
Distributed Kernelization Techniques
for the

Maximum Weight Independent Set
Problem

Master’s Thesis of

Jannick Borowitz

At the KIT Department of Informatics
ITI – Institute of Theoretic Infortmatics, Algorithm Engineering

First examiner: Prof. Dr. Peter Sanders
First advisor: M.Sc. Matthias Schimek
Second advisor: M.Sc. Ernestine Großmann

01. August 2024 – 31. January 2025

Karlsruher Institut für Technologie
Fakultät für Informatik
Postfach 6980
76128 Karlsruhe

Acknowledgement

I want to use this opportunity to thank Ernestine Großmann and Matthias Schimek
for their support and ideas in the weekly meetings. Moreover, I would like to thank
Prof. Dr. Sanders for the chance to work on this thesis. Finally, I would like to thank
my friends and family for their support.

I declare that I have developed and written the enclosed thesis completely by myself. I
have not used any other than the aids that I have mentioned. I have marked all parts
of the thesis that I have included from referenced literature, either in their original
wording or paraphrasing their contents. I have followed the by-laws to implement
scientific integrity at KIT.

PLACE, DATE

. .
(Jannick Borowitz)

Abstract

This work contributes novel distributed kernelization algorithms for the NP-complete
Maximum Weight Independent Set problem (MWISP). There are many fields
of interest such as the map-labeling and vehicle routing problem where the problem
corresponds to the MWISP. Problem instances of these applications are often modeled
as vertex-weighted, undirected graphs. The considered graphs can be very large with
millions of vertices and edges. To obtain (near)-optimal results in practice, a key
technique called kernelization is used by heuristic and exact solvers. Kernelization
algorithms use data reduction rules to reduce the problem size while maintaining
optimality. Thus, they can be used as preprocessing or as a subroutine in a more
complex solver. However, the graphs can require more memory than a single machine
can possibly offer. Moreover, testing and applying many data reduction rules can make
up a significant portion of the overall running time. Therefore, one is interested in
representing a graph in a distributed memory machine where each processing element
(PE) stores only a subgraph. Moreover, a graph may already be stored in distributed
memory. Many of the data reductions act locally because they are tested and applied
only on a small subgraph. This motivates their use in a distributed manner. A key
challenge is to apply reductions so that no conflicts arise between the PEs. To the
best of our knowledge, we are the first to develop distributed data reduction rules and
kernelization algorithms for the MWISP. We propose two communication variants for
synchronizing the reduction progress: A synchronous algorithm called KaDisReduS and
asynchronous algorithm called KaDisReduA. They are used for preprocessing to then
apply novel distributed greedy algorithms to the reduced graph. We conduct strong
and weak scaling experiments for up to 1 024 cores. For the strong scaling experiments,
we consider artificial and real world graphs with up to 50 Mio. vertices and 54 Mio.
edges. The median number of vertices in the reduced graph increases from 5 % to 25 %
compared to sequential kernelization. This increase can be mitigated by partitioning
the graph with dKaMinPar. At this scaling, KaDisReduA outperforms KaDisReduS by a
factor of 1.42 in terms of running time and has a relative speed-up of 90 on average. In
comparison with the reduce-and-peel solver HtWIS, KaDisReduA combined with the
greedy algorithm reports a speedup of 15 on average with a maximum of 170 on a
grid graph. While HtWIS reaches a solution quality of 99.6 %, our approach reaches a
solution quality of 96.85 %, when compared against the best found solutions.

i

Zusammenfassung

Diese Arbeit stellt neue verteilte Kernelisierungsalgorithmen für das NP-vollständige
Maximum Weight Independent Set Problem (MWISP) vor. Es gibt viele Anwendungs-
bereiche wie etwa das Map-Labeling (deutsch: Kartenbeschriftungsproblem) und das
Vehicle Routing Problem (deutsch: Routenplanungsproblem), wo das Problem dem
MWISP entspricht. Problem Instanzen dieser Anwendungen werden oft als knoten-
gewichtete, ungerichtete Graphen modelliert. Diese Graphen können sehr großsein
mit Millionen Knoten und Kanten. Um in der Praxis (fast) optimale Lösungen zu
erhalten, wird eine wichtige Technik namens Kernelisierung von heuristischen und
exakten Lösern benutzt. Kernelisierungsalgorithmen benutzen Datenreduktionsregeln
um die Problemgröße zu reduzieren, sodass die Optimalität nicht verletzt wird. Da-
durch können sie in einem Vorverarbeitungschritt oder als eine Subroutine in einem
komplexeren Löser. Jedoch, kann das Testen und Anwenden der Regeln einen großen
Anteil der Gesamtlaufzeit ausmachen. Daher ist man daran interessiert, den Graphen
auf Maschinen mit verteiltem Speicher zu repräsentieren, wo jedes Prozesselement
(PE) nur einen Teilgraphen speichert. Darüberhinaus kann ein Graph bereits verteilten
Speicher vorliegen. Viele der Datenreduktionen agieren lokal, indem sie auf nur auf
einem kleineren Teilgraphen getestet und angewendet werden. Dies motiviert die Daten-
reduktionen im verteilten Kontext anzuwenden. Die Hauptschwierigkeit besteht darin
die Datenreduktionen so anzuwenden, dass keine Konflikte entstehen zwischen den
PEs. Soweit uns bekannt ist, sind wir die Ersten, die verteilte Datenreduktionen und
Kernelisierungsalgorithmen für MWISP entwickeln. Wir schlagen zwei Varianten für
die Kommunikation des Reduktionsfortschritts: einen synchronen Algorithmus namens
KaDisReduS und einen asynchronen Algorithmus namens KaDisReduA. Sie werden
als Vorverarbeitungschritt genutzt, um dann neue verteilte Greedyalgorithmen auf
dem reduzierten Graphen anzuwenden. Wir führen starke und schwache Skalierungs-
experimente mit bis zu 1 024 Kernen durch. Für die starken Skalierungsexperimente
betrachten wir künstliche und reale Graphen, die bis zu 50 Mio. Knoten und 54 Mio.
Kanten besitzen. Die mediane Anzahl an Knoten in den reduzierten Graphen steigt
von 5% auf 25 % verglichen mit der sequenziellen Kernelisierung. Dieser Anstieg kann
verringert werden, indem der Graph mit dKaMinPar partitioniert wird. Auf dieser
Skalierung ist KaDisReduA um einen Faktor 1.42-mal schneller als KaDisReduS und hat
einen relativen Speedup von 90 im Mittel. Im Vergleich mit dem Reduce-And-Peel Löser
HtWIS erhalten wir mit KaDisReduA, kombiniert mit dem Greedyalgorithmus, einen
Speedup von 15 im Mittel und 170 im Maximum auf einem Gittergraphen. Während
HtWIS eine Lösungsqualität von 99.6 % erzielt, erreicht unser Ansatz 96.85 % verglichen
mit den besten gefundenen Lösungen.

iii

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1
1.1. Motivation . 1
1.2. Contribution . 2
1.3. Overview . 2

2. Fundamentals 3
2.1. Preliminaries . 3
2.2. Machine Model and Distributed Memory Graph 5
2.3. Notation of Data Reduction Rules . 6

3. Related Work 7
3.1. Sequential Approaches . 7

3.1.1. Exact Algorithms . 7
3.1.2. Heuristic Algorithms . 10

3.2. Distributed and Parallel Approaches 12
3.2.1. Greedy Algorithms . 12
3.2.2. Kernelization in Parallel . 13

4. Distributed Kernelization 17
4.1. Reduction Rules . 17
4.2. A first Example . 22
4.3. Distributed Reductions . 24
4.4. Local Kernelization . 35
4.5. Dynamic Graph Data Structure . 36
4.6. Communication . 37

4.6.1. Message Types . 37
4.6.2. Synchronous Approach . 38
4.6.3. Asynchronous Approach . 41

4.7. Distributed Partition-And-Reduce . 44

5. Distributed Independent Set 47
5.1. Distributed Greedy Algorithms . 47

5.1.1. Synchronous Greedy Algorithm 48
5.1.2. Asynchronous Greedy Algorithm 48

v

Contents

5.2. Distributed Reduce-And-Greedy . 48

6. Implementation Details 53

7. Experiments 55
7.1. Methodology . 55
7.2. Reduction Impact . 56
7.3. Reduction Impact on Partitioned Graphs 60
7.4. Comparison of Distributed Independent Set Solvers 62
7.5. Weak Scaling Experiments . 65

8. Discussion 69
8.1. Conclusion . 69
8.2. Future Work . 70

Bibliography 73

A. Appendix 79

vi

1. Introduction

We start this thesis by motivating the MWISP problem and the benefits of a distributed
kernelization algorithm. Afterward, we give an overview of our contributions and the
structure of this work.

1.1. Motivation

The Maximum Weight Independent Set problem (MWISP) applies to many
fields of interest such as vehicle routing [11] or map-labeling [6, 18]. In the vehicle
routing problem, we consider routes which are defined over properties such as the
assigned driver, and the loads of the vehicle. The proposed routes can conflict with
each because the same driver was assigned for multiple routes but can operate one
route. In addition, the routes are rated. Now, we are interested in a subset of routes
which are not in a conflict where the sum of their ratings is as large as possible. This
discrete optimization problem can be modeled as a vertex-weighted, undirected graph.
The vertices correspond to the routes with the ratings as weights and the pairwise
conflicts can be represented by an edge. Then, a Maximum Weight Independent Set
(MWIS) is a solution for the vehicle routing problem. An MWIS is a subset of vertices
of maximum weight while no two verties are adjacent.

Finding an MWIS can be challenging because MWISP is NP-complete. Depending on
the application, a maximal independent set of large weight, i.e., where no vertex can
be added anymore, is good enough. Most heuristic and exact solvers use kernelization
algorithms as a prepocessing or in-between as a subroutine. Kernelization algorithms
test and apply data reduction rules exhaustively to reduce the problem size while they
maintain optimality. To be more specific, the MWIS can be reconstructed given an
MWIS for the reduced graph, the so-called kernel.

Solving the MWISP can also be difficult because the graph is too large to fit into
the memory of one machine. Then the graph may be represented in a distributed
memory machine where each process stores a part of the graph, i.e., a subgraph. It
is also conceiveable that the graph is already stored in distributed memory. To find
(near)-optimal solutions for this case, we develop distributed kernelization algorithms
where data reduction rules are applied in a distributed fashion. Many existing data
reduction rules are tested and modify only a small subgraph. This property is convenient
to transfer and apply the rules in the distributed memory model.

1

1. Introduction

1.2. Contribution

To the best of our knowledge, we propose the first distributed kernelization algorithms
for the MWISP. We transfer data reduction rules to the distributed memory model.
We devise two variants which differ only in their communication approach. KaDisReduS
uses synchronous communication to synchronize and exchange the reduction progress
between (processing elements) PEs using blocking, irregular all-to-all coomunication.
The reduction progress is exchanged if all processes are locally out of work. KaDisReduA
follows an asynchronous approach with the help of the message buffer queue library
message-queue which was intrduced by Sanders and Uhl for distributed algorithms for
the TriangleCounting problem [36]. It allows to control the message sizes with an
additional parameter δ. Both can be used in combination with the graph partitioner
dKaMinPar by Sanders et al. [35] before or in-between reducing the graph because a
good partitioning can be crucial for the reduction impact for large number of PEs.
Moreover, we devise a separate greedy algorithm for each communication scheme, called
GreedyS and GreedyA. Finally, we present new reduce-and-greedy algorithms for the
MWISP by applying them to the reduced graph after kernelization.

1.3. Overview

The remainder of this thesis is structured as follows. In Chapter 2 we introduce
important notation, particularly the MWISP and the distributed memory model which
form the basis of this work. Moreover, we give an overview of the related work in
Chapter 3. In Chapter 4 we present our distributed data reduction rules and distributed
kernelization algorithms. Afterward, we introduce the new maximal independent set
solvers for in Chapter 5. In experiments in Chapter 7, we evaluate the impact and
performance of our reductions in strong and weak scaling experiments. We given
the implementation details in Chapter 6. Furthermore, we compare our distributed
independent set solvers against the reduce-and-peel solver HtWIS by Gu et al.[23].
Finally, we conclude our work and outline future work in Chapter 8.

2

2. Fundamentals

In this chapter we introduce some definitions including a formal definition of the
Maximum Weight Independent Set problem. Moreover, we outline the machine
model and how we represent the input in it.

2.1. Preliminaries

Consider a simple, undirected, weighted graph G = (V,E, ω) with vertices V , edges
E ⊆ 2V , and w : V → N>0 which assigns every vertex of V a weight. We extend ω to
sets, i.e., w(U) := ∑

u∈U ω(u) for U ⊆ V .

Let N(v) := {u ∈ V : {v, u} ∈ E} be the open neighborhood of a vertex v ∈ V which
we simply refer to as the neighborhood of v. Further, the closed neighborhood of v
is defined as N [v] := N(v) ∪ {v}. For a subset of vertices U ⊆ V the definitions
generalize to the neighborhood N(U) := ⋃

u∈U N(u) \ U and the closed neighborhood
N [U] := N(u) ∪ U of U . We define the closed distance d-neighborhood inductively as
Nd[U] := N [Nd−1[U]] with N0[U] := N [U]. The open distance d-neighborhood is defined
as Nd(U) := N(Nd−1(U)). The degree of a vertex v ∈ V is defined as deg(v) := |N(v)|..
Morover, ∆(G) := max deg(v) : v ∈ V is the maximum degree in G.

Often we consider subgraphs that are induced on a subset of vertices U ⊆ V . Given G
and U the induced subgraph is defined as G[U] := (U,E ∩ (2U)). Induced subgraphs
can be the result of modifying the graph G where we remove a vertex v ∈ V or a set
of vertices U ⊆ V . For simplicity, we denote these operations as G− v := G[V \ {v}]
and G− U := G[V \ V], respectively.

We call C ⊆ V a clique in G if all vertices of C are pairwise adjacent. Moreover, v ∈ V
is simplicial if N [v] forms a clique in G.

An independent set I of G is a subset of V such that every pair of vertices (u, v) ∈ I ×I
is not adjacent in G, i.e., it holds {u, v} 6∈ E. Further, I is maximal if there is no
vertex in V \ I that can be added to obtain an independent set that contains I.
We denote I a maximum independent set (MIS) if there is no independent set of G
that contains more vertices. An independent set I of G is called a maximum weight
independent set (MWIS) if there exists no independent set of G with larger weight in
G, i.e., there exists no independent set I with ω(I ′) > w(I). We denote the weight of
a maximum weight independent set of G as α(G). Given G, the Maximum Weight
Independent Set problem (MWISP) asks for an MWIS of G. Analogously, the

3

2. Fundamentals

6
3

3
8

16

6
3

3
8

16
ω(I1) = 14 ω(I2) = 6

6
3

3
8

16
ω(I3) = 30

Figure 2.1.: This figure shows three different independent sets (highlighted in green) for the
same weighted undirected graph. Weights are highlighted in red. Independent set I1 is not
maximal since the vertex with weight 16 can be added to the independent set. Therefore, it
is also not an MWIS. Independent set I2 is an example for a maximal independent set that
is not an MWIS (e.g., I1 has larger weight than I2). On the right side, an MWIS for the
graph is shown.

Maximum Independent Set problem asks for an MIS. In the unweighted case, α(G)
is also denoted as the independence number of G. Note that an MWIS is always
maximal. Figure 2.1 gives an example for a non-maximal independent set, a maximal
independent set, and an MWIS for the same graph.

A maximal independent set can be found in polynomial time in the number of vertices
with simple greedy algorithms. However, deciding whether a (maximal) independent set
is an MWIS is a well-known NP-complete problem [16]. The MWISP is closely related
to other NP-complete problems. The weighted problem generalizes the unweighted
problem because we can simply assign one as the weight for every vertex. If I is an MWIS
of G, then V \I is a minimum weight vertex cover of G. Moreover, in the complementary
graph Gc = (V, (2V) \ E) of G, an MWIS of G is a maximum weight clique.

In addition to G = (V,E, ω), we often consider blocks of vertices Π := (V1, . . . , Vk), for
k ∈ N>0, that partition V . More precisely, the blocks of Π partition V if V1∪. . .∪Vk = V
and Vi ∩ Vj = ∅ for all i 6= j. The edges of Eij := {{u, v} ∈ E : u ∈ Vi, v ∈ Vj}
are denoted cut edges because they connect two blocks Vi and Vj, for i 6= j. Incident
vertices of the cut-edges are denoted border vertices.

Sometimes we are interested in the balanced graph partitioning problem. In this case,
we are given G = (V,E), k ∈ N>0, a cost function c : V → N>0 that analogously
generalizes to sets as ω does, and some ε > 0. The objective is to find a partition-
ing Π that minimizes the edge-cut cut(Π) := ∑

i<j |Eij| while it fulfills the balance
constraint c(Vi) ≤ (1 + ε)c(V)/k, for every i ≤ k, i ∈ N.

4

2.2. Machine Model and Distributed Memory Graph

2.2. Machine Model and Distributed Memory Graph

Throughout this work, we consider the distributed memory model as described in [37,
pages 265-267]. It consists of p indexed processing elements (PEs) which are able to
communicate with each other in a full-duplex, single-ported network. Moreover, each
PE has its own memory while no memory is shared.

We consider a simple, undirected, weighted graph. It is represented as a weighted,
directed graph in the adjacency array format with a 1D partitioning of the vertices.
This balances the vertices or edges. More precisely, each undirected edge {u, v} is
represented by two directed edges (u, v) and (v, u). Each PE is given a weighted
subgraph (one block of the partitioning (V1, . . . , Vk)) with consecutive vertices. PE i
owns the vertices Vi. They are denoted the local vertices of PE i. For a vertex v ∈ V ,
rank(v) maps v to its owner, i.e., rank(v) = i ⇐⇒ v ∈ Vi. Further, we assume the
vertices have consecutive vertex identifiers for consecutive blocks, i.e., it holds for all
v, u ∈ V with v < u that rank(v) ≤ rank(u). The subgraph contains all the direct
edges (v, u) where the respective PE owns the tail vertex. The border vertices are
duplicated at the respective PEs because an undirected edge is represented by two
directed edges. These replicates are denoted ghost vertices (or simply ghosts) at the
according PEs. In the perspective of PE i, we refer by border vertices to the local
border vertices and ghosts. The local border vertices are also referred to as the interface
vertices of PE i. The set of ghosts at PE i is denoted V g

i ⊆ V . Further, the weight
ω(v) of a vertex v ∈ V is stored at its PE rank(v) and is denoted ωrank(v)(v) := ω(v).
To facilitate taking about the PEs which own ghosts in the neighborhood of v ∈ Vi, we
define the set of adjacent PEs of v as Ri(v) := {rank(u) : u ∈ Ni(v) ∩ V g

i }.

We often need to know weights of ghosts. Therefore, we assume the weights are
replicated with the interface vertices for the ghosts, i.e., wi(u) denotes the replicated
weight for a ghost u ∈ V g

i . Thus, to represent G in distributed memory, we store at
PE i the undirected weighted subgraph Gi := (Vi, V

g
i , Ei, ωi) with vertices V i := Vi∪V g

i ,
edges Ei := {{u, v} ∈ E : u ∈ V i, v ∈ Vi} and weights ωi(v) for v ∈ V i. We give an
example in Figure 2.2 for a subgraph Gi stored at PE i.

6
3

3
8

16

Vi

Gi at PE i

local vertices Vi

interface vertex

ghosts V g
i

weight

cut-edge (cutting Vi and V \ Vi)
(replicated interface vertices)

border vertices are interface vertices and ghosts

Figure 2.2.: An example for an undirected weighted subgraph Gi = (Vi, V
g

i , Ei, ωi) of G
stored at PE i to represent G in the distributed memory.

5

2. Fundamentals

2.3. Notation of Data Reduction Rules

For the data reduction rules, we follow the new standardized scheme and formulations
of Großman et al. [20]. Each rule is identified by a name and followed by a condition
under which the rule can be applied for the currently considered graph G. Afterward,
it is stated how to modify the graph in order to obtain the reduced graph G′. Moreover,
the offset states the difference of the optimal solution weight α(G)− α(G′) between
both problems. Last, it is explained how to reconstruct an MWIS I for G once an
MWIS I ′ for G′ is obtained.

Distributed Data Reduction Rules. The notation slightly changes compared to sequential
data reduction rules. In the distributed memory model we apply the reductions to the
locally stored subgraph Gi. As reduced graph, we state the modified local graph G′i
which translates to a modification in G. The reduction offset is stated with respect to
the global reduced graph G′. If the reduction rule supports to include interface vertices,
it is possible that conflicting vertices are proposed for the solution. In this case, we
state an include proposal which adds the proposed vertex to a set of include proposals
Ĩ i. When the PEs receive the include proposal by another PE, they can check locally
for a conflict. The data reduction rules state how to resolve the conflict.

6

3. Related Work

In this chapter we give an overview of the related work. It is structured as follows: We
start with sequential approaches in Section 3.1 because the first kernelization techniques
for MWISP have been developed in combination with a sequential solver. Then, we
describe parallel and distributed algorithms and kernelization techniques in Section 3.2
from the literature.

3.1. Sequential Approaches

This work focuses on existing data reduction rules and kernelization techniques. Most
of the data reduction rules were published as part of a novel solver. We outline the
different types and ideas of data reduction rules together with the solvers. Many of them
will be introduced formally in the next chapter where we discuss them in detail and
use them in our distributed memory model. For a full overview of the existing solvers
and data reduction rules, we refer the reader to a recent survey by Großman et al. [20].
They also cover solvers of the related problems such as the Minimum Weight Vertex
Cover and Maximum Weight Clique. For a better overview, we differentiate exact
algorithms in Section 3.1.1 and heuristic algorithms in Section 3.1.2.

3.1.1. Exact Algorithms

There exist multiple ways to find an MWIS. For example, one can state the problem
simply as an Integer Linear Program (ILP) [10]. A more common approach for solving
a combinatorial optimization problem is to use a sophisticated branch-and-bound solver.
Several branch-and-bound solvers have been proposed for the weighted problem [39, 5].
The idea is to search for an exact solution by recursively splitting the search spaces.
The search space is split by branching on the solution state of a vertex v. Then, one can
consider the search space with all the solutions including the branching vertex v and
then the solution space which excludes v. A Branching rule picks the next branching
vertex. This rules follows a heuristic which aims to reduce the number of branching
steps. In practice, branch-and-bound improves upon an exponential running time and a
naive brute-force approach in practice by pruning the search space. Pruning is applied
if no better solution can be found in a branch, i.e., the best known solution is equal to
an upper bound for the considered branch. An upper bound for the weighted problem
is given by weighted clique covers [39] which can be efficiently computed.

7

3. Related Work

Kernelization. To tackle (sparse) graphs with up to millions of vertices under reasonable
resource limitations, kernelization has proven to be a successful algorithmic technique [2,
3, 29]. Originally, kernelization was used for parameterized decision problems which are
problems that have an additional parameter as input, e.g., the solution size. With the
help of kernelization, one can show for some parameterized problems that they can be
decided in polynomial time in the input size while the parameter is fixed. Intuitively
speaking, such problems can be efficiently solved as long as the parameter is small.
Such parameterized problems belong to the complexity class fixed parameter tractable
(FPT).

Roughly speaking, the idea of kernelization is to try to apply so-called data reduction
rules to the current problem instance to obtain a smaller equivalent problem. These
rules aim to reduce vertices and/or edges from the graph or reduce the solution weight
of the instance. The resulting problem instance, the reduced graph, is equivalent in
the sense that an exact solution can be reconstructed for the graph given an exact
solution for the reduced graph and vice versa. If no reductions are applicable anymore,
the reduced graph is called a kernel. In the context of fixed-parameter-tractability, an
FPT problem always yields a kernel that is bounded polynomially only in size by the
parameter while the kernelization maintains an FPT running time.

While MVCP with the solution size as parameter is an FPT problem, MISP and
MWISP are probably not [12]. Nonetheless, in practice they benefit from data
reduction rules because they efficiently remove many vertices and edges from the graph
or decrease the solution weight. However, from a practical perspective kernelization
as an algorithmic toolbox just started to receive more attention in the recent years
as pointed out by Abu-Khzam et al. [2]. They survey recent advances of transferring
data reduction rules to practical algorithms including problems which are unlikely to
be fixed-parameter-tractable.

