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Abstract

Computer models for simulating cardiac electrophysiology are valuable tools for research and clinical applications. Tradi-
tional reaction—diffusion (RD) models used for these purposes are computationally expensive. While eikonal models offer a
faster alternative, they are not well-suited to study cardiac arrhythmias driven by reentrant activity. The present work extends
the diffusion—reaction eikonal alternant model (DREAM), incorporating conduction velocity (CV) restitution for simulating
complex cardiac arrhythmias. The DREAM modifies the fast iterative method to model cyclical behavior, dynamic boundary
conditions, and frequency-dependent anisotropic CV. Additionally, the model alternates with an approximated RD model,
using a detailed ionic model for the reaction term and a triple-Gaussian to approximate the diffusion term. The DREAM
and monodomain models were compared, simulating reentries in 2D manifolds with different resolutions. The DREAM
produced similar results across all resolutions, while experiments with the monodomain model failed at lower resolutions.
CV restitution curves obtained using the DREAM closely approximated those produced by the monodomain simulations.
Reentry in 2D sheets yielded similar results in vulnerable window and mean reentry duration for low CV in both models.
In the left atrium, most inducing points identified by the DREAM were also present in the high-resolution monodomain
model. DREAM’s reentry simulations on meshes with an average edge length of 1600 pm were 87x faster than monodomain
simulations at 200 pm. This work establishes the mathematical foundation for using the accelerated DREAM simulation
method for cardiac electrophysiology. Cardiac research applications are enabled by a publicly available implementation in
the openCARP simulator.

Keywords Fast iterative method - Reaction diffusion - Cardiac electrophysiology - Reentries

1 Introduction

Computer models have provided meaningful contributions
to better understand the mechanisms of cardiac arrhythmia
[1, 2]. An emerging application of cardiac modeling are
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tissue-level simulations to guide treatments such as ablation
procedures [3]. Tissue-level simulations can be performed
using reaction diffusion (RD) or eikonal models [4, 5]. RD
models accurately capture the complex interplay between
ion channels, cellular, and tissue-level behavior [4, 6]. How-
ever, they often require significant computing time, even on
high performance computing systems [2]. Therefore, these
models are hardly compatible with clinical time frames for
intraprocedural decision support. Eikonal models are an
alternative to investigate cardiac arrhythmias [5, 7-9]. They
can be 3 orders of magnitude faster than RD models and
thus better suited for use in clinical settings (e.g. planning
ablation procedures) or uncertainty quantification [10, 11].
However, various eikonal-based models encounter distinct
challenges that impede their ability to accurately simulate
cardiac arrhythmias. These challenges include the absence
of repolarization and reactivation phenomena, inadequate
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representation of conduction velocity (CV) and action
potential duration (APD) restitution (i.e., their dependence
on activation frequency), and the utilization of numerical
methods unsuitable for anisotropic propagation [5, 10, 12].
While not all eikonal-based models face all these limita-
tions, a model capable of addressing these challenges simul-
taneously could provide a more suitable tool for studying
arrhythmia compatible with clinical time frames.

Numerical solutions for the eikonal equation are compu-
tationally inexpensive due to its simple formulation and the
low mesh resolution requirements. The simplest formula-
tions of the eikonal model are only capable of simulating
one activation per node. Consequently, these versions do not
account for recovery or reactivation of the cardiomyocytes
[10, 13]. This shortcoming hinders the simulation of reen-
trant activity, which is a major limitation in the context of
simulating arrhythmia. To overcome this problem, Pernod
et al. modified the fast marching method (FMM) to allow
reactivation of the nodes while solving the eikonal equa-
tion [5]. Later, Gassa et al. extended the method to enable
the simulation of rotors [14]. Nonetheless, when simulat-
ing anisotropic propagation in cardiac tissue using single
pass methods like the regular FMM, numercial errors can
arise because the gradient directions of the eikonal equa-
tion solution do not align with the characteristic directions
(i.e., the optimal trajectories). This discrepancy affects the
accurate depiction of anisotropic wave propagation dynam-
ics, particularly in regions where these directions do not lie
within the same simplex in the mesh discretization. Further
limitations of single pass methods like FMM in anisotropic
media are addressed in more detail by Sethian and Vladimir-
sky[15]. Alternative methods have been proposed to solve
the anisotropic eikonal equation such as the fast iterative
method (FIM), the buffered FMM, and the anisotropic FMM
[5, 16, 17].

Neic et al. used the FIM to develop the reaction eikonal
(RE) model, which incorporates repolarization by linking
the eikonal equation with a detailed ionic model [10]. How-
ever, it lacks the capability to simulate reactivation and reen-
try. Later, Campos et al. employed the RE model in virtual
induction and treatment of arrhythmias (VITA), a method
to investigate ventricular tachycardia [18]. While VITA can
identify areas in the heart susceptible to isthmus-dependent
reentry, it can only simulate the first reentry cycle and dis-
regards CV restitution and functional reentry.

