatively
more accurate than the estimates on the building facade. The most likely reason is that
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modeling a confidence score based on surface orientation alone is not very meaningful.
Incorporating additional heuristics based on internal properties of the algorithm, as carried
out in previous work [12], could improve the confidence estimation, but this still requires
a cumbersome empirical study of the hyper-parameters. In recent years, however, the
performance of learning-based approaches to confidence estimation [63,64] has improved
significantly. They are often agnostic to the internals of the algorithm and can be trained on
any data for which both estimated and reference depth maps are available.

5. Conclusions

In conclusion, we present an approach for multi-view stereo (MVS) from UAV-borne
imagery that allows for fast, dense, and incremental 3D mapping. This approach consists
of a hierarchical processing scheme that estimates dense depth maps and corresponding
normal and confidence maps. For the depth map computation, dense multi-image matching
using the plane-sweep algorithm is used to generate pixel-wise depth hypotheses. From
these hypotheses, a dense depth map is extracted using the optimization scheme of the
widely used Semi-Global Matching (SGM) algorithm. Here, the SGM algorithm is not only
adapted to work with the multi-image matching of the plane-sweep algorithm, but also
extended to reduce the fronto-parallel bias and to account for slanted surface structures by
introducing two additional regularization schemes. The successive normal and confidence
map estimation is performed separately on the results of the depth estimation. In a final
filtering step, geometric consistency is enforced over multiple depth maps, which greatly
increases the overall accuracy of the resulting depth maps.

The performance of our approach is quantitatively evaluated on two public datasets
containing image data of model-scaled scenes captured from an aerial perspective and
providing accurate ground truth. The experiments show that for the best configuration, the
estimated depth maps have a mean absolute L1 error of only 8.5 mm on the DTU dataset,
or 1%, with respect to the maximum depth of the reconstructed scene. In comparison, on
the same dataset, the geometric depth maps from COLMAP, a widely used open-source
toolbox for offline MVS, have a mean absolute error of 3.8 mm. Thus, even though the
presented approach does not have all image data of the input sequence available at the time
of reconstruction and is subject to runtime constraints to ensure fast and online processing,
its quantitative results are not too far off from state-of-the-art offline approaches. While
the quantitative results do not show a significant improvement by the presented SGM
extensions to account for slanted surface structures, a qualitative comparison reveals their
ability to account for non-fronto-parallel surfaces. Thus, in the case of oblique aerial
imagery containing many slanted surfaces, the presented SGM extension, which penalizes
deviations from the gradient of the minimum-cost path, i.e., SGMΠ-pg, is the best choice,
despite its higher computational complexity. Final experiments on real-world and use-
case-specific datasets have shown that the presented approach is well suited for online
processing in terms of runtime, achieving a processing rate of 1–2 Hz, meaning that it keeps
up with the monocular input stream and allows for incremental 3D mapping as input data
are received. Fast 3D mapping, in turn, can facilitate other important applications or tasks,
such as rapid assessment of inaccessible areas by emergency responders, e.g., after a flood
or earthquake, to perform disaster relief or search and rescue missions.

Finally, there are also some aspects to consider for future work. Although the ap-
proach supports different plane orientations in plane-sweep multi-image matching, each
estimation is performed with only one orientation. In the future, the approach should be
extended to use multiple plane orientations within the computation of a single depth map.
This will allow for smoother reconstruction of large planar surfaces such as the ground
plane, but will also allow for higher accuracy in other regions by using fronto-parallel
sampling. Furthermore, while we note that the processing speed is sufficient, a further
reduction in runtime and a more efficient use of GPU resources would free up more op-
portunities for other concurrent tasks, such as depth map fusion or orthophoto generation.
Therefore, further optimization in terms of runtime and utilization of processing resources
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is an ongoing task. In addition, due to the ongoing development and rapid advancement of
deep learning-based approaches for the task of MVS, we want to investigate whether indi-
vidual steps or even the entire approach can be replaced by an appropriate learning-based
approach, while maintaining the reliability for use in the context of critical applications.
Finally, the work of Nex and Rinaudo [65] has shown that the complementary use of Light
Detection and Ranging (LiDAR) and image-based techniques for photogrammetric tasks
has great potential. In addition, with the improvements in LiDAR sensors and the ability to
equip commercial UAVs with such sensors, such as the Zenmuse L1, their use to facilitate
fast and incremental 3D mapping will inevitably be considered in future work.
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Appendix A. Finding the Optimal Number of Input Images and Pyramid Levels