Branch-and-Reduce. A very successful paradigm using kernelization is the branch-and-
reduce scheme which builds on top of the concept of branch-and-bound. It exhaustively
applies data reduction rules to shrink the problem size before doing a branching step to
improve upon the exponential running time. As a result, branching is only necessary if
no reductions are applicable anymore. A widely known and used branch-and-reduce
solver for the weighted problem is KaMIS_wB&R by Lamm et al. [29].

The Critical Weighted Independent Set reduction by Butenko and Trukhanov [7] was
the very first rule for the weighted problem. It is an effective data reduction rule used
by KaMIS_wB&R. This rule tries to find a subset of an MWIS by solving a minimum
cut problem for a bipartite graph [7]. While this rule acts more in a global fashion, i.e.,
takes the whole graph in account, the rules introduced by Lamm et al. [29] act more
locally. They derive rules from so-called novel meta reduction rules which only read and
modify neighborhoods up to a certain distance of a considered vertex. They are called
meta reduction rules because they require to find an MWIS for a sub problem, e.g., for
an induced subgraph of the neighborhood. In practice this is not very efficient because
the resulting sub problem can be as hard as the original problem. To that end, they
derive rules, which make use of upper bounds with small computational cost for the sub

8

3.1. Sequential Approaches

problems. In practice, these upper bounds are good enough to successfully reduce parts
of the graphs. KaMIS_wB&R only uses the meta reduction rules if efficient rules do not
apply anymore while it is not in a recursion of solving a sub problem. Additionally, the
running time for solving the sub problem is bound by a time limit.

To obtain a kernel, the reduction rules are applied iteratively in certain order to prefer
more efficient and effective rules. In each step, a rule is tested for all candidate vertices.
At the end of each step, one starts over with the first rule if progress was made, i.e.,. a
reduction applied for some candidate. Otherwise, the next rule is considered if one is left.
To prevent testing a reduction rule for all vertices all over again, a common technique
is dependency checking where vertices are only considered if their neighborhood has
changed. This technique is especially helpful for data reductions which apply locally.

Gellner et al. [17] extended the data reduction portfolio of KaMIS_wB&R with a
weighted version of the struction rule by Ebenegger et al. [13]. This rule transforms
the problem into an equivalent problem of decreased solution weight. However, this
comes at the cost of a possibly increased graph size. Therefore, it is referred to as a
transformation rule instead of a data reduction rule. Once this rule is applied, data
reduction rules become ideally applicable again so that the reduced problem size is
overall smaller. Their experiments with their solver Struction underline the effectiveness
of their approach. Struction solves significantly more graphs than KaMIS_wB&R and is
often multiple orders of magnitude faster.

Figiel et al. [14] investigated the reduction order for MVCP and point out that
different orders of reduction applications can lead to different kernels. Since one is
particularly interested in a small kernel one may try to undo reduction applications
and try to apply a (different) rule to (different) vertices. They go a step further
and propose so-called backward rules which yield an (increased) equivalent problem
instance. Applying these rules can be thought of as undoing the corresponding forward
rule (data reduction rules decreasing the problem size). These backward rules are
then used in new kernelization techniques that aim to find overall smaller kernels.
They propose two new kernelization algorithms which are called Find-And-Reduce and
Inflate-Deflate. Both algorithms apply forward rules to obtain a kernel and then try to
improve upon the kernel size using backward rules. Find-And-Reduce tries to search
the search space for sequences of reduction applications to find an overall smaller
kernel. Whereas Inflate-Deflate is more of a random walk trying to apply backward
rules randomly to ideally find a smaller kernel. A key challenge is to control the huge
search space of backward rule applications. The first kernelization algorithm restricts
the search by allowing only a maximum number of reduction steps, applies rules in a
subgraph, and stops once some reduction order is found that yields a smaller reduced
graph. Their second algorithm, (Local) Inflate-Deflate works in two phases. First, they
inflate the graph by randomly (locally) applying backward rules in the current kernel
until the resulting graph size reaches a threshold size. Afterward, the kernelization
algorithm tries to deflate the problem by exhaustively applying forward rules in a
randomized fashion. Their experiments underline that both approaches are capable

9

3. Related Work

to find even smaller reduced graphs for various graph families compared to reduction
rules by Akiba and Iwata [3].

Utilizing kernelization also gives rise to new branching vertex selection strategies.
Hespe et al. [24] proposed a novel strategy for the MISP problem that prefers branching
on vertices which entail further reduction applications in the reduced graph. Their
conducted experiments show promising results: The new strategy is at least as good in
terms of running time as the heuristic that branches on maximum degree vertices.

There exists also other branch and reduce solvers [41, 31]. They use data reduction
rules which act more globally. For example One Vertex Cut by Xiao et al. [41] reduces
connected components by searching articulation points. If an articulation point v ∈ V
is removed from the graph decays into multiple connected components. One can then
build a case distinction for one of the resulting connected components C by computing
an MWIS for it and for C \N(v).

Recently, another branch-and-reduce reduce solver for MWIS was proposed by Xiao et
al. [40] for a theoretical analysis. They use novel data reduction rules in their solver
which reduce short paths and cycles. With the help of the measure-and-conquer method
they show an improved worst-case running time for sparse graphs. More precisely,
their algorithm runs in time O∗(1.1443(0.624x−0.872)n′) time where n′ is the number
of vertices of degree at least two and x the average degree of these vertices while
using polynomial space.

3.1.2. Heuristic Algorithms

Greedy algorithms for finding a maximal independent set appear throughout the
literature and are often used for initial solutions in more sophisticated local-search
solvers [10, 22, 29]. For the weighted case well-known greedy heuristics are weight and
weight_diff which rate vertices with w(v) and ω(N(v))− w(v), respectively [23]. Then,
the vertices are included if free, i.e., adjacent vertices are not in the solution yet, in
descending order of their rating. For example, KaMIS_wB&R by Lamm et al. [29]
adds free vertices to the solution ordered by their weight if a time limit is reached.
Sometimes, better results are achieved if the rating is adaptive, i.e., is re-evaluated
whenever a vertex is assigned a solution status [10].

In the following we given an overview of heuristic algorithms for the unweighted and
weighted problem. They combine and follow different schemes such as iterated-local-
search (ILS), memetic, and reduce-and-peel. We will point out that most state-of-the-art
in-exact solvers make heavy use of data reduction rules in order to obtain high-quality solutions.

Various local-search techniques exist for the weighted and unweighted problem which
often find high quality solutions. Starting with ARW by Andrade et al. [4] which is
an iterated local search (ILS) solver for the unweighted problem. They introduced
a successful technique called (1, 2)-swaps that improves a solution by swapping two
vertices into the solution by removing one from it.

10

3.1. Sequential Approaches

Dahlum et al. [9] build on top of this technique by utilizing kernelization. Their first
approach, called KerMIS, first reduces the graph and then applies local-search to find a
good solution for the kernel. The second algorithm, called OnlineMIS, reduces simplicial
vertices in an online fashion while scanning the graph to perform local-search. Further,
both approaches prune high degree vertices which can be thought of as an in-exact
reduction to speed up local-search by removing them from the graph and excluding
them from a solution because they are unlikely to be part of it. Pruning high-degree
vertices is helpful for efficiently obtaining high-quality solutions for scale-free graphs.

Nogueira et al. [34] generalize the vertex swapping technique to the weighted case, to
so-called (w, 1)-swaps and (1, 2)-swaps, and propose the iterated local-search solver
HILS. Here, the idea is to swap a vertex into the solution by removing its w neighbors
the solution if it improves the solution. For both kind of swaps an improving swap
can be found in linear time or deduced that non exists anymore. These general local-
search techniques are often combined with tabu-mechanisms and perturbations steps
to overcome local maxima.

For some graph applications, e.g., the vehicle routing (VR) instances by Dong et al.
[11], data reductions are so far not very effective due to their structure [10]. To that end,
Dong et al. [10] proposed a novel iterated local search algorithm called METAMIS that
utilize a metaheuristic called GRASP along with the (w, 1)-, (1, w)- and (2, w)-swaps,
and AAP-moves. METAMIS outperforms HILS on the VR instances.

Beside these local-search techniques, a common heuristic solver is the reduce-and-peel
solver HtWIS by Gu et al. [23]. In contrast to local-search solvers it does not improve
upon an initial solution but aims to find a single high-quality solution incrementally.
The idea of reduce-and-peeling is to apply a kernelization algorithm whenever possible
until no reduction rule is applicable anymore; and only then an in-exact decision
regarding the solution is done. For the in-exact step, a vertex is peeled which ideally
is unlikely to be (not) part of a solution. This vertex selected with a heuristic and
excluded from (included into) the solution. A solution is obtained once the graph is
empty. HtWIS outperforms the iterated local-search solver HILS in the experiments
conducted by Gu et al. [23] while often computing solutions in milliseconds. Their
solver especially benefits from their newly proposed data reduction rules. They present
so-called low-degree reductions which target vertices of degree one and two which all can
be fully reduced. For the remainder of the graph they propose the Basic Single Edge
reduction and Extended Single Edge reduction. These rules reduce vertices which are
not part of at least one optimal solution. The Basic Single Edge reduction generalizes
the Weighted Domination rule by Lamm et al. [29].

For the unweighted problem exist multiple evolutionary algorithms, e.g., EvoMIS by
Lamm et al. [28] and ReduMIS by Lamm et al. [30]. The latter uses data reduction rules
in combination with EvoMIS. More recently, Großman et al. [22] proposed an advanced
memetic algorithm for the weighted problem, called m2wis+s. It repeatedly applies
a kernelization algorithm, determines a solution for the kernel with an evolutionary
algorithm, and then uses this (high-quality) solution to prune vertices which are unlikely
to be in an optimal solution. The last step re-opens up the search space so that further

11

3. Related Work

parts of the graph can be reduced. Their algorithm shows its full potential especially
when run for a long time focusing on high quality solutions. To reduce the graph, they
make use of data reductions from KaMIS_wB&R et al. [29], HtWIS et al. [23]. They
also use Struction [17] within the evolutionary approach.

Very recently, Großman et al. [21] contributed a new metaheuristic which they imple-
mented in a new iterated local-search solver called CHILS. CHILS is comprised of two
phases. In the first phase, k best solutions are determined or improved with a baseline
local-search algorithm. Then they apply the metaheuristic which is called Concurrent
Difference-Core Heuristic. Therefore, a subgraph induced on all the vertices is built
where the k best solutions disagree, the so-called Difference-Core. The local-search is
then applied on this difference-core. Afterward, the best solution for the difference-core
can be embedded back into the maintained best solutions which yields new (best)
solutions. Some of the new solutions replace the old ones. Both steps can be repeated
for a given time limit. Moreover, the authors apply CHILS to the kernel. For the kernel-
ization step they use novel data-reduction rules which are not yet covered in the survey
by Großmann et al. [20]. Roughly speaking, if one vertex contains the neighborhood of
another vertex, then edges can somtimes be added or removed between them. A key
challenge regarding kernelization algorithm is to decide whether more involved data
reduction rules of higher computational cost are effective for a given vertex. So far,
the set of reduction rules and their sequence in the iterative reduction process were
heuristically chosen, mostly following the computational cost and their effectiveness
in experiments. Therefore, the authors propose a neural network architecture based
on graph neural networks to obtain a so-called screening algorithm that is capable of
efficiently deciding whether a reduction rule is likely to be effective for a vertex. Overall,
the authors outperform state-of-the-art algorithms,e.g., obtain new best solution for
many VR instances, and perform well especially on large graphs. In the context of
parallel algorithms, CHILS is interesting as it is also a simple shared-memory algorithm.
All threads only read from the graph, but do not modify it. Further, each thread
of the p threads maintains a solution (p = k), solves the same difference core while
diversifying the local-search algorithm among the threads.

3.2. Distributed and Parallel Approaches

3.2.1. Greedy Algorithms

A simple parallel randomized algorithm for finding a maximal independent set is Luby’s
algorithm [32]. It was originally proposed for an exclusive read exclusive write parallel
random access machine (EREW PRAM). To obtain a maximal independent set, the
idea is to randomly choose a subset of vertices X into the solution in parallel. This set
might not be an independent set yet because vertices of X can be adjacent. Therefore,
each adjacent pair of vertices of X is considered in parallel. Conflicts are resolved by
always removing the neighbor of larger degree from X. Afterward, the independent set

12

3.2. Distributed and Parallel Approaches

and the neighbors are removed from the graph. Repeating theses steps exhaustively,
until the graph becomes empty, outputs a maximal independent set.

There exist multiple distributed greedy algorithms proposed for the LOCAL model.
Roughly speaking, this model follows a vertex-centric approach where each process is
assigned one vertex and can communicate processes of the neighbors. Such an algorithm
then works in rounds, so-called super steps, with communication in between to globally
synchronize their state. This model is often used for theoretical analysis regarding the
communication volume and needed synchronization steps.

Peleg [1] proposed such an algorithm to find a maximal independent set. Every vertex
is assigned a global unique identifier. The algorithm is based on the observation that a
vertex can be added to a solution without any conflict if it has the largest identifier
in its neighborhood. In a first step, a vertex joins the solution if it has the largest
identifier among the undecided neighbors. Then, the included vertices notify their
neighbors that they will not be part of a solution (excluded). Another synchronization
is needed so that the excluded vertices notify their neighbors about their exclusion.
These three steps are now repeated until all vertices are decided.

Wang et al. [38] used this distributed greedy algorithm, denoted as DisMIS. They
rank the vertices globally by their degree and break ties with the rank of the process.
The intuition is that vertices of smaller degree may be more likely to be part of an
optimal solution. They propose another distributed greedy algorithm called OIMIS
which computes the same solution but aims to improve running time by mitigating
the order dependency of the vertices. Therefore, OIMIS initially takes all vertices into
a solution and at every further super step their solution status is re-evaluated. The
re-evaluation works as follows: A vertex is only removed from the solution if it has a
higher ranking neighbor that is (still) part of the solution; otherwise it (re-)joins the
solution. If the solution status changes the neighbors are notified so that they can
re-evaluate their solution status in the next super step. If no vertex is notified for
re-evaluation a maximal independent set is found. Their experiments indicate that
OIMIS finds a solution by up to a factor 2 faster than DisMIS.

For the weighted case, a distributed greedy algorithm was proposed by Joo et al. [27]
which was specifically designed for the application of wireless scheduling. Their idea
is to build a maximal independent set incrementally by selecting a subset of vertices
X in each iteration that have a sufficiently large weight compared to their neighbors.
Moreover, the vertices must be eligible to join the solution, i.e., they must not be
adjacent to vertices of the partial solution. For X, they compute a maximal independent
set and the solution vertices to the solution.

3.2.2. Kernelization in Parallel

Although we are not aware of any distributed-memory or parallel kernelization-based
algorithms for the MWISP, a shared-memory and a distributed-memory approach for
the unweighted problem exists. They are in their idea most closest to our work.

13

3. Related Work

A shared-memory approach. Hespe et al. [25] were the first to propose a parallel
kernelization approach. They present a lock-free algorithm for shared-memory machines
for the unweighted problem. The high-level idea of their approach is to partition the
graph using a graph partitioner so that each thread can afterwards apply reductions
at its own vertex-disjoint block simultaneously. This idea is based on the observation
that the data reduction rules by Akiba and Iwata [3] and Butenko et al. [8] act very
locally. Thus, the data reductions can be applied blockwise, i.e., each thread applies
reductions within its own block, given a shared graph representation. Close to the
border, reductions can only be applied with restrictions since they cannot modify the
neighborhood or vertices at other blocks without risking race-conditions. Therefore,
the graph is partitioned, minimizing cut-edges, with the shared-memory parallel graph
partitioner ParHIP Meyerhenke et al. [33] before applying reductions. Further, they
only apply reduction where they do not include border vertices to prevent conflicts
regarding the solution. Nonetheless, border vertices can be excluded (and eventually
removed from the graph) by marking them as removed. As a result, adjacency lists
at other blocks are not touched. Beside the blockwise reductions, they propose a
shared-memory parallelize the Critical Independent Set reduction which acts globally
taking the full (reduced) graph into account. It requires to find a maximum bipartite
matching for a bipartite graph to solve a linear program. They apply this reduction
after the blockwise reduction were applied exhaustively. The resulting reduced graph is
called a quasi-kernel since reductions rule may still apply at the border.

A distributed approach. George et al. [19] proposed a distributed kernelization algorithm
for the unweighted problem. The input graph is partitioned into p vertex-disjoint blocks
where each of the p processes owns exactly one block. The key idea of their kernelization
algorithm is to reduce all degree one and two vertices exhaustively with the help of the
reduction rules by Chang et al.ComputingANeaChang2017. Roughly speaking, these
rules require to find degree-one vertices, degree-two paths, and degree-two cycles in
the graph. If such structures lay local within a block they can be reduced without
further communication. In the event that border vertices are reduced vertex removal
messages are written the respective processes can update their stored subgraph. To
identify and find such paths and cycles across multiple PEs they use a label propagation
approach. They propagate properties of the path segments with cut-edges to the
other PEs to reduce them. All these messages are buffered, as path segments are
encountered and border vertices are reduced, and eventually communicated with an
collective MPI_Alltoall. This synchronization step is started once all processes are
locally out work.

They propose a heuristic solver to find a maximal independent set by applying a
randomized greedy algorithm, similar to Luby’s algorithm, to the computed kernel to
find a maximal independent set. Their experiments, conducted with up to 64 cores
on real world instances and artificial graphs covering many graph families, indicate
speed-ups of a factor up to 30 on 64 cores compared with a linear reduce-and-peel
algorithm. While their approach works well in terms of running time for street networks,
their approach does not scale for many others. More involved experiments show that
these issues possibly arise due to slow look-ups of ghost vertices from received update

14

3.2. Distributed and Parallel Approaches

messages. Moreover, bad workload distributions might cause long idle times on many
processes, e.g., if many processes have only a few ghost vertices while some processes
have to deal with updates messages for many ghosts.

15

4. Distributed Kernelization

The following chapter presents the details of our distributed kernelization techniques for
the MWISP. Therefore, we repeat important data reductions rules [23, 29] in Section 4.1
which we later transfer to our distributed kernelization approach. In an example in
Section 4.2, we demonstrate how sequential data reduction rules can be applied in the
distributed memory model. In Section 4.3, we introduce the distributed data reductions
rules. These are rules that each process can apply to its locally stored subgraph in the
distributed memory model. All these rules are part of a local kernelization algorithm
in Section 4.4. In Section 4.5, we give the details of our dynamic graph data structure
representing the reduced graph in distributed memory. Applying the local kernelization
algorithm requires communication to update the reduction progress at the border.
Therefore, Section 4.6 gives the details of the message types holding the reduction
progress. To exchange and update the sent and received reduction progress we propose
a synchronous and an asynchronous communication approach. By using the local
kernelization algorithm with each of them, we obtain two distributed kernelization
algorithms KaDisReduS and KaDisReduA, respectively.

4.1. Reduction Rules

As mentioned in Chapter 3, many data reduction rules for sequential kernelization of
the MWISP exist. In a recent survey, Großman et al. [20] give a full overview over
existing rules. We cover a variety of effective data reduction rules that exploit locality
and are crucial for a strong reduction impact for many real world instances.

We start by repeating the data reduction rules of our interest. The proofs of correctness
can be found in the cited works. For the data reduction rules, we follow the new
standardized scheme and formulations of Großman et al. [20]. We introduce the scheme
in Section 2.3.

All the following rules make use of the following operations to reduce the graph and
re-construct a solution. A vertex v ∈ V can be excluded which says that is not part of
I and that it can be removed from G. There are also cases, where a vertex v ∈ V is
included which says it is added I. If v is added to I, its neighbors are excluded and
N [v] can be removed from the graph. Moreover, sometimes vertices are folded. This
operation changes the weight of vertices, removes vertices from G, or replaces vertices
by a new vertex. In this case, the solution reconstruction depends on an MWIS for the
reduced graph in order to decide whether or which folded vertices join the solution.

17

4. Distributed Kernelization

2
8

4
8

v
2

u

9

G

x

2
8

4
8

v
2

u

7

G′

x

2
8

4
8

u

7

G′′

x

fold v into u include u

u ∈ I ′ since I ′ = I ′′ and u ∈ I ′′u ∈ I since u ∈ I ′

Reduce G

. . .

Reconstruct I

Reduce G′

Reconstruct I ′

α(G) = α(G′) + 2 α(G) = α(G′) + 7

Figure 4.1.: This figure shows an example where Degree One by Gu et al. [23] is applied two
times to reduce vertices in G. Weights are highlighted in red, reduced vertices and edges are
darkgray in the reduced graph, and included vertices are green.

First, we consider rules that target vertices of small degree because they can be efficiently
tested due to their small neighborhood. The first rule allows one to reduce all vertices
of degree one. To give some intuition for the rule, we show an example in Figure 4.1.

Reduction 4.1.1 (Degree One by Gu et al. [23]).
Let v, u ∈ V with N(v) = {u}.

• If ω(v) ≥ ω(u): include v.

Reduced Graph G′ = G−N [v]
Offset α(G) = α(G′) + ω(v)
Reconstruction I = I ′ ∪{v}

• If ω(v) < ω(u): fold u and v into a new vertex v′.

Reduced Graph G′ = G−N [v] + v′ with N(v′) = N(u) and ω(v′) = ω(v)− ω(u)
Offset α(G) = α(G′) + ω(v)
Reconstruction If v′ ∈ I ′, then I = I ′ \{v′} ∪ u, else I = I ′ ∪{v}

Further, there exist rules to completely reduce vertices of degree two. To reduce them,
one distinguishes between the following two cases: A degree-two vertex v ∈ V either
forms a triangle with its two neighbors so that all three are pairwise adjacent or N [v]
has a V-shape, i.e., both neighbors are not adjacent. A triangle is merely a special
case of a clique where v is a simplicial vertex. We will repeat data reduction rules that
generalizes to cliques and reduce triangles. To that end, we repeat only the V-Shape
by Gu et al. [23].

Reduction 4.1.2 (V-Shape by Gu et al. [23]).
Let v ∈ V be a degree-two vertex with two non-adjacent neighbors x, y ∈ V . Without
loss of generality, assume ω(x) ≤ ω(y).

18

4.1. Reduction Rules

• If ω(v) < ω(x): fold v into a new vertex v′.

Reduced Graph G′ = G[(V ∪ {v′}) \ {v}] with N(v′) = N(x) ∪N(y) and
set ω(x) = ω(x)− ω(v), ω(y) = ω(y)− ω(v), ω(v′) = ω(v)

Offset α(G) = α(G′) + ω(v)
Reconstruction If x ∈ I ′ or y ∈ I ′, then I = I ′ ∪{v}, else I = I ′

• If ω(x) ≤ ω(v) < ω(y): fold v into x and y.

Reduced Graph G′ = G− v with N(x) = N(x) ∪N(y)
and set ω(y) = ω(y)− ω(v)

Offset α(G) = α(G′) + ω(v)
Reconstruction If x, y ∈ I ′, then I = I ′ ∪{v}, else I = I ′

• If ω(y) ≤ ω(v) and ω(x) + ω(y) ≤ ω(v): include v.

Reduced Graph G′ = G−N [v]
Offset α(G) = α(G′) + ω(v)
Reconstruction I = I ′ ∪{v}

• If ω(y) ≤ ω(v) and ω(x) + ω(y) > ω(v): fold v, x, y into a new vertex v′.

Reduced Graph G′ = G[(V ∪ {v′} \ {v, x, y} with N(v′) = (N(x) ∪N(y))
and ω(v′) = ω(x) + ω(y)− ω(v)

Offset α(G) = α(G′) + ω(v)
Reconstruction If v′ ∈ I ′, then I = I ′ ∪{v} \ {v′}, else I = I ′ ∪{v} \ {v′}

Note that in the first case no vertices are reduced but the solution weight decreases
for the cost of new edges. In the second case the reduced graph also might have more
edges but at least the number of vertices decreases.