Iterative methods to solve the anisotropic eikonal equa-
tion are challenging when simulating reactivation and reen-
try phenomena. There are 2 main factors hindering the accu-
rate simulation of reentries using iterative solution methods.
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First, activation times (ATs) can undergo multiple changes
while solving the eikonal equation iteratively unlike in single
pass methods. Second, ATs and repolarization times (RTs),
i.e. the time after which a node can be reactivated, have a
mutual dependency. The RT of every node in a given activa-
tion cycle depends on the effective refractory period (ERP)
and the AT in the same activation cycle. Similarly, the AT
depends on whether a node has fully recovered from the pre-
vious cycle’s activation before the next activation attempt.
Managing these conditions becomes intricate when com-
puting the AT for the next activation cycle while constantly
updating the AT from the previous activation cycle. Another
important factor to reproduce physiological reentries is to
incorporate CV restitution. This phenomenon adds addi-
tional complexity as CV becomes dependent on the previ-
ous AT, rather than remaining constant. Therefore, a way to
calculate the frequency-dependent CV in the eikonal model
must be included in the method. This can be achieved by tak-
ing the diastolic interval (DI) of previous activation cycles
in the node that is being activated, or by considering the DI
of the neighboring nodes [12].

This study builds on an initial version of the diffusion
reaction eikonal alternant model (DREAM) enabling reac-
tivation in anisotropic media through the solution of the
eikonal equation using the FIM [19]. The DREAM intro-
duced a new strategy that alternates between the eikonal
and RD models. In the proposed update of the DREAM,
a novel approach to CV restitution ensures a coherent set
of CV, DI, and AT values for each revised node during the
present activation cycle. This work extends the DREAM
by CV restitution properties while preserving the model’s
other advantages.

2 Propagation models
2.1 Monodomain model

RD models faithfully represent the propagation of the elec-
trical wavefront through the cardiac tissue [20-22]. These
models are the most detailed because they incorporate more
physiological mechanisms than other available models.
However, numerical methods used to solve the RD equations
rely on high resolution meshes, which is the main cause for
their high computational cost [4, 23]. The most common
examples of RD models are the bidomain and the monodo-
main models [24]. In this work, the latter is used as control
to benchmark the DREAM.
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Derived from the bidomain equations, the monodomain
model assumes equal intracellular and extracellular anisot-
ropy ratios and is, therefore, computationally more efficient.
This assumption does not hold true particularly in scenarios
such as the simulation of defibrillation, where the dynamics
in the extracellular space play a significant role [25]. How-
ever, for the majority of cardiac electrophysiology simula-
tions, the monodomain model proved to be adequate due
to its ability to capture various electrophysiological mecha-
nisms accurately, such as source-sink mismatch effects [4,
24]. The equations of the bidomain model are condensed to
the monodomain equation:

aV,

theni = j. M : Q — R¥3 maps points in the myocardium to
their tensor of squared CV defined as:

MX) = (PO ® 1+ (P(X))F ®F+ (X)) ®7.  (5)

Here, 7, 7, and 7 form an orthonormal system of vectors in
the longitudinal, transversal, and sheet-normal directions,
respectively. Importantly, Tis aligned with the local prefer-
ential myocyte orientation. Furthermore, v, v, v, : Q — R,
assign the CV values in their respective directions at X.
The FIM is an effective approach for solving the ani-
sotropic eikonal equation as this algorithm is particularly

BCH IR =V - (6, VV,) = fllion(Ven ) — 1) on Q C R, M

™ ot

(6,VV,y) - Tigs =0 ondQ, 2)

where f is the surface-to-volume ratio, while C,, denotes the
membrane capacitance. The transmembrane voltage is indi-
cated by V,, and o, represents the tissue conductivity tensor.
The ionic transmembrane current density, denoted as /,,,,
depends on V,, and the state variables 7, which determine
the behavior of the ion channels in the cell membrane and
the sarcoplasmic reticulum. Additionally, / is the transmem-
brane stimulus current density. The myocardium is repre-
sented by Q. There is a non-flux boundary condition at 6£2,
the boundary of the domain Q. The outward surface normal
vector is represented by 7,

2.2 Eikonal model

The anisotropic eikonal model, based on the macroscopic
kinetics of wavefront propagation, seeks to determine the
activation time (AT) of points within the myocardium
through the following equation: [21, 22]:

VVTXO)TMX)VT(X) =1 VX € Q, (3)

TX)=T, VX€eT,CcQ, 4)

where T : Q — R, U {oo}, maps every point in the myo-
cardium to its corresponding AT. Moreover, I'; denotes the
subset of points in the myocardium where the i-th stimulus
is applied at time 7; € R, fori =1, ..., n, withn, € Nrep-
resenting the total number of stimuli. Additionally, if 7; = T;

suited for unstructured meshes and anisotropic local CV
functions [16]. The single-thread version of the FIM is
presented in Algorithm 1. Multi-thread versions are also
available [16, 26, 27]. For this work, Q is considered to
be a 2D manifold embedded in R3. For this reason, it is
assumed that v, = v,, however the effect of the normal
component is small since most of the characteristic direc-
tions (i.e., optimal trajectories) are almost perpendicular
to 7i. To numerically approximate the viscosity solution of
the eikonal equation, a triangulation 7 C P(Q,) is defined
over a finite set of points £ C €, such that the convex hull
of Q; (i.e., the union of all triangles in 7°) approximates
Q. The FIM approximates the viscosity solution of the
eikonal equation only at the vertices of the triangles in
T (i.e., points in ;). When mentioning a node X € Q,
we refer to both a vertex in the triangulation and its posi-
tion in R3. This notation should not cause confusion, as
each simulation in this work uses only a single mesh and
coordinate system.

