KIT | KIT-Bibliothek | Impressum | Datenschutz

Efficient and accurate determination of the degree of substitution of cellulose acetate using ATR-FTIR spectroscopy and machine learning

Rhein, Frank ORCID iD icon 1; Sehn, Timo 2; Meier, Michael A. R. 2,3
1 Institut für Mechanische Verfahrenstechnik und Mechanik (MVM), Karlsruher Institut für Technologie (KIT)
2 Institut für Biologische und Chemische Systeme (IBCS), Karlsruher Institut für Technologie (KIT)
3 Institut für Organische Chemie (IOC), Karlsruher Institut für Technologie (KIT)

Abstract:

Multiple linear regression models were trained to predict the degree of substitution (DS) of cellulose acetate based on raw infrared (IR) spectroscopic data. A repeated k-fold cross validation ensured unbiased assessment of model accuracy. Using the DS obtained from 1H NMR data as reference, the machine learning model achieved a mean absolute error (MAE) of 0.069 in DS on test data, demonstrating higher accuracy compared to the manual evaluation based on peak integration. Limiting the model to physically relevant areas unexpectedly showed the C-H peak to be the strongest predictor of DS. By applying a n-best feature selection algorithm based on the F-statistic of the Pearson correlation coefficient, several relevant areas were identified and the optimized model achieved an improved MAE of 0.052. Predicting the DS of other cellulose acetate data sets yielded similar accuracy, demonstrating that the developed models are robust and suitable for efficient and accurate routine evaluations. The model solely trained on cellulose acetate was further able to predict the DS of other cellulose esters with an accuracy of $\approx$ 0.1-0.2 in DS and model architectures for a more general analysis of cellulose esters were proposed.


Verlagsausgabe §
DOI: 10.5445/IR/1000179264
Veröffentlicht am 18.02.2025
Originalveröffentlichung
DOI: 10.1038/s41598-025-86378-0
Scopus
Zitationen: 4
Web of Science
Zitationen: 2
Dimensions
Zitationen: 5
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Biologische und Chemische Systeme (IBCS)
Institut für Mechanische Verfahrenstechnik und Mechanik (MVM)
Institut für Organische Chemie (IOC)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 2045-2322
KITopen-ID: 1000179264
Erschienen in Scientific Reports
Verlag Nature Research
Band 15
Heft 1
Seiten 2904
Vorab online veröffentlicht am 23.01.2025
Nachgewiesen in Scopus
Dimensions
OpenAlex
Web of Science
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page