The next rules applies to vertices of arbitrary degree. They include a vertex if its weight
is at least as large as the weight of an MWIS in its neighborhood.

Reduction 4.1.3 (Heavy Vertex by Lamm et al. [29]).
Let v ∈ V with ω(v) ≥ α(G[N(v)]), then include v.

Reduced Graph G′ = G−N [v]
Offset α(G) = α(G′) + ω(v)
Reconstruction I = I ′ ∪{v}

Note that the latter rule requires to find an MWIS for an induced subgraph. In practice,
easier special cases are tested first, e.g., the next rule called Distributed Neighborhood
Removal. The rule approximates an MWIS for the induced neighborhood graph by
summing up all weights in the neighborhood.

19

4. Distributed Kernelization

Reduction 4.1.4 (Neighborhood Removal by Lamm et al. [29]).
Let v ∈ V with ω(v) ≥ ω(N(v)), then include v.

Reduced Graph G′ = G−N [v]
Offset α(G) = α(G′) + ω(v)
Reconstruction I = I ′ ∪{v}

If v ∈ V is simplicial, i.e., its closed neighborhood forms a clique in G, then an MWIS
of the induced neighborhood graph contains only a single vertex. This observation
gives rise to the following data reduction rule.

Reduction 4.1.5 (Simplicial Vertex by Lamm et al. [29]).
Let v ∈ V be simplicial with maximum weight in its neighborhood, i.e., ω(v) ≥
max{ω(u) : u ∈ N(v)}, the include v.

Reduced Graph G′ = G−N [v]
Offset α(G) = α(G′) + ω(v)
Reconstruction I = I ′ ∪{v}

If a simplicial vertex v ∈ V does not have maximum weight in its neighborhood, we
can still reduce some vertices of the clique and decrease the weight of the remaining
vertices.

Reduction 4.1.6 (Simplicial Weight Transfer by Lamm et al. [29]).
Let v ∈ V be simplicial, let S(v) ⊆ N(v) be the set of all simplicial vertices. Further,
let w(v) ≥ w(u) for all u ∈ S(v).

• If ω(v) ≥ max{ω(u) : u ∈ N(v)}, then use Simplicial Vertex by Lamm et al. [29].

• Else, fold v into N(v).

Reduced Graph G′ = G−X with X := {u ∈ Nv : ω(u) ≤ ω(v)} and
set w(u)← w(u)− w(v) for all x ∈ N(v) \X

Offset α(G) = α(G′) + ω(v)
Reconstruction If I ′ ∩N(v) = ∅, then I = I ′ ∪{v}, else I = I ′

So far, most rules reduce vertices by including a vertex into the solution. The following
rules are often used in sequential kernelization algorithms to exclude vertices once the
previous rules were tested exhaustively. Intuitively speaking, these rules can exclude a
vertex if there are vertices in the neighborhood which always can be swapped into the
solution to obtain a solution which is at least as good.

Reduction 4.1.7 (Domination by Lamm et al. [29]).
Let u, v ∈ V be adjacent vertices with N [u] ⊆ N [v]. If ω(v) ≤ w(u), then exclude v.

Reduced Graph G′ = G− v
Offset α(G) = α(G′)
Reconstruction I = I ′

20

4.1. Reduction Rules

Later, Basic Single-Edge by Gu et al. [23] was introduced. They show that Domination
by Lamm et al. [29] is generalized by Basic Single-Edge by Gu et al. [23]. Basically,
they allow u to have neighbors that are not necessarily neighbors of v, as long as they
have sufficiently small weights.

Reduction 4.1.8 (Basic Single-Edge by Gu et al. [23]).
Let u, v ∈ V be adjacent vertices with ω(N(u) \N(v)) ≤ w(u), then exclude v.

Reduced Graph G′ = G− v
Offset α(G) = α(G′)
Reconstruction I = I ′

Further, Gu et al. [23] introduce a rule which is called Extended Single-Edge by Gu et
al. [23]. It allows to reduce common neighbors of u and v.

Reduction 4.1.9 (Extended Single-Edge by Gu et al. [23]).
Let u, v ∈ V be adjacent vertices with ω(v) ≥ ω(N(v))−ω(u), then exclude N(v)∩N(u).

Reduced Graph G′ = G− (N(v) ∩N(u))
Offset α(G) = α(G′)
Reconstruction I = I ′

The last two rules fold a vertex v ∈ V with an MWIS of the neighborhood. Either v
or the vertices of the MWIS in the neighborhood are part of I. This is the case, if
there is only one MWIS in the neighborhood of larger weight than ω(v). A special
case of it is Neighborhood Folding by Lamm et al. [29] because it only applies if the
neighborhood is independent,i.e., no two vertices are adjacent. This case can be simply
tested. The generalized rule, Generalized Neighborhood Folding by Lamm et al. [29],
is given afterward. It needs to solve multiple MWISP for the neighborhood of the
considered vertex v.

Reduction 4.1.10 (Neighborhood Folding by Lamm et al. [29]).
Let v ∈ V , and suppose that N(v) is independent. If ω(N(v)) > ω(v), but ω(N(v))−
min{ω(u) : u ∈ N(v)} < ω(v), then fold v and N(v) into a new vertex v′.

Reduced Graph G′ = G[(V ∪ {v′}) \N [v]] with N(v′) = N(N(v))
and ω(v′) = ω(N(v))− ω(v)

Offset α(G) = α(G′) + ω(v)
Reconstruction If v ∈ I ′, then I = (I ′ \{v′}) ∪N(v), else I = I ′ ∪{v}

Reduction 4.1.11 (Generalized Neighborhood Folding by Lamm et al. [29]).
Let v ∈ V , then

21

4. Distributed Kernelization

• if G[N(v)] contains only one independent set Ĩ with ω(Ĩ) > ω(v), fold v and N(v)
into a new vertex v′.

Reduced Graph G′ = G[(V ∪ {v′}) \N [v]] with N(v′) = N(N(v))
and ω(v′) = ω(Ĩ)− ω(v)

Offset α(G) = α(G′) + ω(v)
Reconstruction If v ∈ I ′, then I = (I ′ \{v′}) ∪N(v), else I = I ′ ∪{v}

• if for u ∈ N(v) all independent sets in G[N(v)] including u have less weight than
ω(v), exclude u.

Reduced Graph G′ = G− u
Offset α(G) = α(G′)
Reconstruction I = I ′

4.2. A first Example

All the reductions introduced in Section 4.1 have in common that they act locally. More
precisely, they require and modify only the neighborhoods up to a small distance of the
currently considered vertex. We can exploit this locality for our distributed machine
model. If each process stores a vertex disjoint block, we can safely apply reductions
blockwise. Each process can apply reduction simultaneously to its stored block as long
as they are careful at the border. This property of locality was also exploit by parallel
kernelization approaches for the unweighted problem [19, 25].

A process can also try to reduce vertices where it has border vertices in the neighborhood
or is a interface vertex. However, when we reduce a vertex at the border, each process
needs to ensure that this reduction can be applied independent of possible blockwise
border modifications at other processes.

The example in Figure 4.2 illustrates this idea. In this example, the graph is stored
distributed across three PEs. Each PE tries to apply reductions locally. The PE i
can apply Neighborhood Removal by Lamm et al. [29] to vi because 6 = ω(vi) ≥
ω(N(vi)) = 6. When it applies, it includes vi and removes N [vi] from its locally stored
subgraph. Even if the interface neighbors of vi, xi and xj, were already excluded at
another process, we can still include vi because vi still has a sufficiently large weight.
From a global point of view, we do not have to remove any vertex at another process
because all removed vertices are local vertices. However, we still removed cut-edges
locally. Not communicating the removal of xi and xj is no issue if the adjacent PEs, e.g.,
PE i, do not reduce any local vertices demanding the existence of xi or xj . Nonetheless,
we might want to notify the adjacent PEs of the excluded interface vertices, xi and yi,
at some point so that the application of further reductions is possible.

At PE j we can apply Simplicial Weight Transfer by Lamm et al. [29] for the local
vertex vj because it forms a triangle (clique) with its neighbors. The weight of the
interface neighbor xj is decreased by ω(vj) = 6, from 8 to 2, and the interface neighbor

22

4.2. A first Example

uj is excluded because 5 = w(uj) ≥ ω(vj) = 6. The folded vertex vj joins the solution
only if its remaining neighbors are not part of a solution. If, in the mean time, its
interface neighbors are already excluded at other PEs, folding vj might be obsolete
but is still correct. In this case, we merely decreased the weight of an interface vertex
instead of excluding it immediately. Decreasing the weight does not cause a vertex to
be included into the solution if an include is not possible without the weight shift. PE
j locally excludes xj once it receives a removal message for xj from another PE. When
excludes were communicated by then, we can unfold the vertex later and include vj

when we reconstruct the solution.

We can also apply the data reduction rules at the border and reduce ghost neighbors. At
PE h we can include an interface vertex vh using Neighborhood Removal by Lamm et al.
[29]. For the ghost neighbors, updates may not bet received yet: they might be excluded
or their weight was decreased. Moreover, vh did not receive any new neighbors in the
mean time. Therefore, the weights of ghost neighbors can be used as an upper bound
for the weights of the respective interface vertices. Finally, PE h can communicate
the include of vh with the PEs owning the ghost neighbors so that their exclude is
propagated accordingly.

vi

6
xi

3

yi

3

xj 8

vh
11

vi

6
xi

3

yi

3

xj 8
uj

6

vj

5

vh
16

xi
3

yi

3

xj 8
uj

6

vj

5

vh
11

yi

3

xj 8

vj

5

vh
16

vi

6
xi

3

yi

3

xj 8

vh
11

xi
3

yi

3

xj 2
vj

6

uj

5

vh
11

yi

3

xj 8

vj

5

vh
16

vi

6
xi

3

yi

3

xj 2
uj

6

vj

5

vh
16

Blockwise ReductionsPE perspective of GGlobal perspective G
Neighborhood Removal with vi

Weight Transfer with vj

Neighborhood Removal with vh

account 6 for the offset
include vj if xj is excluded

ghost weights are an upper-bound
for the weights at the owning PEs

G′ with solution

PE i

PE j

PE h

PE i

PE h

PE j

PE i

PE h

PE j

Figure 4.2.: The figure shows an example were we apply reductions blockwise to reduce the
graph G′. In the middle, the perspective of each PEs is shown. On the right, the reduced
subgraph is highlighted in darkgray. The blockwise reduction applications yield the global
reduced graph G′ on the bottom-left side. We marked the solution vertices in green and their
weight in red.

23

4. Distributed Kernelization

In general, including an interface vertex can lead to a solution conflict, because in the
mean time a neighbor at another PE can be included as well. However, we show that
these kind of conflicts do not require the reversal of modifications in the reduced graph
and can be resolved by tie-breaking two conflicting vertices.

4.3. Distributed Reductions

We now transfer the data reductions rules to the distributed memory model so that
they can be applied blockwise without any conflicts at the border. The input graph
G = (V,E, ω) is stored in distributed memory among the PEs 1 to p as described in
Section 2.2. The idea is as follows: Each PE can apply reductions locally in Gi. We
state with a Border Argeement to what extent reductions are allowed to reduce the
border. As a result it is ensured that the global reduced graph G′ is always given
via the reduced local subgraphs G1 up to Gp if the reduction progress at the border
is synchronized. Under the Border Argeement and given Gi, we can make certain
assumptions to what extent the border is modified by other PEs. In some cases, these
assumption allow us to reduce vertices close to the border. We give the details without
loss of generality in the perspective of PE i.

Reduction Operations. A reduction application at PE i modifies Gi, e.g., removes
vertices, folds multiple vertices into a new vertex or changes the weight of a vertex. It
is also possible that the weight of a local vertex is modified. Moreover, a vertex v ∈ Vi

can be moved to another process. While this removes v from Gi, it does not change G.
We denote the resulting reduced subgraph G′i with vertices V ′i := V ′i ∪ V

g′
i where V ′i

are the modified owned vertices and V g′
i are the modified ghosts.

The following Border Argeement describes to what extent border vertices may be mod-
ified and reduced by distributed reductions. In general, arbitrary blockwise reduction
applications at the border can result in a diverged reduced border because updates were
not communicated yet. As a consequence, reductions might assume a wrong state of the
border and propagate an error through the reduction process. To that end, the following
reduction rules ensure that they can be safely applied blockwise, i.e., independent of
the reduction applications at other PEs. They ensure that a modification at the border
does not require a reversal of graph modifications at other PEs. It allows us to use
weights of ghosts as upper bounds for the weight of the corresponding interface vertices
at their PEs. Moreover, it ensures that Gi sees at the border at worst redundant
information. Note that the Border Argeement initially holds for the input graph since
we replicated the interface vertices with their weights as ghosts at the respective PEs.

Model Assumption 4.3.1 (Border Argeement).
Let v ∈ Vi be an interface vertex, i.e., v ∈ Ni(V g

i). PE i can only decrease the weight
of v, modify its local neighbors, exclude v or propose to include v. A ghost u ∈ V g

i is at
most excluded by PE i if a neighbor is included; otherwise it remains unmodified. If an
interface vertex v ∈ Vi is included, it holds ωi(v) ≥ α(Gi[Ni(v)]).

24

4.3. Distributed Reductions

Theorem 4.3.1 (Distributed Reductions ensure the Border Agreement).
All distributed data reduction rules reduce border vertices only as stated in the Border
Argeement.

Proof. The proofs of data reduction rules verify that the Border Argeement is ensured
when a reduction is applied.

Roughly speaking, the (reduced) graph G = (V,E, ω) is given at any time via G1, . . . , Gp.
A modification in Gi translates to a modification in G. For example, if a vertex v ∈ V i

is removed, it is also removed from V . If the weight ωi(v) of a local vertex v ∈ Vi is
modified and v is still part of V , so it is modified at G, i.e., ω(v) is assigned ωi(v). The
reduced graph G can be obtained (e.g., with collective communication) from all the G1
up to Gp with the weights of the local vertices. An outdated interface vertex v ∈ Vi

can easily be identified. The interface vertex v is outdated if it was removed as ghost
at an adjacent PE, i.e., v 6∈ V g

rank(u) for some ghost u ∈ V g
i ∩Ni(v).

Including Interface Vertices. Under the Border Argeement, conflicts might still occur
when adjacent interface vertices are included blockwise as in Figure 4.3. However,
we show in Lemma 4.3.1 that we can resolve such solution conflicts without loss
of optimality after reducing the graph without undoing the reductions. Figure 4.3
illustrates the reason why this holds. The vertex xj at PE j can only be included if
it is merely adjacent to a single neighbor because xi has equal weight. This is similar
for xi at PE i except for the fact that it is simplicial with more than one neighbor.
A conflict arises if a simplicial vertex (here: xi) is included while all neighbors were
excluded by another PE except for one of equal weight (here: xj). Such a conflict can
only arise between two processes. If a third is involved no vertex sees a clique of at
least three vertices spread acres three PEs but only non-adjacent ghost neighbors. If
these ghost neighbors have equal weights, then an interface vertex v is not included
since ω(v) < N(v).

Lemma 4.3.1 (Including Interface Vertices).
Assume the Border Argeement is ensured through the reduction process. Let v ∈ Vi be
an interface vertex that is included at PE i. Further, let u ∈ Vj be a ghost neighbor of
v which is included at PE j, where j = rank(u). Then, Ni[v] is excluded by an include
of u and both vertices have equal weights, i.e., ωi(v) = ωj(u). Further, u is the only
ghost neighbor of v that is proposed for include.

Proof. We proof it via induction over the number of local included interface vertices l
at PE i.

Induction beginning. Let G0
i = (V 0

i , E
0
i , ω

0
i) be the reduced subgraph at PE i before the

first (l = 1) include of a vertex x ∈ V 0
i which is excluded at PE j. Then, x is excluded

due to the include of a neighbor at PE j which we denote y (Border Argeement).
Further, let G∗j = (V ∗j , E∗j , ω∗j) denote the reduced subgraph at PE j before y is
included. Since y is an interface vertex at PE j in G∗j , y is included with a weight

25

4. Distributed Kernelization

vi

2
xi

8

yi

4

xj 8
uj

2

vj

9

G
vi

2
xi

8

yi

4

xj 8

vj

9

PE i

xi
8

yi

4

xj 8
uj

2

vj

9
PEj

PE i includes xi

PE j includes vj and then xj

conflict: xj and xi cannot be both in I

vi

2
xi

8

yi

4

xj 8
uj

2

vj

9

→ choose xi or xj for I

G′

PEj

PE iPE i

PEj

Figure 4.3.: The Figure shows two PEs trying to include (green) vertices at the border. All
includes satisfy the Border Argeement, i.e., some interface vertex v ∈ V is only included if
ωi(v) ≥ α(Gi[Ni(v)]). Still, a conflict between xi and xj arises. Both have equal weights (red)
and force the same vertices out of a solution (darkgray) except for themselves. According
to Lemma 4.3.1 we can choose either xi or xj for I while maintaining optimality without
undoing reductions.

which is at least as large as the weight of x at PE j, i.e., ω∗j(y) ≥ α(G∗j [N∗j (y)]) ≥ ω∗j(x)
due to the Border Argeement On the other hand, y is not yet reduced at G0

i because
an include of a local interface vertex (before including x) at PE i can exclude y.
Thus, we know y is a neighbor of x in G0

i , i.e., y ∈ N0
i (x). Further, it must hold

ω0
i (x) ≥ α(G0

i [N0
i (x)]) ≥ w0

i (y) ≥ ω∗j(y) under the Border Argeement. Thus, both
conflicting included vertices have equal weights wi(x) = w0

i (x) = w∗j (y) = wj(y).

Moreover, we show that including x at PE i at most removes vertices which the include
of y at PE j removes anyway, i.e., U := N0

i [x] \ N∗j [y] = ∅. Therefore, assume it
exists x′ ∈ U ∩N0

i (y). Then x′ is already excluded at PE j anyway since x′ 6∈ N∗j (y).
Therefore, assume it exists a vertex z ∈ U \ N0

i [y], then {y, z} is an independent
set in the neighborhood of x in G0

i . In this case we obtain ω(x) ≥ α(G0
i [N0

i (x)]) ≥
ω0

i ({z, y}) > ω0
i (y) ≥ ω0

j(y). This contradicts ω0
i (x) = ω∗j(y). Therefore, U is the empty

set. Analogously we obtain that N∗j (y) \N0
i [x] = ∅. Thus, by including x at PE i and

y at PE j we remove the same vertices from the graph. Both have the same weight,
and one can decide for either of them while their neighbors remain excluded.

Note, y is the only such conflicting ghost neighbor of v. Assume there is another
conflicting ghost neighbor z ∈ N0

i (v), z 6= y. It is sufficient to assume that it is not
located at PE i or j; otherwise there is a conflict of two local vertices. Then {y, z} is not
an edge at G0

i since both are ghosts. Therefore, both vertices are an independent set in
G0

i . We obtain ω(x) ≥ α(G0
i [N0

i (x)]) ≥ ω0
i ({z, y}) > ω0

i (y) ≥ ω0
j(y) which contradicts

that x and y are conflicting vertices which have equal weights.

Induction precondition. Now assume, this until the l-th include of an interface vertex
at PE i in the case of conflicting includes between PE i and PE j.

26

4.3. Distributed Reductions

Induction step. We show that this still holds for the l + 1-th include at PE i. Let x be
the next included vertex and assume y is a (former) ghost neighbor that is included
at PE j leading to the exclude of x at PE j. Let Gl

i = (V l
i , E

l
i, ω

l
i) denote the induced

subgraph at Pi before x is included at G∗j = (V ∗j , E∗j , ω∗j) the subgraph at PE j before
y is included. If y is already excluded at PE i, then it exists a former interface vertex
x′ 6= x, x′ ∈ V l

i at PE i which was already included at some step l′ < l + 1. Then,
the induction hypothesis holds for the l′-th include where x′ was included in conflict
with the include of y at j. Since x is a neighbor of y and both, x′ and y, exclude the
same vertices, we know x is a neighbor of x′ which was already excluded at PE i. This
contradicts that x is not reduced yet at PE i.

Therefore, y must be a remaining ghost neighbor (and not an excluded ghost) which
is included at PE j. Then it holds according to the Border Agreement that wl

i(x) ≥
α(Gl

i[N l
i (x)) ≥ wl

i(y) ≥ wl
j(y). Similarly, it follows ωl

j(y) ≥ ωl
i(x). Thus, we obtain

equality of their weights. Analogously to the induction beginning, we conclude that
they remove the same remaining vertices and that there is at most one conflict with x.
Ties only need to be broken between x and y while leaving the other vertices in their
neighborhood excluded.

We now give the details of our first distributed data reduction rule which allows us to
include vertices of Vi which transfers Heavy Vertex by Lamm et al. [29]. The details of
the kernelization algorithm and especially the reduction order are given in Section 4.4.
The notation for data reduction rules is introduced in Section 2.3. Note that PE i
proposes only to include an interface vertex by adding it to Ĩi. Distributed Heavy
Vertex provides a strategy how to reconstruct the solution given Ĩi.

Distributed Reduction 4.3.1 (Distributed Heavy Vertex).
Let v ∈ Vi with ωi(v) ≥ α(Gi[Ni(v)]), we can reduce Ni[v] and propose to include v.

Reduced Graph G′i = Gi −Ni[v]
Include Proposal Ĩ ′i = Ĩ i ∪ {v}

Reconstruct the solution as follows:

• If {u ∈ Ĩrank(u) ∩Ni(v) : v < u} = ∅:

Offset α(G) = α(G′) + ωi(v)
Reconstruction I = I ′ ∪{v}

• Else:
Offset α(G) = α(G′)
Reconstruction I = I ′

Proof. First, observe that all modifications satisfy the Border Argeement. Let v ∈ Vi

with ωi(v) ≥ α(Gi[Ni(v)])

There are two cases two consider. If v is not reduced yet by another process, we must
show that there is an MWIS of G that contains v. If v is already reduced, i.e., v is not

27

4. Distributed Kernelization

a vertex in G anymore, we must show that by removing Ni[v] in Gi, we remove only
already reduced vertices,i.e., we do not change G. Then, we need still to show that v
can join the solution instead of its neighbors that are proposed for include.

First, suppose v is not reduced yet by another process. Every neighbor of v in G are
neighbors in Gi and ωi(v) ≥ w(v), i.e., N(v) ⊆ Ni(v). And every edge in Gi[Ni(v)∩ V]
is an edge in G[N(v)]. Thus, an MWIS of the induced neighborhood graph in Gi is
an upper bound for an MWIS in G α(Gi[Ni(v)]) ≥ α(G[N(v)]). Thus, we can apply
Heavy Vertex by Lamm et al. [29] in G to include v, remove N(v). By removing Ni[v]
in Gi, we remove already reduced vertices or vertices that can be reduced.

Assume now v is reduced by another process. Then v must be an interface vertex.
With Lemma 4.3.1, we know there is exactly one neighbor that is a ghost which is
proposed for include uNi(v) ∩ V g

i . Furthermore, both have equal weights and u forces
the vertices of Ni[v] \ {u} out of the solution while v forces at most Ni(v) these vertices
out of the solution. Thus, we can include v instead of u into I while excluding no more
vertices than u does.

Therefore, we can add v to Pi in both cases. The tie breaking ensures that only
of multiple candidates is chosen into the solution. The offset and the solution can
be reconstructed When P was communicated, ties can be broken between pairwise
conflicting vertices. If v is included, it joins the solution, and ω(v) is added to the
offset.

Analogously to the sequential data reduction rules, Distributed Heavy Vertex gives rise
to multiple special cases that are computationally more efficient.

Distributed Reduction 4.3.2 (Distributed Neighborhood Removal).
Let v ∈ Vi with ωi(v) ≥ ωi(Ni(v)), then include v as in Distributed Heavy Vertex.

Proof. To proof correctness, we show that this reduction is a special case of Distributed
Heavy Vertex. Let v ∈ Vi with ωi(v) ≥ ωi(Ni(v)). Then the weight of the neighborhood
is an upper bound of an MWIS in the induced neighborhood graph, i.e., ωi(Ni(v)) ≥
α(Gi[Ni(v)]). Thus, we can apply the Distributed Heavy Vertex. This yields the
described reduced graph, offset and proposed solution reconstruction.