In the first step of the FIM, the boundary conditions
of the system are defined by the AT of the source nodes
(Eq. 4). Then, the neighbors of the nodes that belong to
any I'; (for i =1,...,n,) are included in a set of active
nodes L C Q, that is initialize as @, which contains the
list of nodes that are being updated by the local solver.
This local solver is referred to as the UPDATE() func-
tion. As soon as L is not empty, the list iteration begins.
For each iteration, every node X in L is updated and the
previous solution for its AT is replaced. If the difference
between the old and the new solution is smaller than a cer-
tain threshold €, the node is then removed from L and each
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of its neighbors, that are not presently in L, is analyzed.
For each neighbor, a tentative new solution is calculated
and only replaces the old solution if the new solution is
smaller (i.e., earlier) than the old solution. If this condi-
tion is fulfilled, this neighbor is added to L. This process
is repeated until L is empty.

Algorithm 1 Fast Iterative Method

L=90
for X € Qr
T(X) o0
foriel,... ng
for adjacent neighbor Xnp of X
add XNB to L
end for
end if
end for
end for
while L # ()
for X € L
p— T(X)
q — UPDATE(X)
T(X) —q
if [p—q|<e
for adjacent neighbor Xyp of X
if Xng isnot in L
p— T(Xng)
q — UPDATE(XnB)
ifp>q
T(XnB) < q
add XNB to L
end if
end if
end for
remove X from L
end if
end for
end while

When solving the eikonal equation on a triangular mesh,
the local solver aims to determine the smallest AT that fits
the eikonal equation at a specific node X. For this purpose,
a tentative AT is calculated for every triangle containing X.
Let (X, Y, Z) be a triangle in 7, with vertices X, Y,Z € Q:
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VX XD XX

(X

)

Ty,(X) = min | AT() + (1 = DTZ) +

X,X = AYX + (1 — HZX,
D(X) = M(X) - v(X)~?,

(6)
where Ty ,(X) is the tentative AT that is obtained if the
characteristic direction lies within the triangle (X, Y, Z).
Additionally, D(X) is a tensor that holds information about
the anisotropy of conduction, and v,(X) is the CV along the
longitudinal direction at node X. Finally, UPDATE(X) is set
as the minimum AT among all the tentative ATs calculated
from each triangle containing X:

UPDATE(X) = min Ty ;(X). @

2.3 Diffusion reaction eikonal alternant model
(DREAM)

The DREAM is a mixed model combining an approximation
of the RD model and the eikonal model. The goal of this
model is to simulate reactivation patterns on meshes with
lower resolutions than required for comparable simulations
with RD models, thereby increasing computational effi-
ciency. The DREAM is inspired by the RE model [10] and
the multi-frontal FMM [5]. A modified version of the FIM,
named cyclical FIM (cycFIM), was implemented to solve
the anisotropic eikonal equation allowing reactivations by
alternating with the approximated RD model (Sect. 2.3.1).

Figure 1 shows a schematic representation of the steps
involved in the DREAM. A single DREAM cycle encom-
passes the execution of steps A, B, C, and D where subscript
indices represent the DREAM cycle’s number. It is crucial
to differentiate between the DREAM cycle, comprising
steps A, B, C, and D as shown in Fig. 1b), and the concept
of the activation cycle in cardiac tissue. Within a DREAM
cycle, each call of the cycFIM is regarded as a cycFIM
cycle, which computes one AT value per node for a subset of
nodes. However, it is important to note that not every review
of a node will result in an activation cycle for that node, as
propagation failures can occur. Additionally, not more than
one AT is calculated per DREAM cycle per node.

At first, the cycFIM applies the first stimulus (i.e., com-
putes the first boundary condition) and iteratively reviews
every node in L and updates the AT of each node by solving
the eikonal equation. A list iteration refers to the process
where each node in L is visited once. Therefore, every cycle
encompasses one or more list iterations. At the end of each
list iteration, #,,;, is the smallest absolute AT among all nodes

in L. A parameter 7, is defined to limit the increment of ¢ ;,
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Fig.1 a Steps of the diffusion reaction eikonal alternant model
(DREAM) algorithm in simulated time: eikonal model and approxi-
mated reaction diffusion (RD) model alternate to calculate activa-
tion times (ATs) and transmembrane voltages (V,,), respectively.
The cyclical fast iterative method (cycFIM) is used to calculate ATs
(steps A,). These ATs are utilized to compute I needed in the RD
model (steps B,). The approximated RD model determines V,, by
solving the ODE system of the ionic model and incorporating I
(steps C,). V,, is used to get the repolarization times (RT) needed in
the cycFIM to allow for reactivation when solving the eikonal equa-
tion (steps D,). The subscript index n represents the cycle number
in the sequence. The parameter 7. represents the increment of 7,

throughout the list iterations of a cycFIM. Once the total
increment of ¢_;. during a cycFIM cycle exceeds 7., the
cycFIM cycle ends (Fig. 1a), step A;, Sect. 2.3.1). Hereby,
Tjne Tepresents the increment of #,;, each time cycFIM is
called. Then, the determined ATs are used to calculate /4,
which approximates the diffusion current expressed in the
parabolic equation of the RD model. Then, /4y triggers an
action potential (AP) (Fig. 1a), step B, and Sect. 2.3.2),
which allows to compute V,,, in a low resolution mesh. The
approximated RD model uses I to compute V,, in all
nodes of the mesh until ¢ = ¢,;,, — 7, (Fig. 1a), step C, and

min

v

cv

v

AT

(minimum AT of the nodes in L) with each cycFIM cycle. If L is
never empty between stimuli, #,,;, tends to align approximately with
multiples of ;.. The parameter 7, is the temporal safety margin to
avoid conflicts between DREAM cycles. b Steps of the DREAM
algorithm, showing the sequence of a DREAM cycle. In step A, each
call of the cycFIM is a cycFIM cycle, containing several list itera-
tions. x; ; is the j-th node among m; nodes in L at the start of the i-th
iteration. Visiting a node calls COHERENCE(), leading to multiple
COHERENCEY() iterations. In each iteration, functions F, G, and H
calculate AT, DI, and CV, respectively. After yqyy iterations, or upon
convergence, the final output F(v, ) is used by the cycFIM