In this section, we demonstrate the need for and the importance of the hierarchical
processing scheme within the presented approach and evaluate different configurations on
the size of the input bundle. In this, a couple of aspects are considered in order to find the
best configuration. The objective is to find the appropriate number n of Gaussian pyramid
levels and the size |Ω| of the input bundle, providing a good trade-off between:

• the error of the resulting depth maps, measured by L1-abs and L1-rel;
• the sampling density and the entailed resources needed for the computation;
• the resulting processing runtime.

For this experiment, a fronto-parallel plane orientation is used as part of the plane-sweep
image matching and the NCC with a support region of 5× 5 pixels is set as similarity
measure. The optimization of the cost volume and the extraction of the optimal depth map
is performed by employing the SGMΠ scheme, which is the adoption of the standard SGM
optimization to the use of plane-sweep image matching (see Section 2.2). The smoothness
penalty within the SGM optimization is set to φ1 = 100, while the adaptive φ2 penalty is
used. This, together with the 5× 5 sized NCC as matching cost, was chosen in accordance
with the work of Scharstein et al. [41]. To find the appropriate height of the Gaussian
pyramids, the size of the input bundle, i.e., the number of input images, is set to |Ω| = 3.

Table A1 lists the mean errors of the estimated depth maps when evaluated with
different numbers of pyramid levels on the datasets of both the DTU and 3DOMcity
benchmark. In this, the absolute and relative L1 measures are used, averaged over all
depth maps within each dataset. It is to be expected that the omission of any hierarchical
processing, i.e., the use of only one pyramid level and thus no coarse-to-fine processing,
would lead to the smallest error between the estimate and ground truth. However, the
results reveal that in the case of the DTU dataset, the smallest mean error, even if it is only
slightly smaller, is achieved when setting n = 3, while the best result in the case of the
3DOMcity dataset is achieved at n = 1.

https://roboimagedata.compute.dtu.dk/?page_id=36
https://3dom.fbk.eu/3domcity-benchmark
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Table A1. Mean errors achieved on the DTU and 3DOMcity datasets for a different number of
Gaussian pyramid levels (n) as part of the hierarchical processing scheme. The error metrics used are
the absolute L1-abs, measured in mm, as well as the relative L1-rel measure. Both are averaged over
all evaluated depth maps within each dataset. The best results are underlined.

Dataset Metric n = 1 n = 2 n = 3 n = 4 n = 5

DTU

L1-abs 26.394 26.221 23.473 25.045 29.676
(in mm) ±24.262 ±23.835 ±19.656 ±19.298 ±19.436
L1-rel 0.036 0.036 0.032 0.034 0.041

±0.032 ±0.032 ±0.026 ±0.026 ±0.026

3DOMcity

L1-abs 12.789 14.936 21.801 32.458 47.422
(in mm) ±6.916 ±6.754 ±8.010 ±9.408 ±22.292
L1-rel 0.010 0.012 0.017 0.026 0.037

±0.006 ±0.006 ±0.007 ±0.009 ±0.014

As described in Section 2.1.3, the plane distances within the plane-sweep sampling,
and thus the sampling points, are selected in such a way that two consecutive planes induce
a maximum disparity difference of 1 pixel. Depending on the capturing setup, i.e., the
relative poses between the images and their obliqueness and, in turn, the range of the
scene depth, this can lead to a very high number of sampling points and with it to a large
memory consumption, as the dimensions of the three-dimensional cost volume need to be
set accordingly. Thus, in order to not exceed the memory limit, the maximum number of
sampling points for the highest pyramid level is restricted to 256 in the implementation
of the approach. In case of the camera setup of the DTU dataset and the configuration of
this experiment, i.e., having a bundle size of |Ω| = 3, a pyramid height of 3 is the smallest
height at which the number of sampling points at the highest level does not reach or exceed
the set limit, as Table A2 shows. Comparing Tables A1 and A2 further reveals that on both
datasets, the best results are achieved when the highest pyramid level has a maximum of
128 sampling planes.