Next, we transfer the Simplicial Vertex Reduction 4.3.3 to reduce cliques. Note that a
clique in Gi contains at most one ghost because ghosts cannot be adjacent. Moreover,
we cannot conclude for a ghost that it is a simplicial vertex in G because we do not
know its complete neighborhood.

Distributed Reduction 4.3.3 (Distributed Simplicial Vertex).
Let v ∈ Vi be a simplicial vertex with maximum weight in its neighborhood in Gi, i.e., it
holds ωi(v) ≥ max{ωi(u) : u ∈ Ni(v)}, then include v as in Distributed Heavy Vertex.

28

4.3. Distributed Reductions

Proof. To proof correctness, we show that this reduction is a special case of Dis-
tributed Heavy Vertex. Let v ∈ Vi be a simplicial vertex with ωi(v) ≥ max{ωi(u) :
u ∈ Ni(v)}. Then, Ni(v) forms a clique in Gi. Thus, an MWIS of the induced
neighborhood graph of Gi[Ni(v)] can consist of a most one vertex. Therefore it
holds, i.e., ωi(v) ≥ max{ωi(u) : u ∈ Ni(v)} ≥ α(Gi[Ni(v)]). Thus, we can apply Dis-
tributed Heavy Vertex. This yields the described reduced graph, offset and proposed
solution reconstruction.

Distributed Reduction 4.3.4 (Distributed Simplicial Weight Transfer).
Let v ∈ Vi be a simplicial vertex, let S(v) ⊆ Ni(v) be the set of all simplicial vertices.
Further, let wi(v) ≥ wi(u) for all u ∈ S(v).

• If ωi(v) = max{wi(u) : u ∈ Ni(v)}, then use Distributed Simplicial Vertex.

• Else if v is not an interface vertex, i.e., Ni(v) ∩ V g
i = ∅, fold v into Ni(v).

Reduced Graph G′i = Gi −X with X := {u ∈ Ni[v] : ωi(u) ≤ ωi(v)} and
set w′i(u) = wi(u)− wi(v) for all x ∈ Ni(v) \X

Offset α(G) = α(G′) + ω(v)
Reconstruction If I ′ ∩Ni(v) = ∅, then I = I ′ ∪{v}, else I = I ′

Proof. Let v ∈ Vi be a simplicial vertex, let S(v) ⊆ Ni(v). In the first case, i.e.,
ωi(v) = max{wi(u) : u ∈ Ni(v)}, we can apply Distributed Simplicial Vertex. For
the second case, we assume v is not an interface vertex. We first observe that the
proposed modification ensures the Border Argeement. Interface vertices are assigned
at most a decreased weight or are excluded. Ghost vertices remain part of the graph
and their weight is not modified. We show now that we can apply Simplicial Weight
Transfer by Lamm et al. [29] under all intermediate modifications at the border. In
the neighborhood of v are only local neighbors which are possibly interface vertices.
These interface vertices may be excluded by another process. Other neighbors are not
reduced yet. Let U ⊆ Ni(v) be set of excluded interface neighbors of v. Independent of
whether vertices of U are excluded, v remains simplicial in Gi. In any case, the second
case of Simplicial Weight Transfer by Lamm et al. [29] applies in Gi. From a global
perspective, we decreased the weight of vertices of U at worst instead excluding them
in Gi as well when we apply the fold. It is possible that v may have the largest weight
in its neighborhood G since the vertices of U were excluded. Then v is included when
it is unfolded in the reconstruction.

In the following, we transfer data reduction rules to the distributed memory model
which exclude vertices. They also exclude interface vertices because in these cases they
are not part of some MWIS independent of their ghost neighbors.

Distributed Reduction 4.3.5 (Distributed Basic Single-Edge).
Let u, v ∈ Vi be adjacent vertices with ωi(Ni(u) \Ni(v)) ≤ ωi(u), then exclude v.

29

4. Distributed Kernelization

Reduced Graph G′i = Gi − v
Offset α(G) = α(G′)
Reconstruction I = I ′

Proof. Let u, v ∈ Vi be adjacent vertices with ωi(Ni(u) \ Ni(v)) ≤ ωi(u). First, we
observe that the application of this reduction satisfies the Border Argeement because
we exclude only local vertices. To show that v can be excluded, we show that we can
apply Basic Single-Edge by Gu et al. [23] under every possible border modifications
in G. If v is already reduced by another process, i.e., v 6∈ V , then v is redundant at
Gi and can be removed from Gi anyway. Therefore, assume that v is not reduced yet.
Note that vertices of Ni(u) \Ni(v) can be assigned smaller weights or may be excluded
by other processes. If u is not excluded yet, then we can still apply Basic Single-Edge
by Gu et al. [23] in G.

We show now that u is either not excluded by another process or v is excluded too. For
a proof by contradiction, assume u is excluded while v is not excluded. Then u was
excluded due to the include of an interface vertex x at an adjacent process. Furthermore,
x cannot be adjacent to v; otherwise v is also excluded. We also know that x ∈ Ni(u);
otherwise x had another neighbor y at PE i which was included and further, excluded x.
According to Lemma 4.3.1, y and x forced the same vertices out of the solution, i.e., y is
adjacent to u and u is reduced at PE i. However, this contradicts u ∈ Vi. Consequently,
it holds x ∈ Ni(u), and therefore ωi(u) ≥ ωi(Ni(u) \ Ni(v)) ≥ ωi({x, u}) at PE i
because x and u are not adjacent. Under the Border Argeement, it holds ωi(x) ≥
ωrank(x)(x) = ω(x), and in conclusion, ω(u) = ωi(u) ≥ ωi({x, u}) > ωrank(x)(x) = ω(x).
However, this contradicts the Border Argeement because x can only be included as an
interface vertex if ω(x) ≥ α(Grank(x)[Nrank(x)(x))]. Thus, u is not excluded by another
process if v is not excluded yet.

In conclusion, we can either apply Basic Single-Edge by Gu et al. [23] to v in G or v is
already reduced by another process. In the latter case we remove only a redundant
vertex from Gi.

A special case of the Distributed Basic Single-Edge is Distributed Domination.

Distributed Reduction 4.3.6 (Distributed Domination).
Let u, v ∈ Vi be adjacent vertices with Ni(u) ⊆ Ni(v). If ωi(v) ≤ ωi(u), then exclude v.

Reduced Graph G′i = Gi − v
Offset α(G) = α(G′)
Reconstruction I = I ′

Proof. Let u, v ∈ Vi be adjacent vertices with Ni(u) ⊆ Ni(v) and ωi(v) ≤ ωi(u). Since
Ni(u) ⊆ Ni(v), it holds N(u) \ Ni(v) = {v}. We obtain ωi(Ni(u) \ Ni(v)) = ωi(v) ≤
wi(u). Therefore, we can apply Distributed Basic Single-Edge. This yields the reduced
graph, offset, and solution reconstruction while ensuring the Border Argeement.

30

4.3. Distributed Reductions

We also transfer Extended Single-Edge by Gu et al. [23] to the distributed memory
model.

Distributed Reduction 4.3.7 (Distributed Extended Single-Edge).
Let u, v ∈ Vi be adjacent vertices with ωi(Ni(v)) − ωi(u) ≤ ωi(v), then exclude X :=
Ni(v) ∩Ni(u)) \ V g

i .

Reduced Graph G′i = Gi −X
Offset α(G) = α(G′)
Reconstruction I = I ′

Proof. Let u, v ∈ V be adjacent vertices with ωi(Ni(v))− ωi(u) ≤ ωi(v). Furthermore,
let X := Ni(v) ∩ Ni(u)) \ V g

i be non-empty. First of all, we observe that applying
Distributed Extended Single-Edge satisfies Border Argeement because it only excludes
local vertices. To proof correctness, we show for every possible modification under the
Border Argeement that we can apply Extended Single-Edge by Gu et al. [23] in G for
v which removes X.

First, consider the case where v and u are not reduced yet by other processes. Inde-
pendent of whether neighbors of v are reduced or were assigned smaller weights, the
inequality still holds in G, i.e., ω(v) = ωi(v) ≥ Ni(v)− ωi(u) ≥ N(u)− ω(u) and we
can remove the remaining vertices of X due to Extended Single-Edge by Gu et al. [23].
Now, consider the case where u is reduced but v is not. Then, we obtain in G that
ω(v) ≥ N(v). Thus, the vertices of X can be excluded, because we can replace in every
independent set of G, the vertices of X by v to obtain a solution which is at least
the same weight.

We show that those are all the cases need to be considered by showing that v is
not reduced yet and removing X in Gi removes vertices in G,i.e., X ∩ V 6= ∅. For
a proof by contradiction, assume v is an interface vertex which is reduced by an-
other process due to including one of its the neighbors, i.e., some x ∈ Ni(v). Ob-
serve that u 6∈ X ∪ {x} and that x 6∈ X. Due to the Border Argeement, it holds
ωi(x) ≥ ω(x). Overall, we obtain ωi(v) ≥ ωi(Ni(v) \ {u}) ≥ ωi(X) + ωi(x) > ω(x).
This contradicts that x is an included interface vertex since it can only be included
if ω(x) ≥ α(Grank(x)[Nrank(x)(x)]) ≥ ω(v). In conclusion, we can apply always Ex-
tended Single-Edge by Gu et al. [23] in G for v and reduce the remaining vertices
of X since we know that x is not reduced yet. This yields the reduced graph, offset,
and solution reconstruction.

Many graphs such as scale-free graphs have a large proportion of degree one vertices.
Often, even more degree one vertices arise when reductions are applied. Therefore,
we want to reduce all degree one vertices similar to Degree One by Gu et al. [23],
especially if these are interface vertices. However, folding an interface vertex into its
ghost neighbor, i.e., decreasing the weight of a ghost, contradicts the Border Argeement.
Therefore, we move v to the adjacent PE j which can fold v into its neighbor if

31

4. Distributed Kernelization

xi
3

xj 8

xj 8
uj

3

PE i

xi
3

PE i moves xi to PE j

PE j when it receives xi

fold xi into xj

xj 5
uj

3
PE j

xi
3

xj 8
uj

3xi
3

xi is not reduced yet

xi is already excluded and xj ∈ Ĩj is proposed for the MWIS

Distributed Degree One

ωi(xi) < ωi(xj)

xj 5
uj

3xi
3 fold xi into xj

xj 2

PE j

xi
3

xi is not reduced yet

uj
3

Figure 4.4.: The Figure shows an example for the move case of Degree One. PE i moves xi

to PE j because xi where it can be reduced or is already reduced but PE i is not aware of it
yet. At PE j is can be folded (top and middle). In the middle, xi can still be folded although
the weight of xj decreased. In the last case xj is already proposed for include (green) with
Distributed Neighborhood Removal.

v or its neighbor is not reduced yet. If its neighbor is already reduced, PE j can
include v for PE i. Figure 4.4 gives an example.

Distributed Reduction 4.3.8 (Degree One).
Let v ∈ Vi, u ∈ V i with Ni(v) = {u}.

• If ωi(v) ≥ ωi(u), then include v with Distributed Neighborhood Removal

• Else if ωi(v) < ωi(u) and u ∈ V g
i , move v from PE i to PE rank(u)

Reduced Graph G′i = Gi − v

In the case u is moved to PE i with weight wu, reconstruct the solution as follows.
If wi(v) ≥ wu or wi(v) = wu and v < u, then include v.

Offset α(G) = α(G′) + ω(v)
Reconstruction I = I ′ ∪{v}

• Else if ωi(v) < ωi(u) and u ∈ Vi, and fold u into v and decrease the weight of v
by ωi(u).

Reduced Graph G′i = Gi − u with ω′i(v) = ωi(v)− ωi(u)
Offset α(G) = α(G′) + ω(v)
Proposed Reconstruction I = I ′ ∪{v}
Accept if {u ∈ I ∩Ni(v) : v < u} = ∅

32

4.3. Distributed Reductions

Proof. First of all, we observe that all proposed modifications at the border satisfy
the Border Argeement. Now let v ∈ Vi, u ∈ V i with Ni(v) = {u}. Note that the first
case is a special case of Distributed Neighborhood Removal. Further, observe that
the third case is a special case of Distributed Simplicial Weight Transfer where v is
the considered simplicial vertex and u has larger weight. Therefore, we only need to
consider the second case of detaching v, i.e., ωi(v) < ω(u) where u is a ghost. We show
that v is either successfully detached to PE rank v, already reduced and we only remove
a redundant vertex, or if u is detached as well, we reconstruct the solution correctly.
First, it is possible that v is already reduced. Then v is excluded due to including u at
PE rank(u). By detaching v to PE rank(u), we remove only a redundant vertex at Gi

and do not change G. Secondly, if v is not yet reduced and u is not detached, detaching
v leaves G unmodified. In this case PE rank(u) owns v and if u is not excluded yet, v
still has u as neighbor. Last, it is possible that v is not reduced yet and u is detached
as well. At PE rank u, u had as last neighbor v before it was detached to PE i. Both
ends consider now an isolated cut-edge in G were both incident vertices were detached.
The vertex with the larger weight must join the solution. In the case of a tie, the vertex
wins which has the smaller global vertex identifier.

We now transfer more data reduction which fold vertices. They modify the neighborhood
only of local vertices so that other processes are not affected by the changes.

Distributed Reduction 4.3.9 (Distributed Generalized Neighborhood Folding).
Let v ∈ Vi \N2

i [V g
i]. Further, suppose that Gi[Ni(v)] contains only one independent set

Ĩ with ωi(Ĩ) > ωi(v), fold v and Ni(v) into a new vertex v′.

Reduced Graph G′i = Gi[(Vi ∪ {v′}) \Ni[v]] with Ni(v′) = Ni(Ni(v))
and ωi(v′) = ωi(Ĩ)− ωi(v)

Offset α(G) = α(G′) + ωi(v)
Reconstruction If v ∈ I ′, then I = (I ′ \{v′}) ∪Ni(v), else I = I ′ ∪{v}

Proof. First, we observe that the proposed modification satisfies the Border Argeement.
We show now that we can apply in G Neighborhood Folding by Lamm et al. [29] under
every possible border modification. Therefore, let v ∈ Vi \N2

i [V g
i]. Further, suppose

that Gi[Ni(v)] contains only one independent set Ĩ with ωi(Ĩ) > ωi(v), fold v and Ni(v)
into a new vertex v′. We note that Ni(v) contains no border vertex since v is chosen
with minimum distance 3 apart from any ghost. Thus, no vertex in Ni(v) is reduced or
received a smaller weight. Therefore, Gi[Ni(v)] = G[N(v)], and further, Ĩ is a unique
independent set with ω(I) > ω(v) in G. Thus, we can apply Distributed Neighborhood
Folding in G for v. This yields also the reduced graph, offset and reconstruction.
Regarding Gi, it is possible that the reduction causes the new vertex v′ to be adjacent
to a vertex x ∈ Ni(Ni[v]) that is already excluded by another process. However, the
modification in Gi is still correct, because when v′ is unfolded in the reconstruction, x
is known to be excluded.

33

4. Distributed Kernelization

Distributed Reduction 4.3.10 (Distributed Neighborhood Folding).
Let v ∈ Vi \N2

i [V g
i], and suppose that Ni(v) is independent. If ωi(Ni(v)) > ωi(v), but

ωi(Ni(v))−min{ωi(u) : u ∈ Ni(v)} < ωi(v), then fold v and Ni(v) into a new vertex
v′.

Reduced Graph G′i = Gi[(V ∪ {v′}) \Ni[v]] with Ni(v′) = Ni(Ni(v))
and ωi(v′) = ωi(Ni(v))− ωi(v)

Offset α(G) = α(G′) + ωi(v)
Reconstruction If v ∈ I ′, then I = (I ′ \{v′}) ∪N(v), else I = I ′ ∪{v}

Proof. This data reduction is only a special case of Distributed Generalized Neighbor-
hood Folding. This yields the reduced graph, offset, and reconstruction.

Distributed Reduction 4.3.11 (Distributed Partial V-Shape).
Let v ∈ Vi \ N2

i [V g
i], x, y ∈ Vi \ Ni(V g

i) with N(v) = {x, y} so that x and y are not
adjacent. Without loss of generality, assume ωi(x) ≤ ωi(y) and ωi(v) ≥ ωi(x).

• If ωi(v) < ωi(y), then fold v into x and y.

Reduced Graph G′i = Gi − v with Ni(x) = Ni(x) ∪Ni(y) and
set ωi(y) = ωi(y)− ωi(v)

Offset α(G) = α(G′) + ωi(v)
Reconstruction If x, y ∈ I ′, then I = I ′ ∪{v}, else I = I ′

• If ωi(y) ≤ ωi(v) < ωi(x) + ωi(y), fold v, x, y into a new vertex v′.

Reduced Graph
G′i = Gi[(Vi ∪ {v′}) \ {v, x, y}
with Ni(v′) = (Ni(x) ∪Ni(y)) \ {v}
and ωi(v′) = ωi(x) + ωi(y)− ωi(v)

Offset α(G) = α(G′) + ωi(v)
Reconstruction If v′ ∈ I ′, then I = I ′ ∪{v} \ {v′}, else I = I ′ ∪{v} ∪ \{v}

• If ωi(x) + ωi(y) ≤ ωi(v), include v with Distributed Neighborhood Removal.

Proof. First, we observe that the proposed modifications satisfy the Border Argeement.
The third case is just a special case of Distributed Neighborhood Removal. For the
other case we can make a similar argument as in the proof of Distributed Generalized
Neighborhood Folding. In each case we can apply the respective case of V-Shape by
Gu et al. [23] in G because Gi[Ni(v)] = G[N(v)] for v ∈ N2

i (V g
i). Regarding Gi, the at

most add neighbors of to already excluded interface vertices. However, this does not
affect the reconstruction of the solution.

34

4.4. Local Kernelization

4.4. Local Kernelization

We now give the details of our local kernelization algorithm.

High-Level Idea. The idea is very similar to many sequential kernelization algorithms.
The reduction rules are applied iteratively in an exhaustive fashion. More precisely,
we process the reduction rules in a fixed order and each rule is tested for all vertices.
Once a rule has been tested (and applied) for all vertices, the iteration restarts with
the first reduction rule if there has been any progress. Otherwise, the next reduction
rule is considered if there is one left. If no reduction rule is left, we are finished.
Then, no vertices can be reduced anymore by any reduction, i.e., we applied all
reduction rules exhaustively. Note, that new reductions might become applicable if
reduction progress at the border is communicated. Therefore, if the border is not
fully synchronized yet but the PEs applied reductions exhaustively, we call the local
reduced subgraph a local quasi-kernel.

Reduction Order. Our reduction order follows the intuition to start with reduction
rules that can reduce interface vertices as well as other local vertices. If interface
vertices are reduced, there is a chance that the local reduced subgraph becomes less
connected to the remaining graph stored at other PEs. Ideally, a good reduction
impact of the following reductions entails more reduction applications with reduction
rules that cannot handle interface vertices well. Therefore, we put Degree One first
and Distributed Neighborhood Removal second. Likewise, both rules can also be
efficiently tested in O(1) and O(∆) given a vertex v ∈ Vi. The first two data reduction
rules are followed by Distributed Simplicial Weight Transfer. The implementation
also covers the Distributed Simplicial Vertex. Afterward, we test for the Distributed
Partial V-Shape to target vertices of degree two, and the excluding data reduction rules:
Distributed Domination, Distributed Basic Single-Edge, Distributed Extended Single-
Edge. Then, we try Distributed Neighborhood Folding, followed by two rules of higher
computational cost, Distributed Generalized Neighborhood Folding and Distributed
Heavy Vertex. Both need to find a MWIS for at least one subproblem. The size of
the subproblem size can be controlled with an extra parameter to circumvent too
long running times for single subproblems. For our experiments we choose 100 as the
maximum number of vertices in the subproblem. The MWIS is determined with the
weighted branch-and-reduce solver KaMIS_wB&R [29].

Dependency Checking is a common technique to prune reduction tests. The idea is
to skip the tests for vertices which have not change locally. By locally, we refer to
the subgraph which is read in order to evaluate for a vertex whether a reduction rule
applies to it. For example, Distributed Heavy Vertex reads all weights in its direct
neighborhood of a vertex v ∈ Vi. If the weight of a neighbor changes, Distributed Heavy
Vertex should be tested again for v because v may have larger weight than ω(Ni[v]).
On the other hand if Gi[Ni(v)] does not change, and we tested the data reduction rule
once, it will still not succeed. In these cases, a reduction rule would read the same
information again to evaluate whether a vertex can be reduced.

35

4. Distributed Kernelization

We implement this idea using vertex markers where each vertex of Vi can be marked
for each reduction rule. Initially we mark all vertices of Vi for each reduction rule.
Once a reduction was tested for a vertex v ∈ Vi, the respective mark for v is removed.
Whenever a vertex is modified but not reduced yet, e.g., due to a weight shift or a
changed neighborhood up to distance d, we mark the vertex for all reductions.

For the sequential data reduction rules in Section 4.1, it is sufficient to choose d = 1
because only the direct neighborhood is read. However, for our distributed data
reduction rules dependency checking is a bit more expensive. Some of our distributed
data reduction rules, e.g., Distributed Generalized Neighborhood Folding, rely on the
fact that they have no interface vertices in the direct neighborhood. In general, this
requires marking neighbors up to distance d = 2 if a vertex changed. We can prune the
computational cost for local vertices to O(∆) since we only need to do so if a ghost is
excluded. Only then, interface vertices might have lost all ghost neighbors. When a
ghost is excluded, we search its neighborhood for vertices that are no interface vertices
anymore. These can be found in O(∆) since we maintain for an interface vertex the
number of ghosts. Only for these former interface vertices we mark the neighborhood
for further reduction tests.

4.5. Dynamic Graph Data Structure

Our internal graph representation stays close to the input format of the graph as
described in Section 2.2. Each of the p PEs only stores a subgraph of the input graph
which is partitioned into p blocks (V1, . . . , Vp). PE i is assigned the local vertices Vi.
The neighborhoods are represented using adjacency lists where each neighborhood is
stored in a separate array. Moreover, we also store the (partial) neighborhoods of ghost
vertices, i.e., a ghost adjacency array stores the neighbors of the local block Vi. Note
that each undirected cut-edge is represented by four directed edges in the distributed
memory. We use a hash-map to map the global vertex identifiers of the ghosts to local
vertex identifiers. Since we consider weighted graphs, we maintain the weight of each
local vertex and ghost.

We follow the paradigm as in other kernelization algorithms by using a dynamic graph
data structure [29]. A dynamic graph data structure hides a vertex v by hiding v in the
adjacency arrays of its neighbors. Hiding an edge requires to scan an adjacency array
to find the edge, swapping it to the end of the visible part, and to decrease the visible
part of the adjacency array by one. As a result, this allows one to efficiently iterate
over the remaining visible part of a neighborhood. Moreover, the hide operations can
be undone in reversed order where restoring a vertex can be done in O(∆).

Some of our distributed data reduction can only act entirely locally, i.e., there must
be no interface vertex in the closed neighborhood of a considered vertex v ∈ Vi. To
circumvent searching N2[v] for ghosts every time, we maintain for a local vertex u ∈ Vu

the number of ghost neighbors in Gi. If this count reaches zero for u, the vertex u is not

36

4.6. Communication

an interface vertex anymore. We update the number of ghosts neighbors in O(∆(Gi)),
whenever a ghost is hidden.

4.6. Communication

So far we transferred the data reduction rules to the distributed memory model
and discussed how each process can apply them. Applying reductions without any
communication between the PEs, in an exhaustive fashion results in a local quasi-kernel.
There are two main reasons for communicating changes at the border. First of all, PEs
may propose to include vertices that were adjacent. They need to communicate the
included interface vertices to tie-break which proposed solution is accepted. Secondly,
if we reduce vertices at the border, it may re-open the search space for reduction
applications. To to that end, we introduce different message types in Section 4.6.1 that
exchange the reduction progress. Afterward, we propose and present two distributed
kernelization algorithms by utilizing two different communication approaches. The
synchronous approach is introduced in Section 4.6.2 and in the asynchronous approaches
is presented in Section 4.6.3.