Sect. 2.3.3). 7, is a safety margin in time, ensuring that only
cells with converged ATs are stimulated by 7 ;. Thereby,
a reliable identification of repolarization times (RTs) is
enabled. RTs are defined as the time points when V,, of an
activated node X crosses the threshold of —40 mV with a
negative slope. If V,, in an activated node does not reach this
threshold before ¢ = 1,,;, — 7,, the ionic model is run inde-
pendently for that node to determine its RT (Fig. 1a), step D,
and Sect. 2.3.4). To start the next cycle in step A,, the
cycFIM iterates again until £, > #1000 + Tiper Where 2

min,init
is the last calculated ¢,,;, of step A,. Hereby, the previously

min
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Table 1 DREAM parameters and variables: absolute times denote specific time points, with values spanning over the entire duration of the

simulation

Absolute times

Variable Meaning Value
?min Minimum AT of nodes in L at the end of each list iteration -)*
Lnininit Last #,;;, from the previous DREAM cycle (-)*

t Current time step in RD model -)*
Parameter Meaning Value
fond End of simulation (=)P
Relative times

Parameter Meaning Value
Tine Maximum allowed increment of 7, ;, in every DREAM cycle 100 ms
Tinax Maximum allowed difference of AT values among nodes in L 10 ms
7 Minimum allowed difference between ,,;, and ¢ 10 ms
€ Threshold of convergence 0.01 ms
Maximum iterations

Parameter Meaning Value
e, Maximum number of list iterations per node per entry into L 50

M, Maximum number of node returns to L per activation 50
HCHR Maximum number of COHERENCE() iterations per node per call 50

Relative times, fixed and typically smaller, constrain the occurrence of absolute times within specified intervals. Maximum permitted iteration

parameters set limits for iterative processes within the cyclical FIM
*Variable values change throughout the simulation

b ¢, changes across experiments

calculated RTs are considered by cycFIM to check whether
a node can be reactivated. Then, steps B,, C,, and D, are

performed in the same manner as steps B, C;, and D,. This
process is repeated until ¢ reaches t,,4, corresponding to the
end of the simulation time. Table 1 shows the variables and
parameters of the DREAM including their meaning and val-
ues used in this work. The code to run simulations using the
DREAM is available in the openCARP simulator [28]. In the
next sections, each of the steps is explained in more detail.

2.3.1 Cydlical fast iterative method

The cycFIM is called in step A, of the DREAM algorithm
with n € N representing the number of the cycle. Algo-
rithm 2 describes this cycFIM. Some modifications were
made to the single-thread FIM to allow alternation between
the eikonal and RD models. Firstly, the boundary conditions
for the eikonal equation need to be dynamically applied as
their effect on the system varies depending on the refractory
state of the nodes receiving the stimuli. Secondly, list itera-
tions should handle RT and manage multiple ATs per node.
Thirdly, the local solver must ensure coherence among the
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CV, DI, and AT for each node. If L is emptied before all the
boundary conditions are computed, further aspects must be
considered since ¢,,;, does no longer align with multiples of
T;,c(see Sect. 2.3.5).

Dynamic boundary conditions

Dynamic boundary conditions handle stimuli applied to
specific areas of the tissue. These conditions vary dynami-
cally as they depend on the refractory state of stimulated
nodes when stimuli are applied. Unlike conventional eikonal
models where boundary conditions are computed a priori
irrespective of their timing, the cycFIM computes bound-
ary conditions (i.e, stimuli) progressively during the sim-
ulation. For this reason, to compute boundary conditions
in the cycFIM the order in which stimuli are applied must
be considered. Let T} < T, < -+ <T, be the times when
stimuli -sets of nodes where this stimuli are applied. At
the beginning of the n-th cycFIM cycle, let T, for s € N
and 1 <5 < ng, be the time of the s — A stimulus such that
Ty,...,T,_; have already been computed during the previ-
ous cycFIM cycles. Moreover, assume that T, ..., Tnv have
not yet been computed. Therefore, T, denotes the time of
the earliest stimulus that has yet to be processed. Boundary
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conditions might be computed in 2 scenarios: at the begin-
ning of each cycle if L is empty, or at the beginning of each
list iteration if L is not empty.

In the first case, L can be empty for 2 reasons: the simu-
lation has just started and n = s = 1 (i.e., the first stimulus
must be computed during the first cycFIM cycle), or all
activation times (ATSs) associated with activation waves
triggered by stimuli applied before 7, have converged,
and L was emptied during the (n — 1)-th cycFIM cycle.
To incorporate new nodes into L and start a new list itera-
tion, the s-th stimulus must be computed. In the second
case, L is not empty and new stimuli might be applied. For
instance, if T falls within the range of allowed activation
times (ATs) for the nodes in L during this cycFIM cycle
(i.e., Ty € [fininies Iminiinit T+ Tine + Tmax))» then the s-th stim-
ulus can be computed. The parameter 7,,,, which imposes
an upper limit on the ATs of nodes in L will be explained
in greater detail in the following subsection. Additionally,
all the subsequent stimuli which times T, T,,, ... are
within this range, can be computed together.