Table A2. Processing runtime measured for different configurations of the pyramid height on the
DTU and 3DOMcity datasets. In addition, the maximum number of sampling planes with which the
scene was sampled at the highest pyramid level is stated.

Dataset Metric n = 1 n = 2 n = 3 n = 4 n = 5

DTU
Runtime 2365 1315 386 220 187
(in ms) ±15 ±10 ±2 ±2 ±1
max. num. planes 256 256 128 64 32

3DOMcity
Runtime 613 431 225 196 192
(in ms) ±3 ±3 ±1 ±1 ±1
max. num. planes 128 64 32 16 8

Another criterion which is used to deduce the best configuration on the height of
the Gaussian pyramid is the runtime needed to estimate a single depth map. Table A2
additionally lists the corresponding measurements taken, i.e., the number of milliseconds
it takes to estimate a single depth map given a certain number of pyramid levels, as
well as the number of planes used for sampling the scene space at the highest pyramid
level. The measurements again show that, up to n = 3 in the case of the DTU dataset,
the number of sampling planes at the highest pyramid level is equal to the limit of 256
and that with a smaller amount of sampling points, the runtime decreased drastically.
Furthermore, the significant drop of one second in runtime between using a pyramid height
of 2 and 3 suggests that the decreasing use of processing resources on the GPU increases
the processing speed and that going from n = 2 to n = 3 makes a significant improvement
in its efficiency. Because the use of a higher number of pyramid levels does not only reduce
the amount of sampling points, but also the image size at the highest pyramid level and
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with it the amount of pixels that need to be matched, depending on the camera setup, a
hierarchical processing is very important in order to ensure a high sampling density of the
scene space, while at the same time efficiently utilizing the processing hardware and, in
turn, alleviating high processing speeds. In the case of the DTU dataset, this experiment
shows that the best number of pyramid levels to be used is n = 3, which will thus be set
for the successive experiments. In case of the 3DOMcity dataset, Table A1 suggests that
the best configuration is to use the original image size. A hierarchical processing scheme is
needed, however, in order to use SGMΠ-sn, the extension of the SGM algorithm to consider
local surface orientations in order to account for slanted surfaces. Thus, in the case of the
3DOMcity dataset, the successive experiments will be executed with n = 2, which induces
only a slightly higher mean error compared to the best configuration.

In the second part of this experiment, the effects of a different number of input images
and, in turn, the optimal size |Ω| of the input bundle are evaluated. Here, the settings for
the plane-sweep image matching and the subsequent SGM optimization are kept the same
as before. The height of the Gaussian pyramids is fixed to n = 3 in the case of the DTU
dataset and n = 2 in the case of the data from the 3DOMcity dataset. Table A3 lists the
mean errors achieved on both datasets with a different number of input images, as well
as the difference in runtime with respect to the best configuration of the first part of the
experiment. The results reveal that the best accuracies are achieved when five input images
are used for image matching, even though, in the case of the 3DOMcity dataset, it is only a
marginal improvement. As expected, the utilization of more input images in the process of
image matching also leads to an increase in runtime, since more pixels are matched. At the
same time, however, there is more time available to keep up with the image acquisition, as
discussed in Section 4.3. In conclusion, in the subsequent experiments, the size of the input
bundle is set to |Ω| = 5, while the height of the Gaussian image pyramids is set to n = 3
and n = 2 in the case of the DTU and 3DOMcity datasets, respectively.

Table A3. Mean errors achieved on the DTU and 3DOMcity datasets for different input bundle sizes
(|Ω|), i.e., number of images. In addition, the differences in runtime, with respect to the measurements
of the first part (i.e., |Ω| = 3), are stated. The best results are underlined.

Dataset Metric |Ω| = 3 |Ω| = 5 |Ω| = 7

DTU

L1-abs 23.473 19.832 21.843
(in mm) ±19.656 ±16.225 ±21.605
L1-rel 0.032 0.027 0.031

±0.026 ±0.021 ±0.031
∆ Runtime +271 +302
(in ms)

3DOMcity

L1-abs 14.936 14.615 16.514
(in mm) ±6.754 ±6.254 ±7.569
L1-rel 0.012 0.012 0.014

±0.006 ±0.007 ±0.009
∆ Runtime +360 +410
(in ms)

Appendix B. Evaluating Different Similarity Measures in the Process of Dense
Multi-Image Matching