4.6.1. Message Types

We now give the details of the different message types and outline how our distributed
data reductions from Section 4.3 make use of them. The idea is to inform PEs about
the reduction progress at the border that own or replicated the corresponding modified
border vertices. Both communication approaches implement the message types and
their communication differently but the idea is the same.

Weight Shift Message. When the weight of an interface vertex is decreased, e.g., by
Distributed Simplicial Weight Transfer, the PEs of the adjacent ghost vertices are not
aware of the weight shift yet. However, notifying the according PEs may induce further
reduction applications in return. A weight shift message for a vertex v ∈ Vi is a tuple
(v, wi(v)) ∈ Vi × N>0 where v is represented by its global vertex identifier.

The next two message types fulfill two roles. First, they inform adjacent PEs of the
respective reduced border vertices. As a result, the receiving process is aware that they
are no long part of the global reduced graph G and can remove the redundant vertices
locally. Secondly, they notify about the assigned solution status. In data reductions
such as Distributed Heavy Vertex, interface vertices can be proposed to be included.
This may lead to a situation where a tie-breaking is needed. By sending the proposed
solution status, each process can apply the defined tie breaking in Distributed Heavy
Vertex locally if necessary.

Exclude Vertex Message. When an interface vertex v ∈ Vi is excluded at PE i, it
notifies the adjacent PEs R(v) so that they can remove the replicated ghost vertex.

37

4. Distributed Kernelization

The exclude vertex message consists of the global vertex identifier of v. Furthermore,
the message informs them that PE i excludes v from the solution.

Include Vertex Message. Now, suppose PE i proposes to include an interface vertex v ∈
Vi. Similarly to an exclude vertex message, an include vertex message consists only of the
global vertex identifier of v which is sent to the PEs R(v). Note that if a v is proposed
for include, Ni[v] is reduced. Thus, ghost neighbors are removed as well. Removing
Ni[v] can take up to two communication steps until all affected PEs are informed. Once
the adjacent PEs receive the include message, they reduce the ghost v and its neighbors
if they were not reduced yet. Reducing the interface vertices results in new exclude
messages because these interface vertices may have other ghost neighbors.

Note that this approach differs from George et al. [19] as they write messages for all
the removed ghosts and send them to the respective adjacent PEs. If there are multiple
ghosts removed which are owned by the same PE, this can increase the communication
volume,i.e., if degi(v) > |Ri(v)|. Their approach might be sufficient as they mainly
target to reduce vertices of small degree. However, in our case interface vertices of large
degree can be reduced as well, e.g., Distributed Heavy Vertex reduces neighborhoods of
arbitrary large degree.

Vertex Move Message. Lastly, we introduce the vertex move message that is used for
reducing degree-one interface vertices at adjacent PEs. It contains the the global vertex
identifier of v and is sent to the adjacent PE j 6= i. Intuitively speaking, we transfer the
ownership of v to some PE j 6= i For example, Degree One removes v if ωi(v) < ωi(u)
and writes a vertex move message to PE j. Then, it can be folded at PE j into u
or included. PE i expects to receive the solution status for v from PE j at latest if
the solution is reconstructed. The reason for this is that prior reductions, e.g., folded
vertices, may depend on its solution status.

4.6.2. Synchronous Approach

The first distributed kernelization approach follows a synchronous communication
scheme. The reduction progress at the border is exchanged using blocking, irregular
all-to-all collective communication (MPI_Alltoallv). We give the pseudo code of our
synchronous distributed kernelization algorithm, called KaDisReduS, in Algorithm 1
and Algorithm 2. Roughly speaking, KaDisReduS exhaustively tries to reduce the local
subgraph Gi in LocalReduce until a local quasi-kernel is obtained. Then it blocks to
communicate and update the border and solution in UpdateBorderAndSolution. Both
steps are repeated until no PE has made any new reduction progress. We use a
(MPI_Allreduce) to determine whether is some new global reduction progress. When no
global reduction progress is possible anymore, each process stores the reduced graph
Gi locally and the local reduction offset oi.

Status Messages. Our synchronous approach unifies three of the four message types: ex-
cluded, included, and move vertex messages by adding the respective vertex status to the
message. Therefore, a message send by PE i has the shape V i×{included, excluded,move}.

38

4.6. Communication

Algorithm 1 KaDisReduS
Input: subgraph Gi

Output: reduced subgraph Gi, offset oi

procedure KaDisReduS(Gi)
Ĩ i ← ∅ . proposed solution vertices Ĩ i ⊆ Vi

oi ← 0 . reduction offset oi ∈ N0
while not exhaustively reduced do . MPI_Allreduce

Wi ← ∅ . weight shifted interfaces vertices Wi ⊆ Vi

Mi ← ∅ . status updates Mi ⊆ Vi × {included, excluded,moved}
LocalReduce(Gi, Ĩ i, oi, Wi, Mi) . as in Section 4.4

W̃i ← CreateWeightUpdateMessages(Wi) . to those with ghost neighbors
ExchangeAndUpdateWeights(W̃i) . MPI_Alltoallv
Wi ← ∅
M̃i ← CreateStatusMessages(Gi, Mi) . filter out redundant moves
Ui ← ExchangeStatusUpdates(M̃i) . MPI_Alltoallv
Mi ← ∅
UpdateBorderAndSolution(Gi, Ĩ i, oi, Ui, Mi) . described in Algorithm 2

end while
end procedure

Figure 4.5.: This pseudo code give the high level idea of the synchronous distributed kernel-
ization algorithm KaDisReduS in the perspective of PE i.

We denote this message in the following a Status Message. When reductions in
LocalReduce propose to include, exclude or move an interface vertex v, we first write v
into a buffer. The actual messages are written and sent after the local quasi-kernel is
obtained. This strategy allows us to filter out vertex moves in CreateStatusMessages if
the ghost neighbor was assigned a solution status later on in LocalReduce. Such a move
has become redundant because its neighbors are reduced and thus it is a degree zero
vertex that can be proposed for include.

Weight Shifts. The weight shift messages are handled separately because we send an
additional weight. A weight of a vertex might be modified several times in LocalRe-
duce, e.g., if an interface vertex participates in multiple cliques. It is also possible that
its all its neighbors are eventually removed from the graph before the local quasi-kernel
G′i is determined. In both cases (multiple) weight messages are redundant since other
PEs are at most interested in the final weights in G′i. Therefore, we do not write
the messages immediately, but mark the modified vertex and postpone the message
creation. Vertices are marked by adding them to a set Wi if their weight were shifted
in LocalReduce. Messages are only addressed to the adjacent PEs of marked vertices in
Wi which remain in G′i.

39

4. Distributed Kernelization

Algorithm 2 UpdateBorderAndSolution in KaDisReduS
Input: reduced subgraph Gi, proposed solution vertices Ĩ i, reduction offset oi,
updates messages Ui, status updates Mi

Output: reduced subgraph Gi, proposed solution vertices Ĩ i, reduction offset oi,
status updates Mi

procedure UpdateBorderAndSolution(Gi, Ĩ i, oi, Ui, Mi)
for (v, s) ∈ Ui do . received ghost and status

if v ∈ V g
i then . locally not reduced yet

if s =moved and v has hidden moved neighbor u then
decide moved cut-edge {v,u} . tie breaking of 4.3.8

else
include or exclude v according to s
update Mi

end if
else if s = included then . v is excluded locally

u← hidden included neighbor of v
follow tie breaking of 4.3.1
if if u loses tie-breaking then
I i ← I i \{u} and oi ← oi − ωi(u)

end if
end if

end for
end procedure

Figure 4.6.: This is the pseudo code processing received border updates in KaDisReduS.

The weight shift messages are synchronized first. Then another MPI_ Alltoallv exchanges
the solution status messages. Thus, all PEs receive the correct weight of a ghost before
it is possibly reduced when status updates have been received.

Receiving Border Updates. Once the updates were received, they are processed in
UpdateBorderAndSolution in Algorithm 2. The most simple case is that a ghost (and its
neighbors) should be reduced and assigned a solution status. If the ghost has already a
solution status that conflicts with the received one, we can tie break the solution by
the vertex identifier as described in Distributed Reduction 4.3.1. If a moved vertex u
is received which has not been reduced yet, we need to reduce it. By now u has at
most degree one; otherwise it was not moved. If it has degree zero, it is possible that a
neighbor is moved to PE from which it received u. We check this by scanning its hidden
neighborhood and search for the last moved neighbor which was moved in the current
synchronization step. If there is such a moved neighbor v, we consider a cut-edge where
both incident vertices were moved. We can include the vertex with the larger weight and
break ties with the global vertex identifier as described in Distributed Heavy Vertex.

40

4.6. Communication

Reconstruction. We write the reduced vertices onto a stack so that we can handle the
reconstruction of the solution according to each reduction rule in reversed order. In
general, we cannot fully reconstruct the solution locally. The reason for that is that
sent moved messages create dependencies in the reconstruction due to vertex folding
and the moved degree one vertices.

For example, consider an interface vertex v that is moved to an adjacent PE j 6= i to
fold it into a ghost. If the fold succeeds at PE j, then it needs to notify PE i after
unfolding v about its solution status. This requires sending a message with v and its
solution status back to PE i when the solution is reconstructed. This must be early
enough before PE j requires to know the solution status of v. Therefore, we push a
barrier token on top of the stack whenever at least one PE sends a vertex move message
in the synchronization step. Later, when we reconstruct the solution and encounter
a barrier token on top of the stack, we need to block and communicate the solution
status of unfolded ghosts.

4.6.3. Asynchronous Approach

Besides the synchronous approach KaDisReduS, we propose another distributed kernel-
ization approach following an asynchronous communication scheme by using so-called
message buffer queues. For this approach, we use the message-queue1 library by Sanders
and Uhl et al. [36] that was developed for asynchronous distributed algorithms solving
the Triangle Counting problem.

Compared to KaDisReduS, we do not compute a local quasi-kernel with LocalReduce at
each PE first, before any updates are exchanged in a synchronization step. Instead, we
allow communication in-between in LocalReduce in an asynchronous fashion. Ideally,
this approach mitigates idle times of PEs waiting for the other that need to finish
computing their local quasi-kernel.

The high level idea is that each PE buffers the messages in dynamic arrays, for each
receiving PE. The messages are written as we reduce interface vertices in LocalReduce.
If now a buffer surpasses a threshold of δ > 0 bytes, the buffer is flushed while the
filled buffer is sent with MPI in a non-blocking manner. Each PE polls regularly for
incoming updates from other PEs in a non-blocking fashion. In the mean time the
LocalReduce routine can proceed and write message into the buffers if interface vertices
are reduced. Although it is unlikely, PEs block, if the replaced buffer becomes full while
the other ones are not completely sent yet. We denote this distributed kernelization
approach KaDisReduA. We give the pseudo code in Algorithm 3.

Buffer Threshold δ. The buffer size threshold δ > 0 is a hyper parameter in this
approach addressing the running time cost of sending a single message of length ` in the
network and local work. The communication cost can be modeled as α+ β` where α is
the start-up overhead of sending a message and β accounts for the message length `.

1https://github.com/niklas-uhl/message-queue

41

https://github.com/niklas-uhl/message-queue

4. Distributed Kernelization

Algorithm 3 KaDisReduA
Input: subgraph Gi

Output: reduced subgraph Gi, offset oi

procedure KaDisReduA(Gi, δ)
Ĩ i ← ∅ . proposed solution vertices Ĩ i ⊆ Vi

oi ← 0 . reduction offset oi ∈ N0
Qi ← InitMessageBufferQueue(δ) . message buffer queue
while true do

LocalReduce(Gi, Ĩ i, oi) . as in Section 4.4
if Terminate(Qi) then . terminate unless global progress is made

break
end if

end while
end procedure

Input: reduced subgraph Gi, proposed solution vertices Ĩ i, reduction offset oi,
updates messages Ui, queue Qi

Remark: Called if messages are received
procedure HandleMessages(Gi, Ĩ i, oi, Ui, Qi)

for (v, s, x) ∈ Ui do . received ghost, status, and weight or last neighbor
if v ∈ V g

i then . locally not reduced yet
if s =moved and v and x is moved then

decide moved cut-edge {v,u} . tie breaking of 4.3.8
else if s = unset then . x is the new weight of v

wi(v)← x
send weight updates with Qi

else
include or exclude v according to s
send status updates with Qi

end if
else if s = included then . v is excluded locally

u← hidden included neighbor of v
follow tie breaking of 4.3.1
if if u loses tie-breaking then
I i ← I i \{u} and oi ← oi − ωi(u)

end if
end if

end for
end procedure

Figure 4.7.: This is the pseudo code for the asynchronous distributed kernelization algorithm
KaDisReduA in the perspective of PE Pi.

42

4.6. Communication

The buffer threshold δ controls now the message length `. In addition to the time
complexity of the communication, δ has an impact on the idle times and the running
time of the local reduction phase. If δ is too large until a message buffer is sent, the
receiving PE might become idle and is waiting for updates to proceed. On the other
hand, if δ is small, receiving updates instantly may improve the running time of the
local work. If it receives updates, it make a reduction progress and jumps back earlier
to the first reduction rules in the order. These are the more efficient rules, e.g., Degree
One. However, a small δ might increase the amount of sent messages drastically so
that the start-up overhead might become the bottleneck of this approach.

Message Shape. The different message types are unified to a single type of shape
V i × {included, excluded,moved, not_set} ×N0 at Pi. The status not_set indicates that
the weight of the vertex changed. Compared to KaDisReduS, a move message for a
moved interface vertex v ∈ Vi also sends the remaining ghost neighbor. The receiving
PE needs to know the cut-edge in order to check whether both vertices were each
moved to the other process. In contrast to KaDisReduS, we do not know whether hidden
moved neighbors of v were already processed already before v was moved. We use the
slot for the weight to send the ghost neighbor in the move message.

Polling and Handling Messages. Messages can be received when the PE polls for
messages; otherwise it asks the queue to terminate because no reduction progress was
made and no messages were received so far. The queue terminates, if indeed no process
has to send messages anymore and wants to terminate; otherwise if new messages are
still received, the reduction process proceeds. LocalReduce polls for updates whenever
it runs out of local work or reduction rules proposed to include or excluded vertices.
The message handling works similar to the synchronous case because the same message
types are sent.

The only difference is the handling of received moved ghosts. If a move message
is received by PE i for a ghost v which already is excluded, then the process of v
was not aware of the exclude before moving it. In this case, PE i sends an exclude
message for v back.2

Filtering Messages. A key observation for this approach is that weight shift messages
are written immediately when the weight of an interface vertex is decreased. Since the
weight of a vertex can be decreased multiple times, outdated weight shift messages
are filtered when the buffer should be sent. Similar to the synchronous approach, the
filter removes vertex move messages if the ghost neighbor was already reduced. If
this is the case, we remove also the potential weight shift messages from the buffer.
Note that δ also has an impact on the message filtering since it controls the size
of the filtered message.

Reconstructing the Solution. For KaDisReduS, we already discussed that a solution
cannot be reconstructed without communication due to the dependency introduced

2This is how we have done it in the final version for the experiments. However, sending this exclude
message is not necessary. Since v is already excluded, the respective PE will receive an include
message which excludes v implicitly.

43

4. Distributed Kernelization

by vertex folding and moving. Here, we can again make use of message buffer queues.
When a ghost is unfolded and receives a solution status, an update is written into
the according message buffer. The status of a moved vertex is first needed when the
reconstruction reaches a local folded vertex which depends on the status of a moved
vertex. If such a moved vertex is encountered, we poll for messages until the required
message is received. In the mean time the solution status is set for all those, where a
solution status is received in the mean time.

4.7. Distributed Partition-And-Reduce

So far, we proposed two distributed kernelization algorithms using different commu-
nication approaches with the same set of distributed reduction rules. In this section
we utilize the graph partitioner dKaMinPar by Sanders and Seemaier[35] with its fast
configuration for our kernelization algorithms. Some of the distributed kernelization
rules do not support to reduce border vertices, e.g., Distributed Generalized Neigh-
borhood Folding. Consequently, as the number of process increases, the the reduction
impact may diminish. Therefore, it may be of interest for certain graphs to find a
partitioning that minimizes the cut, so that a good reduction impact is maintained
for large numbers of cores. Moreover, a good partitioning can also reduce the cost of
communication if there are overall fewer border vertices.

To that end, our kernelization algorithms support in addition to the plain kerneliza-
tion two further variants utilizing dKaMinPar. The first variant partitions and then
reduces the partitioned input graph, denoted PR. The second variant reduces the graph,
partitions the quasi-kernel, and then reduces the partitioned quasi-kernel RPR. The
intuition for RPR is that the first reduce can possibly shrink the graph size a lot which
ideally yields a simpler partitioning problem. Moreover, the enclosing partitioning
phase ideally rebalances the load between the processes. Note that the balanced graph
partitioning problem is NP-hard. dKaMinPar is a heuristic solver. The graph partitioner
is used with an imbalance of ε to compute a partitioning with p blocks if the first
quasi-kernel has more than C × p vertices, where C > 0 is a constant; otherwise the
quasi-kernel is gathered on a single process and sequentially reduced. We add PR or
RPR in the name of KaDisReduA and KaDisReduS whenever used. Pseudo codes are
show for PR in and for RPR in Figure 4.8.

44

4.7. Distributed Partition-And-Reduce

Algorithm 4 PR
Input: subgraph Gi,
imbalance ε, #PEs p
Output: reduced subgraph Ki, offset oi

procedure PR(Gi, ε, p)
if p > 1 then

Πi ← partitionGraph(Gi, ε, p)
Gi ← redistributeGraph(Gi, Πi)

end if
Ki, oi ← reduce(Gi)

end procedure

Algorithm 5 RPR
Input: subgraph Gi and imbalance ε,
partition threshold C, #PEs p
Output: reduced subgraph Ki, offset oi

procedure PR(Gi, ε, C, p)
Ki, oi ← reduce(Gi)
if |V |>0 then . MPI_Allreduce

Πi : Vi → {1, . . . , p}
if |V | > Cp or p > 1 then

Πi ← partitionGraph(Gi, ε, p)
else

Πi ≡ 0
end if
Ki ← redistributeGraph(Gi, Πi)
Ki, o

′
i ← reduce(Ki)

oi ← oi + o′i
end if

end procedure

Figure 4.8.: This is the pseudo code for reduce-partition-reduce PR and reduce-partition-reduce
RPR in the perspective of PE Pi.

45

5. Distributed Independent Set

In the following, we propose different maximal independent set solvers. The goal of this
chapter is to utilize our distributed kernelization algorithms as a preprocessing before
applying a simple greedy algorithm. First, we introduce the distributed greedy algo-
rithms in Section 5.1. Afterward, we combine them with our distributed kernelization
algorithms in Section 5.2.

5.1. Distributed Greedy Algorithms

There are greedy algorithms for the unweighted problem following as discussed in
Section 3.2. A solution provided by these algorithms is always a feasible solution for
the weighted problem. However, they do not take into account to maximize the weight
of an independent set.

We generalize greedy the algorithm DisMIS [1, 38] so that we have multiple vertices at
each PE and use an extra greedy heuristic for weighted graphs. The greedy algorithm
works in three steps. First, all vertices are rated using a greedy heuristic which is
exchanged for the interface vertices with the other processes. Afterwards, vertices
are greedily added to a local solution I i. At the border ties are broken between a
considered interface vertex and a ghost with the global vertex identifier to prevent
solution conflicts. This global ranking of the vertices introduces a dependency between
the processes because local vertices cannot be decided before ghosts at other processes
were decided first. Therefore, the solution status of the interface vertices must be
communicated regularly.

We attempt to add the local vertices greedily to a local solution I i using the heuristic
greedy rating weight_diff, i.e., r(v) := wi(v)− ω(Ni(v), which takes the weights into
account. For interface vertices, we ensure that not conflicts arise by tie-breaking with
ghost via the global vertex identifier. More precisely, if an interface vertex v ∈ Vi has
the same rating as one of its ghost neighbors which has a smaller vertex identifier, we
refrain from including v into the independent set I.

Similar to the distributed kernelization algorithms in Section 4.6, the solution status of
the interface vertices is communicated with the adjacent PEs. Once, the updates are
received, the PEs can remove the decided border vertices from their local subgraphs.
Then, they try to add the remaining free vertices, to a solution. In the following, we
propose a synchronous and an asynchronous greedy algorithm similar to the distributed

47

5. Distributed Independent Set

kernelization algorithms in Section 4.6. We assume the graph is stored our distributed
dynamic graph data structure as described in Section 4.5.

5.1.1. Synchronous Greedy Algorithm

The synchronous distributed greedy algorithm works similar to DisMIS in supersteps.
Each superstep consists of local work followed by communication step to synchronize
the state between the processes. However, in contrast to DisMIS, our algorithm does
not follow a vertex-centric approach.

The pseudo code is given in Algorithm 6. The idea is to determine the rating once and
exchange it for the ghosts. Then, the vertices are processed and included whenever
possible if they are minimal according to the the strict order in their neighborhood.
We hide the neighbors once they are included or excluded. If a vertex is excluded, the
neighbors are marked so that they are reconsidered for next scan over the remaining
vertices. A synchronization step is performed if all processes are idle,i.e., cannot decide
anymore vertices. Then include and exclude messages for the interface vertices are sent
to the adjacent PEs with an MPI_Alltoallv. They are used to hide the according border
vertices. Interface vertices are marked if their neighborhood changes. Finally, once all
PEs decided all vertices, each PE returns its local solution I i ⊆ Vi.

5.1.2. Asynchronous Greedy Algorithm

The asynchronous greedy algorithm, called GreedyA, works works very similar to the
synchronous greedy algorithm. The key difference is that we use a message buffer queue
as for KaDisReduA to exchange the message in an asynchronous fashion. We give the
pseudo code in Algorithm 7. We write the include and exclude messages immediately
into the message buffers. We poll regularly for incoming messages.

5.2. Distributed Reduce-And-Greedy

The idea is now to utilize our distributed kernelization algorithms and combine them
with the presented greedy algorithms. First, we reduce the input graph to determine
a quasi-kernel K, and then apply a distributed greedy algorithm to K. We call this
algorithmic scheme ReduceAndGreedyMaxIS in the following. Algorithm 8 gives the high
level pseudo code. Although the distributed greedy algorithm computes a maximal
independent set for K, it is not guaranteed that the built solution for G is maximal.
The reason for this issue are reductions which exclude vertices under the assumption
that an optimal solution for the reduced graph is found. To that end, we maximize the
solution with a variant of the greedy algorithm which uses weight, i.e., the vertex weight,
for the heuristic greedy rating. It takes the independent set as input and greedily
adds the remaining free vertices into the solution. We propose an synchronous and an

48

5.2. Distributed Reduce-And-Greedy

Algorithm 6 GreedyS
Input: subgraph Gi

Output: local maximal independent set vertices I i

procedure GreedyS(Gi)
r(v)← weight_diff(v) for every v ∈ Vi . compute rating locally
ReplicateRatingForGhosts(Gi, r) . MPI_Alltoallv
C ← Vi . candidate Queue
Mi ← ∅ . decided interface vertices
I i ← ∅ . local greedy solution, I i ⊆ Vi

while |V | > 0 do . MPI_Allreduce
while C 6= ∅ do . while not idle

c← pop(Q)
if u 6∈ Vi then

continue . u received solution status
end if
if r(c) ≥ r(u) for each u ∈ Ni(u) then

if c is has ghost neighbor u with r(c) = r(u) and u < c then
continue

end if
if c is interface vertex then

Mi ←Mi ∪ {c}
end if
hide(Gi, c); I i ← I i ∪{c} . include c
for u ∈ Ni(v) do

hide(Gi, u); . exclude neighbor u
if u has ghost neighbors then

Mi ←Mi ∪ {u}
end if
C ← C ∪Ni(u)

end for
end if

end while
. MPI_Alltoallv for include/exclude messages from/to adjacent PEs
C ←UpdateBorder(Mi)
Mi ← ∅

end while
return I i

end procedure

Figure 5.1.: This is the pseudo code for the synchronous distributed kernelization algorithm
GreedyS in the perspective of PE Pi.

asynchronous variant. KaDisReduS-RG uses KaDisReduS with the synchronous greedy

49

5. Distributed Independent Set

Algorithm 7 GreedyA
Input: subgraph Gi, message buffer queue threshold δ
Output: local maximal independent set vertices I i

procedure GreedyA(Gi, δ)
r(v)← weight_diff(v) for every v ∈ Vi . compute rating locally
ReplicateRatingForGhosts(Gi, r) . MPI_Alltoallv
Ci ← Vi . candidate queue
Qi ← InitMessageBufferQueue(δ) . message buffer queue
I i ← ∅ . local greedy solution, I i ⊆ Vi

while true do
while Ci 6= ∅ do

c← pop(Q)
if u 6∈ Vi then

continue . u received solution status
end if
if r(c) ≥ r(u) for each u ∈ Ni(u) then

if c is has ghost neighbor u with r(c) = r(u) and u < c then
continue

end if
if c is interface vertex then

send(Qi, (c, included)) to all PEs of Ri(c)
end if
hide(Gi, c); I i ← I i ∪{c} . include c
for u ∈ Ni(v) do

hide(Gi, u); . exclude neighbor u
if u has ghost neighbors then

send(Qi, (u, excluded)) to all PEs of Ri(u)
end ifC ← C ∪Ni(u)

end for
end if
. handling: hide vertices, (write new updates), mark modified neighbors
poll(Qi) . poll and handle incoming messages

end while
if terminate(Qi) then . send buffers/receive messages

break . all processes finished; all vertices decided
end if

end while
return I i

end procedure

Figure 5.2.: This is the pseudo code for the synchronous distributed kernelization algorithm
GreedyS in the perspective of PE Pi.