To compute the s-th stimulus in both aforementioned
cases, each node where the stimulus is applied is con-
sidered independently. Let X € I'; be a node where the
s-th stimulus is applied at time 7}, and let 7(X) and R(X)
be its last computed AT and RT, respectively. Then, T,
is assigned to T(X) if one of the following conditions is
fulfilled:

(TX) <RX) < T,) v (RX) < T, < T(X)). ®)

In the first condition, the calculation for the present acti-
vation of X has not yet begun and that is the reason why
T(X) < R(X). In that case, the solution 7(X) is replaced if
T, > R(X), indicating that at T, the node has already recov-
ered from the previous activation and is ready to be activated
again. In the second condition, R(X) < T(X), i.e., the calcu-
lation for the present activation for X has already begun and
it is still converging. The solution is updated if R(X) < T,
signifying that the node X is ready to be activated at T, and
T, < T(X), which means T is a better (i.e., earlier) solu-
tion. The nodes with replaced ATs are removed from L,
while their neighbors are added to L. To faithfully represent
occurrence of unidirectional propagation, nodes that are
successfully activated by a given stimulus cannot continue
to activate nodes where an activation by this stimulus was
unsuccessful before. Additionally, a delay of 5 ms in RT was
added to nodes in areas that were unsuccessfully stimulated.

List iteration

The variable ¢, ;i represents the minimum AT among
the nodes in L reached at the end of the previous DREAM
cycle. When L is not empty after computing the first stimu-
1uSs, 7in inie 18 1nitialized to O during the first call of cycFIM

in the first cycle, or adjusted to the value of 7, ;, calculated
at the end of step A,_, if n > 1. Additionally, 7, ;; S€Tves
as a reference to be compared to ¢;,, the smallest AT in L
at the end of the previous cycFIM cycle. L undergoes mul-
tiple iterations until #,;, > #,: :0i + Tipe- Then, the function
COHERENCEY() (see next subsection) is applied to each
node in L. Let X be the node that is being revised and
T(X) and R(X) its last computed AT and RT, respectively.
Then, a new solution ¢ is computed by COHERENCE(X)
to potentially replace T(X). If the difference between the
old and new AT is smaller than the threshold &, or either
the old or the new solution is infinite, then X is removed
from L. To avoid that a node is activated twice in the same
iteration of the list, an upper bound 7, is applied to the
difference between the maximum AT of the nodes in L
and ;. If a certain node has a calculated AT above the
maximum allowed AT for a given iteration of cycFIM, i.e.,
4 > tmininit T Tine T Tmax- then this node will not be removed
from L and its neighbors will not be visited yet.

When a node is removed from L, its neighbors that are
not in L are revised as well. Let Xyg be a neighbor of X
with last computed AT and RT being 7(Xyg) and R(Xyg),
respectively. If Xyg is not in L and a new solution gyg
is computed, one of the following conditions (similar
to those for stimuli) must be fulfilled for gy to replace

T(Xng):

(T(Xnp) < RXnp) < gng) V (RXng) < gng < TXnp)).

®
In the first condition, the calculation for the present acti-
vation of Xyg has not yet begun. In that case, the solution
is replaced (i.e., gy is assigned as a new tentative AT for
Xyp) if gng > R(Xnp). meaning that the node has recov-
ered at gyg. In the second condition, R(Xxg) < T(Xyp)-
i.e., calculation of the present activation has already started
for Xy and is still converging. The solution is replaced
if RTy = < gng < T(Xyp), which means that the node is
ready to be activated at gyg and gyg is a better (i.e., ear-
lier) solution. If g\p satisfies either of these two conditions
and replaces T(Xyg), then Xy is added to the list of active
nodes, L. Regardless of the previous conditions, if gyg is
infinite or smaller than ¢, Xy will not be added to L. When
all the nodes in L and the neighbors of converging nodes
have been revised, ¢, is recalculated to decide whether
further iterations are required in step A,. To reduce the
computational cost and to prevent nodes from indefinitely
exiting and returning to L or iterating inside of L, 2 limits
were defined: y; and p; . The parameter y;, represents the
maximum number of list iterations per node per entry into
L, and H,» denotes the maximum number of returns to L per
node per activation.
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Algorithm 2 Cyclical Fast Iterative Method within the n-th DREAM cycle

ifL=0
Compute boundary conditions
end if
if n=20
tmin,init = 0
else
tmiminit = tmin
end if
repeat
Compute boundary conditions
for X € L
p—T(X)
g — COHERENCE(X)
T(X)<q
if [p—gql<e

for adjacent neighbor Xnp of X

if Xyg is not in L
p — T(XxB)

gNB COHERENCE(XNB)
if (p < R(XNB) < gNB V R(XNB) <gnB < p) VAN (t <gnB < OO)

T(XNB) < gNB
add XNB to L
end if
end if
end for
remove X from L
end if
end for
tmin = min{7T(X)|X € L}
until L = OR (tmin

- tmin,init) 2 Tinc

Coherence between conduction velocity, diastolic inter-
val and activation time

The local solver for the DREAM seeks to calculate the
AT for each node. Unlike the standard eikonal model, the
DREAM accounts for the CV restitution at each node in
each activation cycle instead of a fixed CV. To implement
CV restitution, the function UPDATE() in Algorithm 1 is
replaced by a new function COHERENCE() in Algorithm 2.
The CV restitution is incorporated in the model by providing
a template restitution curve, for example calculated from
monodomain model simulations or inferred from clinical
data [7]. To integrate this CV restitution phenomenon into
the DREAM, the feedback loop among AT, CV, and DI must
be acknowledged. This feedback loop means that calculating
the AT depends on the CV, which relies on the DI, which in
turn is influenced by the AT.