As part of the plane-sweep multi-image matching, this approach comprises two
different similarity measures and cost functions: the Hamming distance of the census
transform (CT) as well as the truncated, inverted and scaled normalized cross-correlation
(NCC). While the CT is computationally less expensive than the NCC and is thus more
suitable for real-time or online processing, it is less discriminative, which might result in
a more ambiguous set of matched pixel correspondences. When working with a stereo
normal case, in which the input images suffer only from a little perspective distortion
induced by homographic transformations, the CT outperforms the NCC in both runtime
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and accuracy [36]. However, as the results in Table A4 show, the perspective distortion,
resulting from the warping of images from converging cameras by means of the plane-
induced homography within the plane-sweep algorithm, leads to a significant increase in
error when using the CT as a similarity measure instead of the NCC.

Table A4. Mean errors achieved on the DTU and 3DOMcity datasets when using different similarity
measures and cost functions with different support regions. The best results are underlined.

Dataset Metric CT3×3 CT5×5 CT9×7 NCC3×3 NCC5×5 NCC9×9

DTU

L1-abs 42.494 42.136 42.305 26.229 19.832 19.667
(in mm) ±39.112 ±37.958 ±36.394 ±17.816 ±16.225 ±16.453
L1-rel 0.056 0.056 0.057 0.037 0.027 0.027

±0.049 ±0.048 ±0.046 ±0.024 ±0.021 ±0.021

3DOMcity

L1-abs 29.149 22.128 26.005 26.678 14.615 13.789
(in mm) ±17.272 ±14.218 ±14.106 ±10.377 ±6.254 ±5.962
L1-rel 0.024 0.019 0.022 0.023 0.012 0.011

±0.016 ±0.014 ±0.014 ±0.010 ±0.007 ±0.006

Apart from the two different similarity measures, the effects of different support
regions are also evaluated in the scope of this experiment. In this, for each similarity
measure, the most commonly used configurations were tested. A support region of a
size of 5× 5 pixels represents a good trade-off between uniqueness and computational
complexity, while, in the case of the CT, a support region of a size of 9× 7 pixels is the
biggest size for which the bit-string still fits into a single 64-bit integer. The configuration of
the plane-sweep algorithm and the SGM optimization is set in accordance with the values
from the first experiment (see Appendix A). In terms of the SGM penalties, φ1 is set to
100 for all NCC3×3, NCC5×5 and NCC9×9, since the maximum matching cost of the NCC
is normalized to 255, independent of the support region. For CT3×3, CT5×5 and CT9×7,
however, φ1 is set to 3, 9 and 24, respectively, which is equivalent to the configuration for
NCC, when considering the ratio between φ1 and the maximum matching cost.

Appendix C. Effects of Non-Fronto-Parallel Plane Orientations in DIM

In addition to adjusting the SGM optimization to account for non-fronto-parallel surface
structures, the plane orientations within the plane-sweep sampling for DIM can be adjusted
in accordance with the scene structure by selecting an appropriate normal vector, and with it
a corresponding sweeping direction. Thus, in the following, the use of non-fronto-parallel
plane orientations within the plane-sweep sampling is investigated. In this, an additional
horizontal orientation with respect to the reference coordinate system of the scene is selected
and compared to the fronto-parallel sampling direction. For this, a subset of the DTU dataset,
in which the camera is looking in a more downwards direction, is selected. As reference,
results with a fronto-parallel sampling were computed separately. The quantitative results
reveal a major increase in error when non-fronto-parallel plane orientations are used for
sampling, as can be seen in the difference maps in Figure A1. Simultaneously, Figure A1
also reveals that in areas where the surface structure coincides with the sampling direction,
e.g., the ground plane, the depth map is very smooth and consistent.
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Reference Image Fronto-Parallel Sampling Horizontal Sampling

Figure A1. Qualitative comparison between the use of a fronto-parallel and non-fronto-parallel
sampling direction in combination with SGMΠ. Columns 2 and 4: Corresponding estimated depth
map. Columns 3 and 5: Difference map holding the pixel-wise absolute difference between the
estimated depth map and the ground truth. The color encoding reaches from dark blue (low error)
via green to yellow (high error). The estimated depth maps and the difference maps are masked
according to the ground truth.
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