50

5.2. Distributed Reduce-And-Greedy

Algorithm 8 ReduceAndGreedyMaxIS
Input: subgraph Gi

Output: local solution vertices I i ⊆ Vi

procedure ReduceAndGreedyMaxIS(Gi)
Ki, oi ← reduce(Gi)
IK ← greedy(Ki)
I i ← applyReductions(Ki, IK)
I i ← greedyMaximize(Gi, I i)
return I i ⊆ Vi

end procedure

Figure 5.3.: This is the pseudo code of the scheme ReduceAndGreedyMaxIS in the perspective
of PE Pi.

algorithm GreedyS and KaDisReduA-RG uses KaDisReduA with the asynchronous greedy
algorithm GreedyA.

51

6. Implementation Details

Before we discuss our experiments, we want to give an overview over the core libraries
that are used in our implementation and features of our software architecture.

Our algorithm is designed for C++20. Communication between the PEs is realized with
IntelMPI/2021.11. To circumvent using old MPI interface, we use a wrapper library
for MPI, called KaMPIng by Hespe et al. [26]. We use KaGen [15] to read, write, and
generate graphs. All our algorithms support the static graph data structure of KaGen
as input. Furthermore, we use dKaMinPar by Sanders and Seemaier [35] with the fast
configuration as distributed graph partitioner. Some of our distributed data reduction
rules solve an MWISP as subproblem. The subproblem size can be controlled with an
extra parameter. In this case, we use the branch-and-reduce solver KaMIS_wB&Rby
Lamm et al. [29] to find exact solution. For mapping the global vertex identifiers of
ghosts to their local vertex identifier, we use the abseil:flat_hash_map1.

Our software architecture supports to add distributed data reductions once and use
them with both communication approaches. Although we provide a distributed algo-
rithm, all out distributed data reduction rule implementations stay very close to the
implementations in KaMIS_wB&R [29] and m2wis [22]. We hope this simplifies to add
more data reduction rules in the future. Our provided algorithms are available in the
repository distributed-kernelization2

1URL to abseil: https://abseil.io/docs/cpp/guides/container
2URL to the distributed-kernelization repository: https://github.com/jabo17/distributed-

kernelization/

53

https://abseil.io/docs/cpp/guides/container
https://github.com/jabo17/distributed-kernelization/
https://github.com/jabo17/distributed-kernelization/

7. Experiments

We conducted strong scaling and weak scaling experiments to compare our distributed
kernelization algorithms. Therefore, we investigate the impact of our reductions
regarding the kernel size in Section 7.2. In Section 7.3 we investigate the impact
of a good partitioning regarding our kernelization algorithms. Afterward, we com-
pare our distributed maximal independent set solvers against the state-of-the-art
reduce-and-peel solver HtWIS in Section 7.4. Finally, we present our weak-scaling
experiments in Section 7.5.

Each analysis is summarized in a short observation. Observation 1 summarizes the
results of the impact of our reductions in the strong scaling experiments. In Obser-
vation 2 we compare the differences that arise when the graph is partitioned so that
the cut is minimized. Observation 7.4 concludes our experiments with the different
distributed independent set solvers and HtWIS. Last, Observation 4 recapitulates
our weak-scaling experiments.

7.1. Methodology

Machine and Setup. We conducted our experiments on the cluster SuperMUC-NG
interconnected by Intel OmniPath. Each compute node provides two Intel Skylake
Xeon Platinum 8174 sockets, with 24 cores each, and features 96 GB of RAM. Each
configuration of the compared algorithms was run three times. For each run, we
set a different random seed if supported by the algorithm. We map each process to
one core. Throughout the experiments, we represent local (global) node identifiers
with 32 (64) bit integers, local edges with 32 bits, local (global) node weights 32 (64)
bits. All algorithms were compiled with g++/12.2.0 and intel-mpi/2021.11 with
full optimizations (-O3) turned on. Our algorithms are implemented in C++20. We set
a maximum subproblem size of 100 vertices for our distributed data reduction rules
and a message buffer queue threshold of 16 000 Bytes.

Strong Scaling. For our benchmarks, we use a data set, denoted Strong, consist-
ing of 18 graphs. It contains nine SNAP [SnapDatasetsLeskov2014] graphs and
one mesh graph [EfficientTraveSander2008] which are also used in other MWIS
benchmarks [29, 17], two Open Street Map1 (OSM) instances from the 10-th DiMACS
challenge [GraphPartition2013, BenchmarkingFoBader2014] which we assigned

1Open Street Map: https://www.openstreetmap.org/.

55

https://www.openstreetmap.org/.

7. Experiments

uniform distributed weights from one to 50, six graphs generated with KaGen [15] with
uniform distributed weights one to either 100 or 50. The number of vertices and edges
ranges from one up to 50 Mio. vertices and 1.9 up to 54 Mio. edges. Overall, we cover
random grid, random geometric (rgg), random hyperbolic (rhg), mesh, road, graph and
social networks. For detailed meta information and their full names, see Table A.1. For
data set Strong, we set a time limit of 320 s.

Weak Scaling. For our weak scaling experiments, we use the graph generator KaGen
by Funke et al. [15] which allows us to generate graphs of different graphs families
distributed and assign the vertices. Here, we fix the number of vertices 2N and edges
2M per process and linearly increase the number of vertices in the number of cores
p, i.e., for p cores, we consider a graph with n := 2Np vertices. We consider 2D and 3D
random geometric (rgg2D and rgg3D) and random hyperbolic (rhg). We choose 2N = 220

vertices with uniform weights from 1 to 100 and 2M = 223 edges which results in an
average degree of 16. For rhg we set a power-law exponent of 2.6. For the weak scaling
experiments we set a time limit of 300 s. Our distributed independent set solver use
the output partitioning of the generated graph.

Metrics And Plots. We often consider the relative speedup of an algorithm for p cores, i.e.,
t1/tp where t1 is the sequential geometric mean running time and tp the geometric mean
running for p cores. In the weak scaling experiments we investigate the throughput, i.e.,
edges per second processed. Moreover, we investigate the quality solution over all
instances by comparing the geometric mean solution quality to the geometric mean
of the best solutions found by any solver. Boxplots give insights into an empirical
distribution. From top to bottom, a boxplot marks the upper-whisker, the third quartile
(75-th percentile), the median (second quartile or 50-th percentile), the first quartile
(25-th percentile), and the lower-whister of a distribution. The first (third) quartile is
marked at the bottom (top) of the bar, 25 % (75 %) of the data fall below this mark.
The upper whisker it the largest first data point that lays below the third quartile
plus 1.5 times the interquartile range. Analogously, the lower quartile is defined as the
smallest data point that is larger than the first quartile minus 1.5 times the interquartile
range. The range between the first and the third quartile (the bar) defines the so-called
interquartile range where 50 % of the data lay in the middle. In addition, we put an
overlay above the boxplots with the data points which are jittered on the x-axis to
better visualize the empirical distribution.

7.2. Reduction Impact

We start this evaluation with a strong scaling experiment investigating the reduction
impact on data set Strong (18 instances). In particular we are interested in the strong
scaling behavior for both communications approaches (KaDisReduS and KaDisReduA)
for up to 1 024 cores. This concerns the reduction impact in terms of reduced vertices
and edges, and further the strong scaling of the running time.

56

7.2. Reduction Impact

Kernel Size. Some of the data reduction rules depend on a sufficient locality because
they do not apply to the border. This locality might not be given among some graphs
when they are distributed among a large number of processes. Moreover, to this
assumption contributes that in general graphs are not partitioned before they are
assigned to processes. On the contrary, it still holds that these rules might become
applicable once other rules reduced border vertices. Nonetheless, we suspect to observe
a decline in the reduction impact for larger numbers of cores.

Figure 7.1 shows boxplots for the number of vertices and edges in the reduced graphs,
relative to to the input graph, for both kernelization approaches, KaDisReduS and
KaDisReduA.In general, both approaches communicate border updates at different time
steps due to their design and the parallel execution which introduces non-determinism.
Although both approaches use the same reduction rules, these two factors can lead
to different reduction applications which eventually might lead to different reduced
graphs. However, in this effect appears to be rather small as we observe in Figure 7.1
and Table 7.1 that the reduction impact between KaDisReduS and KaDisReduA
is almost the same for any number of processes. When running either of both
approaches sequentially, the number of vertices (edges) can be reduced down to at
least 19 % (13 %) for 75 % of the instances with a median of 4.8 % (6%). Whereas the
reduction impact for the other 25 % seems to have only moderate impact with respect
to our set of reduction rules.

For 64 processes we can observe a decline in the reduction impact, as mentioned above,
on some instances. The median fraction of vertices remaining in the reduced graph
grows to 24 % while the third quartile reaches 47 % for both approaches.

For p ≥ 64 processes that the third quartile for the fraction of vertices in the reduced
graph, grows sub-linear in the number of processes. Furthermore, the median relative
number of vertices in the quasi-kernel remains steady at around 24 %. Similar
observation can be made for edges. We conclude from these observations regarding
the empirical distribution of the kernel sizes that for half of the instances, we benefit
from data reduction rules which are not restricted to non-border vertices. Still, for the
other half, the decline in the reduction impact becomes more noticeable in terms of the
relative kernel size (vertices and edges).

Running Time. Now we investigate the running time and relative speed-ups of the
reduction phase, i.e., the running time from initialization of kernelization algorithm
until the kernel K is determined. Figure 7.2 shows the running times in seconds s
for both kernelization approaches using boxplots. Note the logarithmic scaling of the
y-axis (running time). For p = 1, the running times of KaDisReduS and KaDisReduA
range from 0.86 s to 84.9 s and from (1 s to 85.3 s), respectively.

Table 7.1 summarizes the geometric mean reduction times of both approaches for 1, 64
and 1 024 cores. For 64 and 1024 processes, KaDisReduS decreases the geometric mean
reduction time from 5.47 s down to 0.37 s and 0.10, respectively. KaDisReduA performs
better for p > 1. For 64 and 1024 processes, KaDisReduA decreases the reduction time
from 6.09 s down to 0.31 s and 0.07 s on average, respectively. Thus, KaDisReduA is

57

7. Experiments

Reduction Impact
KaDisReduS KaDisReduA

ke
rn
el

ve
rti
ce
s
|V

K
|[%

]

20 21 26 27 28 29 210

0

50

100

cores
20 21 26 27 28 29 210

0

50

100

cores

ke
rn
el

ed
ge
s
|E

K
|[

%
]

20 21 26 27 28 29 210

0

50

100

cores
20 21 26 27 28 29 210

0

50

100

cores

Figure 7.1.: The Figure shows the relative quasi-kernel sizes for both kernelization approaches,
(KaDisReduS and KaDisReduA), and different choice of cores (here 1, 2, 64, 128, 256, 512, and
1 024 cores) with the help of boxplots. The first row shows the number of vertices of the
quasi-kernel K, relative to the number of vertices in input graph G, for data set Strong (18
graphs). Analogously, the second row provides boxplots for the relative number of edges in
K.

19 % and 43 % faster than KaDisReduS on average for 64 and 1 024 processes,
respectively.

Regarding the empirical distribution of the running times in Figure 7.2, we especially
notice for p > 128 that KaDisReduS only hardly improves upon the best running
times obtained for p = 64. In contrast, KaDisReduA yields on some instances for 1 024
processes running times that are at least a factor 5 faster than on 64 s.

Figure 7.3 shows the empirical distributions of the speed-ups of the reduction times
for data set Strong. The median relative speed-up of KaDisReduS stagnates for
p > 128 at 20, indicating that KaDisReduS can only hardly improve upon the running

58

7.2. Reduction Impact

median |VK | [%] geo. mean t [s]
cores p cores p

Algorithm 1 64 1 024 1 64 1 024
KaDisReduS 4.80 23.70 24.80 5.47 0.37 0.10
KaDisReduA 4.80 23.70 24.81 6.09 0.31 0.07

KaDisReduA-PR 4.80 5.44 6.28 6.10 2.17 2.54
KaDisReduA-RPR 4.80 5.03 5.63 6.09 1.26 1.44

Table 7.1.: The table summarizes the reduction impact and running time of our different
distributed kernelization algorithms on data set Strong (18 graphs). It shows the median
relative number of vertices in the quasi-kernel and the geometric mean running time to reduce
a graph with 1, 64, and 1 024 cores. A value is bold if it is the best among both algorithms
for the according p. Note that for p = 1 KaDisReduA-PR and KaDisReduA-RPR do no graph
partitioning at all. Therefore, they are identical to KaDisReduA.

KaDisReduS KaDisReduA

re
du

ct
io
n
tim

e
[s

]

20 21 26 27 28 29 21010−2

10−1

100

101

102

cores
20 21 26 27 28 29 21010−2

10−1

100

101

102

cores

Figure 7.2.: The boxplots show for both kernelization approaches, KaDisReduS and KaDisRe-
duA, and each choice of cores (here 1, 2, 64, 128, 256, 512, and 1 024 cores) the running
times for reducing the 18 graphs of data set Strong. Note the logarithmic scaling of
the y-axis (running time).

time for larger p. Whereas KaDisReduA still observes moderately increasing relative
speed-ups, e.g., median relative speed-ups of 27, 69 and 148 for 64, 256 and 1 024
processes is achieved, respectively.

We conclude our first experiments regarding the reduction impact in Observation 1.

59

7. Experiments

KaDisReduS KaDisReduA

re
la
tiv

e
sp
ee
d-
up

26 27 28 29 21010−1

100

101

102

103

cores
26 27 28 29 21010−1

100

101

102

103

cores

Figure 7.3.: The boxplots show for both kernelization approaches, KaDisReduS and KaDisRe-
duA, and each choice of cores (here 1, 2, 64, 128, 256, 512, and 1 024 cores) the relative
speed-ups (relative to p = 1) of the reduction time for the 18 graphs of data set Strong.
Note the logarithmic scaling of the y-axis (relative geometric mean speed-up).

Observation 1: Reduction Impact of KaDisReduS and KaDisReduA Both
approaches yield similar sized kernels while also both maintain a good reduction
impact for larger numbers of cores, i.e., at most 20% of the vertices remain in the
kernel for any p ≤ 1 024 for half of the instances. KaDisReduA outperforms KaDisReduS
in terms of running time, especially for larger numbers of cores. Whereas the relative
speed-ups of KaDisReduA increase moderately up to 148 at median for 1 024 processes
while the relative speed-up of KaDisReduS seems to grow at least slower.

7.3. Reduction Impact on Partitioned Graphs

In the following, we investigate whether we can maintain the reduction impact where
the instances of data set Strong are partitioned so that the cut is minimized cut.
Moreover, we compare the running times of the reduction phase (with and without the
partitioning time) with the reduction times for the unpartitioned instances.

We allow an imbalance of ε = 3% using unit vertex weights for the cost function.
The partitioning is determined with dKaMinPar [35] using its fast configuration. We
compute the partitioning every time before we run our kernelization algorithm using a
different seed. For this analysis, we only use KaDisReduA as it performs better in terms
of running than KaDisReduS when scaling to a large number of cores.

Table 7.2 shows the changed number of vertices in the kernel, the difference in the
cut, and compares the geometric mean speed ups over the sequential running time of
KaDisReduA for 1 024 cores. First, we note for both, unpartitioned and partitioned

60

7.3. Reduction Impact on Partitioned Graphs

instances that graphs experience a larger speed-up if reduction impact smaller. The
cut is improved by 35.79% on median. As a result, more vertices can be reduced on
every instance. For unpartitioned instances, the median the kernel size increases by
14.36% and on maximum by 55.07% compared to reducing sequentially.. When the
instances are partitioned, we obtain almost the same kernel size: On median the kernel
increases only by 0.97% and on maximum by 10.52%. Regarding running time, we
note that KaDisReduA is 19% slower on the partitioned instances compared to the
unpartitioned instances with a geometric mean speedup of 89.28 and 72.34, respectively.
This observation may be a result of more local work on partitioned instances. Multiple
data reduction rules fail very early because they cannot be applied at the border. If
now a better partitioning is given, the reduction rule is tested beyond this first obstacle
and can possibly be applied.

Table 7.2 shows that road networks can be reduced with speed ups up to 164 while
number of vertices in the kernel increases by at most 12 %. If the graph is now
partitioned, speed-ups range in the same order of magnitude while the kernel size by at
most 1 %.

Figure 7.5 shows the empirical distributions of the reduction time and speed-ups for
partitioned and unpartitioned instances. The outliers with steady large running times
indicate that there are instances where partitioning by minimizing cut-edges makes
a good scaling of the reduction time impossible. We suspect that reductions such
as Distributed Generalized Neighborhood Folding where solving the subproblem is
sometimes still a bottleneck in the overall running time. A more restrictive choice of
the maximum subproblem size might help.

We now compare the reduction impact of the partition-and-reduce (PR) and reduce-
partition-reduce (RPR) scheme which we conducted with the asynchronous approach. In
Figure 7.4, boxplots show the relative kernel sizes in terms of vertices. We note that the
third quartile is sometimes a bit smaller for KaDisReduA-RPR than for KaDisReduA-PR.
Overall they our reductions have a very similar impact and are able maintain the
reduction if the number of cores is increased. Regarding running, Figure 7.6 indicates
that it helps sometimes to reduce first and to partition in-between. We conclude
our observations in Observation 2.

Observation 2: Reduction Impact on Partitioned Graphs KaDisReduA
maintains the reduction impact for most graphs on a large number of cores if a
partitioning is chosen that minimizes the cut. Speed-ups may decrease slightly
from 90 to 72 on average which is possibly caused by more local work.

61

7. Experiments

Sequential Unpartitioned Partitioned
Graph |VK | [%] H t [s] ∆|VK | [%] su ∆|VK | [%] su ∆cut [%]
snap wiki-Talk 0.00 2.05 0.01 1.74 0.00 4.80 −44.90
snap com-youtube 0.00 0.98 0.60 2.42 0.02 13.88 −44.42

kagen rhg-N20 0.00 1.18 47.82 2.69 0.00 9.98 −81.44
kagen rhg-N22 0.00 3.52 28.20 5.75 0.00 18.70 −84.26

osm europe 0.12 39.28 1.34 307.45 0.00 161.20 −11.33
osm asia 0.40 9.00 1.84 227.74 0.00 234.33 −8.53

snap LiveJour. 0.98 42.29 28.10 51.26 6.23 11.28 −45.07
snap as-skitter 4.40 18.35 17.02 28.13 3.47 1.99 −56.90
snap roadNet-TX 4.72 1.53 10.02 133.17 0.72 115.01 −17.01
snap roadNet-CA 4.88 2.30 11.29 164.34 0.77 146.91 −16.53
snap roadNet-PA 5.26 1.28 12.29 112.40 0.96 100.11 −19.68
snap roadNet-PA-uf 5.36 1.27 12.13 117.30 0.97 104.05 −19.50
mesh buddha 12.21 2.14 55.07 209.29 5.93 170.33 −38.71

kagen rgg2d-N20M22 18.66 4.94 44.45 420.63 3.37 267.24 −41.53
kagen grid2d-XY12 51.56 76.87 23.02 1 273.87 1.69 739.66 −11.69
snap pokec-rel. 53.07 85.09 16.43 606.55 10.52 140.17 −35.67

kagen rgg3d-N20M22 58.09 10.35 22.04 891.88 6.92 503.50 −35.90
kagen grid3d-XYZ7 91.49 14.19 3.80 1 123.83 1.92 670.30 −26.45

overall 4.80 6.09 14.36 89.28 0.97 72.34 −35.79

Table 7.2.: This table shows for KaDisReduA the impact of a partitioning for data set Strong
regarding the reduction impact on 1 024 cores. For each instance the median number of
vertices in the kernel, relative to the number of vertices in the graph, and the running time for
reducing them sequentially is given. Furthermore, ∆|Vk| shows the difference of the number
of vertices in the kernel compared to the sequential kernel, relative to the number of vertices
in the graph. For both, partitioned and unpartitioned instances, the geometric mean speedup
is given. Last, the difference in the cut compared to the unpartitioned instances is show. It is
given relative to the number of edges in the input graph. The instances are sorted ascending
regarding the relative kernel size.

7.4. Comparison of Distributed Independent Set
Solvers

In the following, we compare our distributed maximal independent set solvers on data
set Strong. We consider GreedyS, GreedyA, KaDisReduA-RG, KaDisReduS-RG, and
KaDisReduA-RPRG. Note that KaDisReduS-RG uses the synchronous greedy algorithm
while the others use the asynchronous variant. To investigate their solution quality and
speed-ups, we compare them with the state-of-the-art reduce-and-peel solver HtWIS
by Gu et al. [23]. Note that we cannot compare us with the distributed kernelization
algorithm by George et al. [19] for MISP because the implementation is no longer
available. The summarized results are given in Table 7.3.

Solution Quality. First, we investigate the geometric mean solution quality where
we compare the solutions of a solver against the best solutions found by any of the
compared solvers. GreedyA performs worst with a solution quality of 94.522 % on
average. HtWIS yields the best solution quality on average with 99.609 %. Algorithms

62

7.4. Comparison of Distributed Independent Set Solvers

Reduction Impact with Graph Partitioner
partition-reduce reduce-partition-reduce

ke
rn
el

ve
rti
ce
s
|V

K
|[%

]

21 26 27 28 29 210

0

50

100

cores
20 21 26 27 28 29 210

0

50

100

cores

Figure 7.4.: The Figure shows the empirical distributions of the relative number of vertices
in the kernel for KaDisReduA-PR and KaDisReduA-RPR for the partitioned and unpartitioned
graphs of Strong.

that make use of our distributed kernelization algorithms yield a solution quality that
ranges in-between on any number of cores. For p = 1, they all reach a solution quality
of 98.168 % on average. For KaDisReduA-G and KaDisReduS-G, we observe a decline in
the solution quality which goes down to 96.85 % on average. Nonetheless, the solution
is still better than the those found by the greedy algorithms, e.g.,GreedyA is 2.33 %
worse on average for 1 024 cores. Both approaches that utilize the graph partitioner,
can maintain the solution quality on average. KaDisReduA-RPRG performs slightly
better than KaDisReduA-PRG on 1 024.