When applying the COHERENCE() function to a given
node X, the reference CV of X, the RT of X from the previous
activation, and ATs of the neighboring nodes in the present
activation are known. The reference CV corresponds to the
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maximum possible CV, i.e. v(X) when the DI is sufficiently
long and CV becomes unaffected by restitution effects. Res-
titution curves with biphasic behavior, where the maximum
CV is reached at intermediate DIs instead of long DlIs, are
excluded from this method. If an initial AT is estimated using
the highest value of the reference CV, this AT will have the
smallest (i.e., earliest) possible value, resulting in the shortest
possible DI. If this DI is short, when applying the restitution
curve, this leads to a slower CV than the reference CV and
therefore in a higher (i.e., later) AT than the initially estimated
AT. To calculate a tentative AT for X, the COHERENCE()
function is utilized to iteratively recalculate CV, DI, and AT
until a stable state of coherence between these 3 variables is
reached. Note that these temporary values of the 3 variables
are referring to the present activation of X. These 3 values
are recalculated in each COHERENCE() iteration (not to be
confused with list iteration see Fig. 1b). Each application of
the local solver involves one or more COHERENCE)() itera-
tions, starting with the reference CV and ending with a tenta-
tive value for 7(X) to be used in cycFIM. Additionally, the
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(b) (©)

Fig.2 COHERENCE() call (a)
with 3 iterations. Numbers y
indicate the sequence in which
activation times (ATs), diastolic
intervals (DIs), and conduction
velocities (CVs) are calculated.
Red circles correspond to
temporary values and the green
circle indicates the final output.
a Function F mapping CV to
AT. The vertical red line marks
the initial input of COHER- L
ENCE() (i.e., vt = V() on the
horizontal axis. The green red
line marks the final output of
COHERENCE() (i.e, F(v;)) on
the vertical axis, b Function G
mapping AT to DI, ¢ Func-
tion H mapping DI to CV, d
Zoom-in of the boxed area in c,
illustrating temporary DI and
CV values (color figure online)
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term CV can refer to the speed of the wavefront itself, the
longitudinal CV when the wavefront moves in the preferential
cardiomyocyte orientation, or the transversal CV when the
wavefront moves perpendicularly to this orientation. Although
the COHERENCE() function utilizes the longitudinal CV (i.e.,
v,(X)) for its computation and equilibrium is reached among
AT, DI, and longitudinal CV, this equilibrium also extends to
the wavefront’s CV.

COHERENCEY() calculates the tentative AT of X using the
functions F, G and H. Each of these functions also depends on
X. To simplify notation, X as an argument of these functions
will be omitted. Let F' : R,5 — R, U {0} be the function
that computes the AT from the CV:

F(v*) =r*, (10)

where v* is a temporary value for v;(X) and ¢* is a tempo-
rary solution to the eikonal equation (Eq. 3) at node X € Q
providing a tentative AT for this node. To solve the eikonal
equation, Eq. 6 is used to collect all tentative candidates for
t*. The function F is similar to the UPDATE() function of
FIM but considers additional conditions. Propagation block
can occur in cycFIM, implying that v = 0, thus F(0) = co.
On the other hand, when taking into account the neighboring
nodes Y and Z for Eq. 6, the triangle XYZ is not considered if
R(Y) > T(Y) or R(Z) > T(Z). This implies that the ATs for

Activation time Diastolic interval

these nodes are not yet computed for the present activation
cycle and, therefore, must be excluded from the calculation
of t*. Figure 2a shows a schematic representation of function
F()’s morphology.

Now, let G : R,y U {oo} — R, U {oo} be the function
that computes the DI from ¢*:

G =d" =t - R(X), arn

where R(X) is the RT of node X from the previous activa-
tion cycle and d* is a temporary value for DI in the present
activation cycle. Figure 2b shows a schematic representation
of function G()’s morphology.

Finally, let H : R, U {oo} = R, be the function that
computes the new temporary CV v* from the temporary DI
d*:

N —%(dwc)) e
H(d*) = v* — Vref (1 p e ]fd > 9, (12)
0 ifd" <6.

Here, v, represents the reference CV, while p, , 6, and y
are predefined parameters chosen to fit restitution curves
for example obtained from monodomain simulations. The
formulation in Eq. 12 allows expressing the steepness of the
restitution curve in terms of p, the shift in the x-axis (i.e., DI)
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in « and the shortest propagating DI in 8. Figure 2c shows
a schematic representation of function H()’s morphology.

A recursive sequence (v;) can be defined using the com-
position of the functions H, G and F:

Vo = Vref>

Vppr = HGF(v,))). 13)

The COHERENCE() function approximates the AT that cor-
responds to the CV value which is the limit of the sequence
defined in Eq. 13:

COHERENCE(X) ~ F(lim v,). (14)

Since we cannot calculate this limit analytically, the function
is defined as:

COHERENCE(X) = F(v,,) such that |F(v,,) — F(v,,_})I
< € OR m = pcyR,

as)
where picygr 1s the maximum number of COHERENCE()
iterations allowed per call. Figure 2 illustrates an example
of one COHERENCEY() call with 3 iterations. The input and
first element of the sequence is v, = v,, and the final output
is F(v;), representing the AT calculated with v, correspond-
ing to the CV obtained in the third iteration. This ensures
that |F(v5) — F(v,)| < €. The function typically converges
quickly, often within 2 iterations, but an extreme case close
to propagation failure was chosen in the example to demon-
strate the convergence process more clearly. Moreover, the
example was chosen to ensure that the function F has its sim-
plest form, t* = a + »ﬁ’ where a is the minimum AT among

the neighbors of X, and b is the minimum possible value for
(X}YTD_I}—(K)% in Eq. 6 among all triangles in 7 contain-

ing X and all 4 € [0, 1] (Fig. 2a). If D is the identity matrix
(i-e, in the isotropic case), then b is the minimum Euclidean
distance between X and the perimeter of the polygon formed
from the union of all triangles containing X. In this exam-
ple, the function F' is monotonically decreasing, continu-
ous, and differentiable within (0, +c0). For this to occur, the
neighboring node with the minimum AT must belong to the
triangle where the minimum (X}YTD_I}—(K)% is found. In
the general case where this condition is not necessarily met,
the function F remains monotonous and continuous but may
not be differentiable everywhere. Additionally, F(v*) tends to
+o0 as v* approaches 0, and F(v*) tends to a as v* approaches
+oo for any situation.

The proof of convergence of the sequence described in
Eq. 13 is based on the idea that the sequence can be parti-
tioned into 2 converging subsequences: one increasing (v,,,)
and the other decreasing (v,,,,). Furthermore, these subse-
quences are bounded between v, and v,, and the difference
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Fig.3 Iy fitted to the diffusion current obtained from a pure mono-
domain simulation of a planar wave on a high-resolution mesh. A tri-
ple Gaussian was used to approximate the diffusion current. Adapted
from [19]

Table 2 Diffusion parameters Iy for the models by Courtemanche
et al., Bueno-Orovio et al., and Mitchell and Schaeffer used in the
DREAM simulations, corresponding to each of the three Gaussian
indices i

Parameter i Courtemanche et al./ Mitch-
Bueno-Orovio et al ell and
Schaeffer
a; (LA /cm?) 1 149.5 17.59
2 41.2 —228.91
3 —-192.2 218.50
p; (ms) 1 2.383 4.92
2 2.07 5.19
3 2.56 5.08
7; (ms) 1 0.22 0.49
2 0.56 0.92
3 0.29 0.92

between v, and v, ; diminishes as n approaches infinity. In
some cases, the sequence might need to take values of the
DI below the parameter 6 before converging. Therefore,
when computing COHERENCE(), DI values below 6 are
allowed as long as the final DI is larger than 6, otherwise
COHERENCE(X) = oo.

2.3.2 Approximation of the diffusion current

To allow for V, calculation in coarse meshes, a current /g
was introduced following the idea of the RE model [10]. In
step B,,, 14 1s computed by approximating V - (6,,VV,,)) in
Eq. 1. A similar approach is used in the eikonal model by
Gassa et al. [14]. In the DREAM, I, is defined as a triple
Gaussian function:
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3 2
V(@ VVa)|, & Lan(0) = Y, ayexp <_(’T(y#)
i=1 i
(16)
where the parameters «;, §; and, y; are optimized to reduce
the difference between I and the diffusion current specific
to the used ionic model. A high-resolution mesh (i.e., aver-
age edge length 200 pm) was used to run a monodomain
simulation in the optimization process. A planar wavefront
was simulated by stimulating at the mesh border. The con-
ductivities were adjusted to obtain a CV of 1000 mm/s. The
diffusion current was calculated at a node located far from
the boundaries and the stimulus location. /4 serves as a
trigger for an AP, regardless of whether the activation is ini-
tiated directly by a stimulus or through diffusion from neigh-
boring nodes. Figure 3 presents the fit of the triple Gaussian
model, using the parameters listed in Table 2, to the diffu-
sion current obtained from the monodomain simulation as
described above. Since the ionic models by Courtemanche
et al. and Bueno-Orovio et al. yield AP and diffusion cur-
rents with similar morphology, the same set of parameters
was used for /4 with both models.

2.3.3 Approximated reaction diffusion model

After the n-th cycFIM cycle is finished and /4 is computed,
the approximated RD model will run (i.e., step C,). The
time interval for this step is: [#,;, inie — Ts» MIN(7 0 — T, feng)]
ensuring that the nodes that trigger an AP during this step
have converged ATs. The diffusion term in the parabolic

equation of the RD system is replaced by

oV, -
ﬂcmw = Idiff - ﬁIion(Vm’ ’7) (17)
In this case, the diffusion current is approximated by /4 and
only the reaction (ODE) part of the RD system remains to
be solved. Solving this ODE system independently for each
node in Q7 will yield the values for V,, within the interval
[tmin,init — Tss Inin(tmin — Tss tend)]'

2.3.4 ldentification of repolarization times

Before the (n + 1)-th cycFIM cycle starts, it is important to
identify which nodes and when are available for reactivation.
Ideally, V,, of every activated node would reach its RT dur-
ing step C,,. However, recently activated nodes will not have
recovered at the end of this RD iteration (i.e., at#,;, — 7).
The aim in step D,, is to compute RTs of these nodes. To
obtain these times, the ODEs of the single cell models are
integrated in time until the threshold —40 mV is crossed:

v,
C =

mTq —Lion (Vi ). (18)

This process is implemented for each node that was depolar-
ized but not yet repolarized in the previous step. The initial
conditions are defined by the state variables att =1, ; — 7,
for each node. After the RT is calculated, V,, and 7 are reset
to the values they had at¢ = ¢, — 7.