Running Time. Beside the geometric mean running times and speed-ups over all
instances, we show the empirical distributions of the speed-ups in Figure 7.7. HtWIS
and GreedyA have a similar running times on geometric mean, i.e., 1.689 s and 1.691 s,
respectively. For 64 and 1 024 cores we observe geometric mean speed-ups of 11 and 37
over HtWIS for GreedyA. In the same order of magnitude, we observe for KaDisReduA-G
and KaDisReduS-G a geometric mean speed-up of 15 and 12 for 1 024, respectively.
For a the grid graph grid2d-XY12 they obtain the largest speed-up of 173 and 149,
respectively. For KaDisReduA-PRG and KaDisReduA-RPRG, the running times start
to increase when the number of processes is increased. For 1 024 cores, KaDisReduA-
RPRG is a factor 1.7 faster than KaDisReduA-PRG while it is a factor 10 slower than
KaDisReduA-RG on average. In a more detailed analysis, we noted that the graph
partitioner becomes a bottleneck in the overall running time.

We summarize our observations in Observation 7.4.

63

7. Experiments

unpartitioned partitioned

re
du

ct
io
n
tim

e
[s

]

20 21 26 27 28 29 21010−2

10−1

100

101

102

cores
20 21 26 27 28 29 21010−2

10−1

100

101

102

cores

re
la
tiv

e
sp
ee
d-
up

26 27 28 29 21010−1

100

101

102

103

cores
26 27 28 29 21010−1

100

101

102

103

cores

Figure 7.5.: These boxplots show for the unpartitioned and partitioned instances the em-
pirical distributions of the reductions times. Moreover, in the row below the speed-ups are
shown. These are the results obtained with KaDisReduA.

Observation 3: State-of-the-Art Experiments Our experiments indicate that
using our distributed kernelization algorithms significantly improves on the solution
quality of a greedy algorithm with and without utilizing a graph partitioner. Utilizing
graph partitioners allows us to almost fully maintain the solution quality for up to
1 024 cores but does not scale not in terms of running time for this set of instances.
In a comparison with the reduce-and-peel solver HtWIS, we show that combining our
set of reduction rules with a simple greedy algorithm reaches a solution quality close
to the one of HtWIS. Moreover, KaDisReduA achieves speed-ups of 15 on geometric
mean up to 170 for 1 024 cores over HtWIS.

64

7.5. Weak Scaling Experiments

KaDisReduA-PR KaDisReduA-RPR
re
du

ct
io
n
tim

e
[s

]

20 21 26 27 28 29 21010−2

10−1

100

101

102

cores
20 21 26 27 28 29 21010−2

10−1

100

101

102

cores

re
la
tiv

e
sp
ee
du

p

26 27 28 29 21010−1

100

101

102

103

cores
26 27 28 29 21010−1

100

101

102

103

cores

Figure 7.6.: The boxplots show for KaDisReduA-PR (partition-and-reduce) and for
KaDisReduA-RPR (reduce-partition-reduce) the running times (reduction and graph par-
titioning) as well as the relative speed-ups for data set Strong (18 graphs).

7.5. Weak Scaling Experiments

In the weak scaling experiments, we investigate the throughput of edges per seconds
as we increase the graph size with the number of cores. We compare all asynchronous
approaches and the synchronous approach KaDisReduS-RG. We run these algorithms
for 1, 16, 128 and 1 024 cores. The scaling of the throughput is shown in Figure 7.8.

In general, we note that both communication approaches achieve very similar thresholds.
Note that they overlap in the graph in the plots. The reason for this observation is
that all the considered graphs have a very small cut when they are generated with
KaGen.

For rhg graphs, we note that KaDisReduS-RG scales better than KaDisReduA-RG and
even better than the greedy algorithms. They can be almost completely reduced. In

65

7. Experiments

a more detailed analysis, we were able to explain this as follows: The running time
of KaDisReduA-RG strongly depends on the choice of the message buffer threshold δ.
For the strong-scaling experiments, we simply chose δ = 16 000 bytes without making
an extra parameter tuning. However, this δ does not scale for this graph in the weak
scaling experiment because it is too large since the cut is very small.

For the rgg graphs, we observe that they have a larger throughput than the greedy
algorithms although all approaches scale linearly. We conclude our observations in
Observation 4.

Observation 4: Weak Scaling Experiments The weak experiments show that
our asynchronous approach depends on a good choice of the message buffer queue
threshold δ. KaDisReduS-RG yields for our rhg graphs a better throughput than
the greedy algorithm does. For our choice of graphs and due to the good input
partitioning, communication was only needed seldom. For a better differentiation of
both communication approaches we need to consider either other types of graphs or
need a worse partitioning in terms of cut edges so that the communication volume is
larger.

Speed-Ups over HtWIS
KaDisReduA-G KaDisReduS-G GreedyA

26 27 28 29 210

10−1

101

103

cores
26 27 28 29 210

10−1

101

103

cores
26 27 28 29 210

10−1

101

103

cores
KaDisReduA-PRG KaDisReduA-RPRG GreedyS

26 27 28 29 210

10−1

101

103

cores
26 27 28 29 210

10−1

101

103

cores
26 27 28 29 210

10−1

101

103

cores

Figure 7.7.: The figure show the speedups of HtWIS for the compared distributed maximal
independent set solvers.

66

7.5. Weak Scaling Experiments

Throughput [|E|/s]

2−1 21 23 25 27 29 211

222

224

226

228

230

rh
g

N20M23

2−1 21 23 25 27 29 211
221

224

227

230

N20M22

2−1 21 23 25 27 29 211
217

222

227

232

rg
g 2

D

2−1 21 23 25 27 29 211
219

224

229

2−1 21 23 25 27 29 211
217

223

229

rg
g 3

D

2−1 21 23 25 27 29 211
218

223

228

233

GreedyA
KaDisReduA-RG
KaDisReduS-RG

KaDisReduA-RPRG
KaDisReduA-PRG

GreedyS

Figure 7.8.: The plots show the throughput of the different distributed independent set
solvers for different graphs. Note that the different synchronization approaches often overlap
because the are only few cut edges.

67

7. Experiments

ω(I)/ ω(Ibest) [%] t [s] speed-up
cores p cores p cores p

Algorithm 1 64 1 024 1 64 1 024 64 1 024
GreedyS 94.522 94.521 94.521 1.193 0.126 0.052 13.39 32.64
GreedyA 94.522 94.521 94.522 1.691 0.149 0.045 11.32 37.46

KaDisReduS-G 98.168 97.415 96.852 6.340 0.439 0.147 3.85 11.50
KaDisReduA-G 98.168 97.415 96.851 6.950 0.411 0.112 4.11 15.06

KaDisReduA-PRG 98.168 98.066 97.971 6.956 2.221 2.558 0.76 0.66
KaDisReduA-RPRG 98.168 98.097 98.016 6.949 1.366 1.483 1.24 1.14

HtWIS 99.609 - - 1.689 - - - -

Table 7.3.: This table summarizes the results of our distributed maximal independent set
algorithms and HtWIS. We give the geometric mean solution quality ω(I)/ω(Ibest), relative
to the best solutions found by any solver. Moreover, the geometric mean running time t, and
speed-up over HtWIS on all instances of data set Strong are given for p ∈ {1, 64, 1 024}
cores. The detailed results are given in Table A.3 and Table A.4.

68

8. Discussion

This last chapter conludes our proposed distributed kernelization algorithms and solvers.
Moreover, we give an outlook on future work.

8.1. Conclusion

In this work, we transfered well-known exact data reduction rules for the MWISP
to the distributed memory model. In the distributed memory model, each PE has
its own memory. The graph is partitioned into blocks where each PE stores a block.
To apply reduction rules in this representation, the key idea was to consider rules
that exploit locallity. Similar approaches exists for the MISP. To the best of our
knowledge, we proposed the first distributed data reduction rules for the MWISP.
Furthermore, these new rules gave rise to new distributed kernelization algorithms
which apply thes rules exhaustively to obtain a quasi-kernel in distributed memory.
We designed two different distributed kernelization algorithms, called KaDisReduS and
KaDisReduA, which both rely on communication to update the reduction progress at
the border and construct a solution. KaDisReduS employs blocking, irregular all-to-all
communication to exchange the reduction progress whenever each process applied
reductions locally exhaustively. KaDisReduA follows an asynchronous approach by
using message buffer queues and provide a parameter δ to control the message sizes.
Both support to partitioning the graph before one of the kernelization algorithm (PR)
or once in-between (RPR) using dKaMinPar (fast). Furthermore we developed greedy
algorithms for both communication schemes. This gave rise to new reduce-and-greedy
algorithms KaDisReduA-G and KaDisReduS-G.

Our strong scaling experiments have shown that KaDisReduA outperforms KaDisReduS
by 1.42 in terms of the running on artificial and real-world graphs with millions of
vertices and edges on 1 024 cores. At this scale, the number of vertices in the quasi-
kernel increase from 4.8 % to 24.80 % at median. A good reduction impact is especially
maintained for the road networks where KaDisReduA reports relative speed-ups of up
to 164. Partitioning the graphs with dKaMinPar, by minimizing cut edges, can mitigate
a decreasing impact of our reductions at the border. This sometimes decreases the
running times of the reduction phase which is possibly a reason of more local work as
more (expensive) reductions become applicable.

Furthermore, we compared our (reduce-)and-greedy independent set solvers with the
state-of-the-art reduce-and-peel solver HtWIS in terms of solution quality and running

69

8. Discussion

time. Although HtWIS is the overall winner in solution quality, our distributed kernel-
ization algorithms improves the solution quality of the greedy algorithm significantly
and is still close to the solution quality of HtWIS. KaDisReduA-G achieves a speed-up
of 15.05 on average and 170 on maximum over HtWIS while KaDisReduS-G has a
speed-up of 11.5 on average for 1 024. The variants that partition the (reduced) graph
only seldomly report a speed-up possibly because partitioning become a significant
bottelneck. Nonetheless, KaDisReduA-RPRG maintains the solution quality for larger
numbers of cores and is on average slightly faster than KaDisReduA-PRG.

In the weak-scaling experiments we also noted that KaDisReduS can sometimes perform
better than KaDisReduA. We suspect that a better fine tuning of the message buffer
size threshold δ is needed here. Overall, we noted that KaDisReduS and KaDisReduA
have a similar throughput in the weak scaling experiments. This is possibly due to a
good input partitioning from the graph generation in KaGen. Nonetheless, the weak
scaling experiments show that reduce-and-greedy can be even faster than the plain
greedy algorithm for random hyperbolic graphs.

In conclusion, we think that the asynchronous variant KaDisReduA are a good choice to
reduce the graph on a distributed memory machine. The reduce-and-greedy algorithm
KaDisReduA-G allows to maximal independent sets that significantly improve greedy
solutions.

8.2. Future Work

Regarding our kernelization algorithms, there is still potential for improvements.

Data Reduction Rules. In general, our kernelization algorithms can be extended with
further data reduction rules. It would also be interesting to transfer more globally
acting rules, e.g.,Critical Weight Independent Set rule by Butenko and Trukhanov[7].
However, the rule requires to solve a minimum cut problem for bipartite graph by
taking the whole (reduced) graph into acount. We also noted that we often fail to
reduce all degree two vertices. To overcome this issue, we need to adapt reduction
rules such as Distributed Partial V-Shape to reduce degree-two border vertices. This
might work similar for degree-one vertices where we move an interface vertex to another
process. One just has to be careful if the adjacent ghost vertices are moved as well.

Inexact Data Reductions. Similar to a reduce-and-peel solver, it would be interesting
to support in-exact reductions which peel vertices by forcing them out of a solution.
Pelling follows typically a simple greedy heuristic or a more sophisticated approach.
This in-exact data reduction can be applied by any process if no reduction progress is
made.

More Distributed Independent Set Solvers. In general, our distributed kernelization
algorithms can be used with many solver schemes and we hope to see progress here.
One idea is to use this in-exact approach for a distributed portfolio local-search solver.

70

8.2. Future Work

Therefore, we can introduce a threshold for the minimum in-exact reduced graph size. If
the in-exact reduced graph size falls below this threshold, we can replicate the in-exact
reduced graph at each PE and apply a different local-search algorithm.

Memory. In further experiments, we noted for large web graphs (≈ 30 Mio. vertices and
≈ 300 Mio. edges) that we run out of memory for p < 512 although we can represent
the graph for p = 1 on a single compute node. We basically copy the input graph
(KaGen) by building the dynamic graph data structure. In addition we insert backward
edges from the ghosts to their adjacent interface vertices. Moreover, the global ghost
vertex identifier is mapped to a local vertex identifier with a hash-map. Before we
initialize the kernelization algorithm, we free the input graph. As far as our analysis
has taken us, we fail to build the dynamic graph data structure before the kernelization
algorithm can even start. We want to further investigate the memory performance.

71

Bibliography
[1] “8. Maximal Independent Sets (MIS)”. en. In: Society for Industrial and Applied

Mathematics, Jan. 2000, pp. 91–102. isbn: [’9780898714647’, ’9780898719772’].
doi: 10.1137/1.9780898719772.ch8. url: https://doi.org/10.1137/1.
9780898719772.ch8.

[2] Faisal N. Abu-Khzam et al. “Recent Advances in Practical Data Reduction”. en.
In: Springer Nature Switzerland, Jan. 2022, pp. 97–133. isbn: [’9783031215339’,
’9783031215346’]. doi: 10.1007/978-3-031-21534-6_6. url: https://doi.
org/10.1007/978-3-031-21534-6%5C_6.

[3] Takuya Akiba and Yoichi Iwata. “Branch-and-reduce exponential/FPT algorithms
in practice: A case study of vertex cover”. en. In: Theoretical Computer Science
609 (Jan. 2016), pp. 211–225. issn: 03043975. doi: 10.1016/j.tcs.2015.09.023.
url: https://linkinghub.elsevier.com/retrieve/pii/S030439751500852X
(visited on 06/03/2024).

[4] Diogo V. Andrade, Mauricio G. C. Resende, and Renato F. Werneck. “Fast local
search for the maximum independent set problem”. en. In: Journal of Heuristics
18.4 (Aug. 2012), pp. 525–547. issn: 1381-1231, 1572-9397. doi: 10.1007/s10732-
012-9196-4. url: http://link.springer.com/10.1007/s10732-012-9196-4
(visited on 06/03/2024).

[5] Luitpold Babel. “A fast algorithm for the maximum weight clique problem”. In:
Computing 52 (1994), pp. 31–38.

[6] Lukas Barth et al. “Temporal map labeling: a new unified framework with ex-
periments”. en. In: Proceedings of the 24th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems. Burlingame Califor-
nia: ACM, Oct. 2016, pp. 1–10. isbn: 978-1-4503-4589-7. doi: 10.1145/2996913.
2996957. url: https://dl.acm.org/doi/10.1145/2996913.2996957 (visited
on 05/28/2024).

[7] Sergiy Butenko and Svyatoslav Trukhanov. “Using critical sets to solve the
maximum independent set problem”. en. In: Operations Research Letters 35.4
(July 2007), pp. 519–524. issn: 01676377. doi: 10.1016/j.orl.2006.07.004.
url: https://linkinghub.elsevier.com/retrieve/pii/S0167637706000952
(visited on 06/03/2024).

[8] Sergiy Butenko et al. “Finding maximum independent sets in graphs arising
from coding theory”. In: SAC02: 2002 ACM Symposium on Applied Computing
(Madrid Spain). ACM, Mar. 2002, pp. 542–546. doi: 10.1145/508791.508897.
url: https://doi.org/10.1145/508791.508897.

73

https://doi.org/10.1137/1.9780898719772.ch8
https://doi.org/10.1137/1.9780898719772.ch8
https://doi.org/10.1137/1.9780898719772.ch8
https://doi.org/10.1007/978-3-031-21534-6_6
https://doi.org/10.1007/978-3-031-21534-6%5C_6
https://doi.org/10.1007/978-3-031-21534-6%5C_6
https://doi.org/10.1016/j.tcs.2015.09.023
https://linkinghub.elsevier.com/retrieve/pii/S030439751500852X
https://doi.org/10.1007/s10732-012-9196-4
https://doi.org/10.1007/s10732-012-9196-4
http://link.springer.com/10.1007/s10732-012-9196-4
https://doi.org/10.1145/2996913.2996957
https://doi.org/10.1145/2996913.2996957
https://dl.acm.org/doi/10.1145/2996913.2996957
https://doi.org/10.1016/j.orl.2006.07.004
https://linkinghub.elsevier.com/retrieve/pii/S0167637706000952
https://doi.org/10.1145/508791.508897
https://doi.org/10.1145/508791.508897

Bibliography

[9] Jakob Dahlum et al. “Accelerating Local Search for the Maximum Independent Set
Problem”. en. In: Springer International Publishing, June 2016, pp. 118–133. isbn:
[’9783319388502’, ’9783319388519’]. doi: 10.1007/978-3-319-38851-9_9. url:
https://doi.org/10.1007/978-3-319-38851-9%5C_9.

[10] Yuanyuan Dong et al. A Metaheuristic Algorithm for Large Maximum Weight
Independent Set Problems. Version Number: 1. 2022. doi: 10.48550/ARXIV.2203.
15805. url: https://arxiv.org/abs/2203.15805 (visited on 06/03/2024).

[11] Yuanyuan Dong et al. “New Instances for Maximum Weight Independent Set
From a Vehicle Routing Application”. en. In: Operations Research Forum 2.4
(Dec. 2021), p. 48. issn: 2662-2556. doi: 10.1007/s43069-021-00084-x. url:
https://link.springer.com/10.1007/s43069- 021- 00084- x (visited on
05/28/2024).

[12] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer New York,
1999. isbn: [’9781461267980’, ’9781461205159’]. doi: 10.1007/978-1-4612-
0515-9. url: https://doi.org/10.1007/978-1-4612-0515-9.

[13] Ch. Ebenegger, P.L. Hammer, and D. de Werra. “Pseudo-Boolean Functions and
Stability of Graphs”. In: Algebraic and Combinatorial Methods in Operations
Research. Ed. by R.E. Burkard, R.A. Cuninghame-Green, and U. Zimmermann.
Vol. 95. North-Holland Mathematics Studies. North-Holland, 1984, pp. 83–97.
doi: https://doi.org/10.1016/S0304- 0208(08)72955- 4. url: https:
//www.sciencedirect.com/science/article/pii/S0304020808729554.

[14] Aleksander Figiel et al. “There and Back Again: On Applying Data Reduction
Rules by Undoing Others”. In: 30th Annual European Symposium on Algorithms,
ESA 2022, September 5-9, 2022, Berlin/Potsdam, Germany. Ed. by Shiri Chechik
et al. Vol. 244. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022,
53:1–53:15. doi: 10.4230/LIPICS.ESA.2022.53. url: https://doi.org/10.
4230/LIPIcs.ESA.2022.53.

[15] Daniel Funke et al. “Communication-free Massively Distributed Graph Genera-
tion”. In: 2018 IEEE International Parallel and Distributed Processing Symposium,
IPDPS 2018, Vancouver, BC, Canada, May 21 – May 25, 2018. 2018.

[16] M. R. Garey, D. S. Johnson, and L. Stockmeyer. “Some simplified NP-complete
problems”. en. In: Proceedings of the sixth annual ACM symposium on Theory of
computing - STOC ’74. Seattle, Washington, United States: ACM Press, 1974,
pp. 47–63. doi: 10.1145/800119.803884. url: http://portal.acm.org/
citation.cfm?doid=800119.803884 (visited on 05/28/2024).

[17] Alexander Gellner et al. “Boosting Data Reduction for the Maximum Weight
Independent Set Problem Using Increasing Transformations”. In: Proceedings
of the Symposium on Algorithm Engineering and Experiments, ALENEX 2021,
Virtual Conference, January 10-11, 2021. Ed. by Martin Farach-Colton and Sabine
Storandt. SIAM, 2021, pp. 128–142. doi: 10.1137/1.9781611976472.10. url:
https://doi.org/10.1137/1.9781611976472.10.

74

https://doi.org/10.1007/978-3-319-38851-9_9
https://doi.org/10.1007/978-3-319-38851-9%5C_9
https://doi.org/10.48550/ARXIV.2203.15805
https://doi.org/10.48550/ARXIV.2203.15805
https://arxiv.org/abs/2203.15805
https://doi.org/10.1007/s43069-021-00084-x
https://link.springer.com/10.1007/s43069-021-00084-x
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/https://doi.org/10.1016/S0304-0208(08)72955-4
https://www.sciencedirect.com/science/article/pii/S0304020808729554
https://www.sciencedirect.com/science/article/pii/S0304020808729554
https://doi.org/10.4230/LIPICS.ESA.2022.53
https://doi.org/10.4230/LIPIcs.ESA.2022.53
https://doi.org/10.4230/LIPIcs.ESA.2022.53
https://doi.org/10.1145/800119.803884
http://portal.acm.org/citation.cfm?doid=800119.803884
http://portal.acm.org/citation.cfm?doid=800119.803884
https://doi.org/10.1137/1.9781611976472.10
https://doi.org/10.1137/1.9781611976472.10

[18] Andreas Gemsa, Martin Nöllenburg, and Ignaz Rutter. “Evaluation of Label-
ing Strategies for Rotating Maps”. In: Experimental Algorithms. Ed. by David
Hutchison et al. Vol. 8504. Series Title: Lecture Notes in Computer Science.
Cham: Springer International Publishing, 2014, pp. 235–246. isbn: 978-3-319-
07958-5 978-3-319-07959-2. doi: 10.1007/978- 3- 319- 07959- 2_20. url:
http://link.springer.com/10.1007/978-3-319-07959-2%5C_20 (visited on
05/28/2024).

[19] Tom George and Demian Hespe. Distributed Kernelization for Independent Sets.
Nov. 2018.

[20] Ernestine Großmann, Kenneth Langedal, and Christian Schulz. “A Comprehensive
Survey of Data Reduction Rules for the Maximum Weighted Independent Set
Problem”. In: (Dec. 2024). arXiv: 2412.09303v1 [cs.DS]. url: http://arxiv.
org/abs/2412.09303v1.

[21] Ernestine Großmann, Kenneth Langedal, and Christian Schulz. “Accelerating
Reductions Using Graph Neural Networks and a New Concurrent Local Search
for the Maximum Weight Independent Set Problem”. In: (Dec. 2024). arXiv:
2412.14198v1 [math.OC]. url: http://arxiv.org/abs/2412.14198v1.

[22] Ernestine Großmann et al. “Finding Near-Optimal Weight Independent Sets
at Scale”. en. In: Proceedings of the Genetic and Evolutionary Computation
Conference. Lisbon Portugal: ACM, July 2023, pp. 293–302. isbn: 9798400701191.
doi: 10.1145/3583131.3590353. url: https://dl.acm.org/doi/10.1145/
3583131.3590353 (visited on 05/28/2024).

[23] Jiewei Gu et al. “Towards Computing a Near-Maximum Weighted Independent
Set on Massive Graphs”. en. In: Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery
Data Mining. Virtual Event Singapore: ACM, Aug. 2021, pp. 467–477. isbn:
978-1-4503-8332-5. doi: 10.1145/3447548.3467232. url: https://dl.acm.
org/doi/10.1145/3447548.3467232 (visited on 06/03/2024).

[24] Demian Hespe, Sebastian Lamm, and Christian Schorr. “Targeted Branching
for the Maximum Independent Set Problem”. In: 19th International Symposium
on Experimental Algorithms, SEA 2021, June 7-9, 2021, Nice, France. Ed. by
David Coudert and Emanuele Natale. Vol. 190. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021, 17:1–17:21. doi: 10.4230/LIPICS.SEA.2021.17.
url: https://doi.org/10.4230/LIPIcs.SEA.2021.17.

[25] Demian Hespe, Christian Schulz, and Darren Strash. “Scalable Kernelization for
Maximum Independent Sets”. en. In: ACM Journal of Experimental Algorithmics
24 (Dec. 2019), pp. 1–22. issn: 1084-6654, 1084-6654. doi: 10.1145/3355502.
url: https://dl.acm.org/doi/10.1145/3355502 (visited on 05/15/2024).

[26] Demian Hespe et al. KaMPIng: Flexible and (Near) Zero-overhead C++ Bindings
for MPI. 2024. arXiv: 2404.05610 [cs.DC].

75

https://doi.org/10.1007/978-3-319-07959-2_20
http://link.springer.com/10.1007/978-3-319-07959-2%5C_20
https://arxiv.org/abs/2412.09303v1
http://arxiv.org/abs/2412.09303v1
http://arxiv.org/abs/2412.09303v1
https://arxiv.org/abs/2412.14198v1
http://arxiv.org/abs/2412.14198v1
https://doi.org/10.1145/3583131.3590353
https://dl.acm.org/doi/10.1145/3583131.3590353
https://dl.acm.org/doi/10.1145/3583131.3590353
https://doi.org/10.1145/3447548.3467232
https://dl.acm.org/doi/10.1145/3447548.3467232
https://dl.acm.org/doi/10.1145/3447548.3467232
https://doi.org/10.4230/LIPICS.SEA.2021.17
https://doi.org/10.4230/LIPIcs.SEA.2021.17
https://doi.org/10.1145/3355502
https://dl.acm.org/doi/10.1145/3355502
https://arxiv.org/abs/2404.05610

Bibliography

[27] Changhee Joo et al. “Distributed Greedy Approximation to Maximum Weighted
Independent Set for Scheduling With Fading Channels”. In: IEEE/ACM Transac-
tions on Networking 24 (3 June 2016), pp. 1476–1488. doi: 10.1109/tnet.2015.
2417861. url: https://doi.org/10.1109/tnet.2015.2417861.

[28] Sebastian Lamm, Peter Sanders, and Christian Schulz. “Graph Partitioning for
Independent Sets”. In: Springer International Publishing, June 2015, pp. 68–81.
isbn: [’9783319200859’, ’9783319200866’]. doi: 10.1007/978-3-319-20086-6_6.
url: https://doi.org/10.1007/978-3-319-20086-6%5C_6.

[29] Sebastian Lamm et al. “Exactly Solving the Maximum Weight Independent Set
Problem on Large Real-World Graphs”. In: Proceedings of the Twenty-First Work-
shop on Algorithm Engineering and Experiments, ALENEX 2019, San Diego,
CA, USA, January 7-8, 2019. Ed. by Stephen G. Kobourov and Henning Mey-
erhenke. SIAM, 2019, pp. 144–158. doi: 10.1137/1.9781611975499.12. url:
https://doi.org/10.1137/1.9781611975499.12.

[30] Sebastian Lamm et al. “Finding near-optimal independent sets at scale”. en. In:
Journal of Heuristics 23.4 (Aug. 2017), pp. 207–229. issn: 1381-1231, 1572-9397.
doi: 10.1007/s10732-017-9337-x. url: http://link.springer.com/10.
1007/s10732-017-9337-x (visited on 06/03/2024).

[31] Jianfeng Liu, Sihong Shao, and Chaorui Zhang. “Application of Causal Inference
Techniques to the Maximum Weight Independent Set Problem”. In: (Jan. 2023).
arXiv: 2301.05510v1 [math.OC]. url: http://arxiv.org/abs/2301.05510v1.

[32] M Luby. “A simple parallel algorithm for the maximal independent set problem”.
en. In: Proceedings of the seventeenth annual ACM symposium on Theory of
computing - STOC ’85. Providence, Rhode Island, United States: ACM Press,
1985, pp. 1–10. isbn: 978-0-89791-151-1. doi: 10.1145/22145.22146. url: http:
//portal.acm.org/citation.cfm?doid=22145.22146 (visited on 05/20/2024).

[33] Henning Meyerhenke, Peter Sanders, and Christian Schulz. “Parallel Graph
Partitioning for Complex Networks”. In: IEEE Transactions on Parallel and
Distributed Systems 28.9 (2017), pp. 2625–2638. doi: 10.1109/TPDS.2017.
2671868.

[34] Bruno Nogueira, Rian G. S. Pinheiro, and Anand Subramanian. “A hybrid iterated
local search heuristic for the maximum weight independent set problem”. en. In:
Optimization Letters 12.3 (May 2018), pp. 567–583. issn: 1862-4472, 1862-4480.
doi: 10.1007/s11590-017-1128-7. url: http://link.springer.com/10.
1007/s11590-017-1128-7 (visited on 06/03/2024).

[35] Peter Sanders and Daniel Seemaier. “Distributed Deep Multilevel Graph Par-
titioning”. en. In: Euro-Par 2023: Parallel Processing. Ed. by José Cano et al.
Vol. 14100. Series Title: Lecture Notes in Computer Science. Cham: Springer Na-
ture Switzerland, 2023, pp. 443–457. isbn: 978-3-031-39697-7 978-3-031-39698-4.
doi: 10.1007/978-3-031-39698-4_30. url: https://link.springer.com/
10.1007/978-3-031-39698-4%5C_30 (visited on 05/21/2024).

76

https://doi.org/10.1109/tnet.2015.2417861
https://doi.org/10.1109/tnet.2015.2417861
https://doi.org/10.1109/tnet.2015.2417861
https://doi.org/10.1007/978-3-319-20086-6_6
https://doi.org/10.1007/978-3-319-20086-6%5C_6
https://doi.org/10.1137/1.9781611975499.12
https://doi.org/10.1137/1.9781611975499.12
https://doi.org/10.1007/s10732-017-9337-x
http://link.springer.com/10.1007/s10732-017-9337-x
http://link.springer.com/10.1007/s10732-017-9337-x
https://arxiv.org/abs/2301.05510v1
http://arxiv.org/abs/2301.05510v1
https://doi.org/10.1145/22145.22146
http://portal.acm.org/citation.cfm?doid=22145.22146
http://portal.acm.org/citation.cfm?doid=22145.22146
https://doi.org/10.1109/TPDS.2017.2671868
https://doi.org/10.1109/TPDS.2017.2671868
https://doi.org/10.1007/s11590-017-1128-7
http://link.springer.com/10.1007/s11590-017-1128-7
http://link.springer.com/10.1007/s11590-017-1128-7
https://doi.org/10.1007/978-3-031-39698-4_30
https://link.springer.com/10.1007/978-3-031-39698-4%5C_30
https://link.springer.com/10.1007/978-3-031-39698-4%5C_30

[36] Peter Sanders and Tim Niklas Uhl. “Engineering a Distributed-Memory Triangle
Counting Algorithm”. In: 2023 IEEE International Parallel and Distributed
Processing Symposium (IPDPS) (St. Petersburg, FL, USA). IEEE, May 2023,
pp. 702–712. doi: 10.1109/ipdps54959.2023.00076. url: https://doi.org/
10.1109/ipdps54959.2023.00076.

[37] Peter Sanders et al. Sequential and Parallel Algorithms and Data Structures -
The Basic Toolbox. Springer, 2019, pp. 265–267. isbn: 978-3-030-25208-3. doi:
10.1007/978-3-030-25209-0. url: https://doi.org/10.1007/978-3-030-
25209-0.

[38] Xubo Wang et al. “Distributed Near-Maximum Independent Set Maintenance
over Large-scale Dynamic Graphs”. In: 2023 IEEE 39th International Conference
on Data Engineering (ICDE). Anaheim, CA, USA: IEEE, Apr. 2023, pp. 2538–
2550. isbn: 9798350322279. doi: 10.1109/ICDE55515.2023.00195. url: https:
//ieeexplore.ieee.org/document/10184836/ (visited on 05/15/2024).

[39] Jeffrey S Warren and Illya V Hicks. “Combinatorial branch-and-bound for the
maximum weight independent set problem. 2006”. In: URL https://www. caam.
rice. edu/∼ ivhicks/jeff.rev.pdf (2006).

[40] Mingyu Xiao, Sen Huang, and Xiaoyu Chen. “Maximum Weighted Independent
Set: Effective Reductions and Fast Algorithms on Sparse Graphs”. en. In: Algo-
rithmica 86 (5 May 2024), pp. 1293–1334. doi: 10.1007/s00453-023-01197-x.
url: https://doi.org/10.1007/s00453-023-01197-x.

[41] Mingyu Xiao et al. “Efficient Reductions and a Fast Algorithm of Maximum
Weighted Independent Set”. en. In: Proceedings of the Web Conference 2021.
Ljubljana Slovenia: ACM, Apr. 2021, pp. 3930–3940. isbn: 978-1-4503-8312-7.
doi: 10.1145/3442381.3450130. url: https://dl.acm.org/doi/10.1145/
3442381.3450130 (visited on 11/02/2024).

77

https://doi.org/10.1109/ipdps54959.2023.00076
https://doi.org/10.1109/ipdps54959.2023.00076
https://doi.org/10.1109/ipdps54959.2023.00076
https://doi.org/10.1007/978-3-030-25209-0
https://doi.org/10.1007/978-3-030-25209-0
https://doi.org/10.1007/978-3-030-25209-0
https://doi.org/10.1109/ICDE55515.2023.00195
https://ieeexplore.ieee.org/document/10184836/
https://ieeexplore.ieee.org/document/10184836/
https://doi.org/10.1007/s00453-023-01197-x
https://doi.org/10.1007/s00453-023-01197-x
https://doi.org/10.1145/3442381.3450130
https://dl.acm.org/doi/10.1145/3442381.3450130
https://dl.acm.org/doi/10.1145/3442381.3450130

A. Appendix

Graph Original Name |V | |E| avg. deg.
kagen

grid2d-XY12 kagen-grid2d-X12-Y12-p0.9-s12-wuniform_random-wmin1-wmax100 16 777 216.0 30 191 845.0 3.6
grid3d-XYZ7 kagen-grid3d-X7-Y7-Z7-p0.8-s20-wuniform_random-wmin1-wmax100 2 097 152.0 4 992 844.0 4.8

rgg2d-N20M22 kagen-rgg2d-N20-M22-s5-wuniform_random-wmin1-wmax50 1 048 576.0 4 195 172.0 8.0
rgg3d-N20M22 kagen-rgg3d-N20-M22-s7-wuniform_random-wmin1-wmax100 1 048 576.0 4 191 989.0 8.0

rhg-N20 kagen-rhg-N20-d10-g2.6-s25-wuniform_random-wmin1-wmax100 1 048 576.0 5 030 376.0 9.6
rhg-N22 kagen-rhg-N22-d5-g2.9-s29-wuniform_random-wmin1-wmax100 4 194 304.0 10 350 108.0 4.9

mesh

buddha mesh_buddha-uniform 1 087 716.0 1 631 574.0 3.0
osm

asia uniform-asia.osm 11 950 757.0 12 711 603.0 2.1
europe uniform-europe.osm 50 912 018.0 54 054 660.0 2.1

snap

LiveJour. snap_soc-LiveJournal1-uniform 4 847 571.0 42 851 237.0 17.7
as-skitter snap_as-skitter-uniform 1 696 415.0 11 095 298.0 13.1

com-youtube snap_com-youtube 1 134 890.0 2 987 624.0 5.3
pokec-rel. snap_soc-pokec-relationships-uniform 1 632 803.0 22 301 964.0 27.3

roadNet-CA snap_roadNet-CA-uniform 1 965 206.0 2 766 607.0 2.8
roadNet-PA snap_roadNet-PA 1 088 092.0 1 541 898.0 2.8
roadNet-PA snap_roadNet-PA-uniform 1 088 092.0 1 541 898.0 2.8
roadNet-TX snap_roadNet-TX-uniform 1 379 917.0 1 921 660.0 2.8

wiki-Talk snap_wiki-Talk-uniform 2 394 385.0 4 659 565.0 3.9

Table A.1.: The table lists the graphs of data set Strong (18 graphs) with additional meta
information.

79

A
.
A
ppendix

KaDisReduS KaDisReduA
median n [%] geo. mean t [s] median n [%] geo. mean t [s]

cores p cores p cores p cores p
Instance 1 64 1 024 1 64 1 024 1 64 1 024 1 64 1 024

kagen grid2d-X12-Y12-p0.9-s12-uf100 51.56 53.18 74.59 76.23 1.28 0.07 51.56 53.18 74.59 76.87 1.28 0.06
kagen grid3d-X7-Y7-Z7-p0.8-s20-uf100 91.49 95.09 95.29 14.35 0.12 0.03 91.49 95.09 95.29 14.19 0.11 0.01
kagen rgg2d-N20-M22-s5-uf50 18.66 27.04 63.00 4.80 0.09 0.03 18.66 27.02 63.11 4.94 0.09 0.01
kagen rgg3d-N20-M22-s7-uf100 58.09 76.66 80.09 10.13 0.09 0.02 58.09 76.60 80.13 10.35 0.08 0.01
kagen rhg-N20-d10-g2.6-s25-uf100 0.00 47.16 47.81 1.08 0.77 0.29 0.00 47.16 47.82 1.18 0.62 0.44
kagen rhg-N22-d5-g2.9-s29-uf100 0.00 28.02 28.19 2.99 1.63 0.45 0.00 27.97 28.20 3.52 1.27 0.61
mesh buddha-uf 12.21 40.66 67.29 2.08 0.06 0.03 12.21 40.66 67.28 2.14 0.06 0.01
osm uf-asia 0.40 2.08 2.24 7.61 0.32 0.07 0.40 2.08 2.24 9.00 0.28 0.04
osm uf-europe 0.12 1.32 1.45 33.17 1.45 0.15 0.12 1.31 1.45 39.28 1.06 0.13

snap as-skitter-uf 4.40 20.37 21.41 18.00 2.39 0.64 4.40 20.38 21.42 18.35 1.47 0.65
snap com-youtube 0.00 0.55 0.60 0.69 0.35 0.13 0.00 0.56 0.61 0.98 0.31 0.40
snap roadNet-CA-uf 4.88 9.20 16.16 2.10 0.10 0.04 4.88 9.17 16.17 2.30 0.09 0.01
snap roadNet-PA 5.26 8.72 17.55 1.16 0.06 0.03 5.26 8.71 17.55 1.28 0.06 0.01
snap roadNet-PA-uf 5.36 8.82 17.48 1.16 0.07 0.03 5.36 8.80 17.48 1.27 0.06 0.01
snap roadNet-TX-uf 4.72 7.65 14.74 1.39 0.06 0.04 4.72 7.65 14.75 1.53 0.06 0.01
snap soc-LiveJournal1-uf 0.98 28.20 29.03 41.58 5.47 1.52 0.98 28.23 29.08 42.29 3.47 0.82
snap soc-pokec-relationships-uf 53.07 69.29 69.50 84.81 1.70 0.17 53.07 69.30 69.50 85.09 1.34 0.14
snap wiki-Talk-uf 0.00 0.01 0.01 1.22 1.91 0.68 0.00 0.01 0.01 2.05 1.73 1.17

Table A.2.: Detailed overview of the reduction impact and the required running time by KaDisReduS and KaDisReduA to reduce the
graphs of data set Strong (18 graphs). It shows the median number of vertices of the kernel, relative to the number of vertices in the
input graph, and the geometric mean running time for 1, 64, and 1 024 processes.

80

HtWIS KaDisReduA-RG PR RPR KaDisReduS-RG GreedyA GreedyS
Graph ω(I) t [s] ω(I) t [s] su. su. su. ω(I) t [s] su. ω(I) t [s] su. ω(I) t [s] su.

kagen grid2d-XY12 444 367 271 15.07 426 374 036 84.89 173.11 11.73 11.10 426 374 036 83.09 149.38 410 832 482 7.01 733.96 410 832 482 4.53 752.36
kagen grid3d-XYZ7 51 397 333 2.51 46 399 972 15.39 89.61 2.71 2.45 46 399 972 15.30 55.92 46 052 941 1.03 253.05 46 052 941 0.75 193.49
kagen rgg2d-N20M22 8 289 274 1.31 8 102 402 5.34 53.65 2.09 2.99 8 102 402 5.18 29.34 7 513 200 0.61 149.91 7 513 200 0.53 112.23
kagen rgg3d-N20M22 17 711 545 1.95 16 532 699 10.97 78.99 2.08 2.20 16 532 699 10.69 45.13 15 968 885 0.67 208.32 15 968 885 0.57 144.60
kagen rhg-N20 23 903 728 0.61 24 123 473 1.39 1.33 0.25 0.52 24 123 473 1.30 1.82 22 917 135 0.71 2.78 22 917 135 0.56 3.13
kagen rhg-N22 104 705 319 1.58 111 332 870 4.27 2.39 0.46 0.93 111 332 870 3.78 3.11 108 285 899 2.27 4.37 108 285 899 1.57 4.79
mesh buddha 57 508 556 0.61 57 175 207 2.54 26.65 1.11 1.06 57 175 207 2.46 11.84 54 724 471 0.47 68.56 54 724 471 0.32 46.89
osm asia 177 944 319 2.63 177 909 022 10.96 39.45 2.15 3.61 177 909 022 9.61 28.39 172 407 097 5.12 103.36 172 407 097 2.99 109.46
osm europe 759 787 635 12.15 759 755 354 48.33 49.35 5.54 8.51 759 755 354 42.56 61.29 736 379 981 22.92 158.07 736 379 981 13.57 177.35

snap as-skitter 124 141 373 1.29 123 895 991 18.78 1.66 0.08 0.08 123 895 991 18.43 1.25 118 077 022 3.07 2.79 118 077 022 2.57 2.96
snap com-youtube 90 295 285 0.37 90 295 285 1.15 1.16 0.11 0.83 90 295 285 0.87 2.29 88 274 720 0.96 4.19 88 274 720 0.62 3.92
snap roadNet-CA 111 325 524 0.80 111 040 444 2.79 30.02 1.16 1.84 111 040 444 2.58 13.54 106 123 348 0.95 83.40 106 123 348 0.62 64.82
snap roadNet-PA 61 688 549 0.43 61 510 241 1.54 18.36 0.81 1.23 61 510 241 1.42 9.19 58 767 687 0.53 45.85 58 767 687 0.35 39.00
snap roadNet-PA-uf 61 710 606 0.43 61 535 801 1.53 18.73 0.80 1.23 61 535 801 1.42 9.65 58 828 685 0.53 53.41 58 828 685 0.34 43.40
snap roadNet-TX 78 575 460 0.54 78 372 685 1.86 22.73 0.94 1.43 78 372 685 1.71 11.23 74 875 147 0.66 64.86 74 875 147 0.43 50.61
snap LiveJour. 283 922 214 9.81 283 855 645 44.25 9.58 0.74 1.95 283 855 645 43.54 6.07 269 452 344 9.38 11.00 269 452 344 8.30 12.46
snap pokec-rel. 83 920 370 33.86 77 595 685 88.71 156.11 3.80 5.11 77 595 685 88.28 113.08 74 968 957 5.09 220.85 74 968 957 4.76 187.88
snap wiki-Talk 235 837 346 0.54 235 837 346 2.27 0.43 0.07 0.40 235 837 346 1.44 0.72 235 317 688 1.94 0.84 235 317 688 1.05 1.04

Table A.3.: Detailed results of the compared (distributed) independent set solvers for data set Strong (18 graphs). PR and RPR refer to
KaDisReduA-PRG and KaDisReduA-PRG, respectively. We show for each algorithm the geometric mean solution and running time for p = 1.
PR and RPR are identical for p = 1, therfore only the speed-up is shown. Moreover, we show the maximum speed-up (su.) over HtWIS for
each algorithm over all p ∈ {2, 64, 128, 256, 1 024}. Note that a speed-up less than one, indicates that there is no speed-up at all.

81

A
.
A
ppendix

HtWIS KaDisReduA-RG KaDisReduA-PRG KaDisReduA-RPRG KaDisReduS-RG
Graph ω(I) t [s] ω(I) t [s] su. ω(I) t [s] su. ω(I) t [s] su. ω(I) t [s] su.

kagen grid2d-XY12 444 367 271 15.07 417 012 867 0.09 173.11 425 681 071 1.37 11.03 426 013 133 1.39 10.83 417 011 461 0.10 149.38
kagen grid3d-XYZ7 51 397 333 2.51 46 145 432 0.03 89.61 46 273 128 1.48 1.70 46 265 332 1.43 1.75 46 145 685 0.04 55.92
kagen rgg2d-N20M22 8 289 274 1.31 7 683 781 0.02 53.65 8 070 352 1.05 1.25 8 082 363 0.99 1.33 7 684 023 0.05 26.11
kagen rgg3d-N20M22 17 711 545 1.95 16 163 148 0.02 78.99 16 422 714 1.34 1.46 16 434 291 1.21 1.61 16 163 286 0.04 45.13
kagen rhg-N20 23 903 728 0.61 23 486 511 0.47 1.29 24 123 459 2.57 0.24 24 123 473 1.45 0.42 23 486 120 0.33 1.82
kagen rhg-N22 104 705 319 1.58 110 314 759 0.66 2.39 111 332 870 3.46 0.46 111 332 870 1.70 0.93 110 314 131 0.51 3.11
mesh buddha 57 508 556 0.61 55 239 913 0.02 26.65 56 975 075 1.35 0.45 57 096 043 1.18 0.52 55 239 248 0.06 10.67
osm asia 177 944 319 2.63 177 727 363 0.07 39.45 177 908 879 1.37 1.92 177 908 506 0.90 2.93 177 727 418 0.09 28.39
osm europe 759 787 635 12.15 759 238 497 0.25 49.35 759 755 275 2.19 5.54 759 755 474 1.49 8.14 759 238 380 0.20 61.29

snap as-skitter 124 141 373 1.29 123 082 249 1.13 1.14 123 748 677 15.71 0.08 123 810 357 16.45 0.08 123 082 534 1.08 1.19
snap com-youtube 90 295 285 0.37 90 289 892 0.43 0.87 90 295 004 4.21 0.09 90 295 285 0.45 0.83 90 290 049 0.16 2.29
snap roadNet-CA 111 325 524 0.80 110 309 636 0.03 30.02 110 989 853 1.12 0.72 111 032 253 0.84 0.95 110 309 780 0.06 13.54
snap roadNet-PA 61 688 549 0.43 61 080 405 0.02 18.36 61 473 413 1.28 0.34 61 496 654 0.75 0.58 61 081 324 0.05 8.17
snap roadNet-PA-uf 61 710 606 0.43 61 099 308 0.02 18.73 61 499 643 1.26 0.34 61 524 404 0.75 0.58 61 099 698 0.05 8.32
snap roadNet-TX 78 575 460 0.54 77 914 830 0.02 22.73 78 340 497 1.03 0.52 78 360 447 0.77 0.70 77 915 294 0.06 9.66
snap LiveJour. 283 922 214 9.81 278 565 085 1.02 9.58 282 722 066 13.66 0.72 283 018 326 5.02 1.95 278 574 015 1.62 6.07
snap pokec-rel. 83 920 370 33.86 76 397 775 0.22 156.11 76 784 742 9.16 3.70 76 820 585 7.09 4.78 76 398 134 0.30 113.08
snap wiki-Talk 235 837 346 0.54 235 837 085 1.25 0.43 235 837 346 14.00 0.04 235 837 346 1.36 0.40 235 837 115 0.75 0.72

Table A.4.: Detailed results of the compared (distributed) independent set solvers which use kernelization for data set Strong (18
graphs) for p = 1024. We show for each algorithm the geometric mean solution, running time and speed-up (su.) over HtWIS. Note that a
speed-up less than one, indicates that there is no speed-up at all.

82

	Abstract
	Zusammenfassung
	Introduction
	Motivation
	Contribution
	Overview

	Fundamentals
	Preliminaries
	Machine Model and Distributed Memory Graph
	Notation of Data Reduction Rules

	Related Work
	Sequential Approaches
	Exact Algorithms
	Heuristic Algorithms

	Distributed and Parallel Approaches
	Greedy Algorithms
	Kernelization in Parallel

	Distributed Kernelization
	Reduction Rules
	A first Example
	Distributed Reductions
	Local Kernelization
	Dynamic Graph Data Structure
	Communication
	Message Types
	Synchronous Approach
	Asynchronous Approach

	Distributed Partition-And-Reduce

	Distributed Independent Set
	Distributed Greedy Algorithms
	Synchronous Greedy Algorithm
	Asynchronous Greedy Algorithm

	Distributed Reduce-And-Greedy

	Implementation Details
	Experiments
	Methodology
	Reduction Impact
	Reduction Impact on Partitioned Graphs
	Comparison of Distributed Independent Set Solvers
	Weak Scaling Experiments

	Discussion
	Conclusion
	Future Work

	Bibliography
	Appendix