2.3.5 Considerations for empty list scenarios

Additional considerations are required if L is empty but not
all the boundary conditions have been computed. Let 7 be
the time when the next stimulus will be applied, then V,, is
computed until # = T, — 7,. After identifying the RTs, the
stimulus at 7, must be computed before iterating cycFIM
again as detailed in Sect. 2.3.1. If L is not empty after com-
puting the stimulus, cycFIM iterates until ¢,;, > T + 7.
Given that the list was empty at the end of the previous
cycle, it is no longer feasible to establish #,;, ;... Hence, T
is employed as the reference ,;, ;,;; to monitor the incre-
ment of #;,. If all nodes in I', (i.e., the region in which the
s-th stimulus is applied) are in the refractory period at time
T, the list will remain empty. In that case, V,, is computed
until t =T | — 7,, where T, is the time of the (s + 1)-th
stimulus. If necessary, subsequent boundary conditions (i.e.,
stimuli applied at times 7, ..., T, ) are computed until the

list L gain nodes or ¢ = .

3 Benchmarking

To assess the DREAM, it was compared with the mono-
domain model in 3 numerical experiments. First, multiple
simulations were run on a 2D rectangular tissue mesh, each
with 2 consecutive planar wavefronts per pacing cycle length
(PCL) (i.e., interval between wavefronts). The PCL was var-
ied across simulations to analyze CV restitution curves. In
the second numercial experiment, functional reentry was
examined in absence of structural abnormalities, i.e. their
occurrence attributed solely to slow CVs and short ERPs.
These reentries were induced using an S1-S2 protocol in
a 2D square mesh. In the third numerical experiment, the
pacing at the end of the effective refractory period (PEERP)
protocol was used to investigate reentry in a realistic geom-
etry of a left atrium [29]. These 3 numerical experiments
were conducted using meshes composed of triangular ele-
ments with 4 different resolutions. The average edge lengths
were 200, 400, 800, and 1600 pum. To facilitate the com-
parison between different meshes, each node in the lower
resolution meshes was mapped to a corresponding node
at the same position in the higher resolution meshes. To
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Table 3 Conduction velocity
restitution parameters for

Courtemanche et al.

Bueno-Orovio et al. Mitchell and Schaeffer

function H() in healthy and Parameter Healthy AF Healthy AF Healthy AF
atrial fibrillation (AF) cases for
ionic models by: Courtemanche (=) 811 100,000 55.13 100,000 441 2.90
etal., Bueno-Orovio et al., and K (ms) 53 116.41 138.14 118.16 161.47 151.75
Mitchell and Schaeffer, used in g () 137 66.28 139.73 70.64 129.30 103.12
the DREAM simulations

w (ms) 159 159 159 159 159 159

execute monodomain simulations, tissue conductivities were
adjusted to match the CV values desired for each scenario
[30, 31]. Anisotropy ratios were set to 4 and 2 for tissue
conductivity and CV respectively. The Courtemanche et al.
model with standard parameters was used to represent the
healthy ionic behavior of atrial cardiomyocytes in the three
numerical experiments [32]. On the other hand, atrial fibril-
lation (AF) was modeled by modifying ion channel conduct-
ances of the Courtemanche et al. model [33]. To additionally
assess the compatibility of the DREAM with different ionic
models, the first numerical experiment (i.e., 2D rectangu-
lar tissue mesh) was also computed utilizing the simplified
ionic models of Bueno-Orovio et al. [34] and Mitchell and
Schaeffer [35]. These ionic models were originally devel-
oped for ventricles. Therefore, their parameters were adapted
for atrial tissue to reflect cellular behavior of healthy and
AF remodeled cardiomyocytes. The Bueno-Orovio et al.
model was modified as proposed by Lenk et al. [36] provid-
ing parameter sets for both conditions. The Mitchell and
Schaeffer ionic model was adjusted according to Gassa et al.
[14] for healthy atrial cardiomyocytes and case 3 in Corrado
et al. [37] for AF remodeled cardiomyocytes.

CV restitution curve parameters p, x, and 6 (Eq. 12)
were tuned to align the CV restitution curve of the DREAM
with either healthy or AF in monodomain simulations. This
adjustment was based on the CV restitution curves obtained
from monodomain simulations in a mesh with an average
edge length of 200 pm (i.e., high resolution mesh) with 2
planar wavefronts resulting in the parameters in Table 3.

The Crank—Nicolson method was used to solve the
parabolic equation of the monodomain model. Moreover,
the methods described in Sect. 2.3 were used to solve the
eikonal equation and approximate the diffusion current in
the DREAM. The ODE:s of the ionic model were solved
using the forward Euler method for V,, and the Rush-Larsen
method for the gating variables in both the monodomain
model and the DREAM.

Sheet geometries were created using Gmsh [38] and pro-
cessed with ParaView [39], Meshmixer [40] and MeshLab
[41]. openCARP [30] was used to run simulations with both
the DREAM and monodomain model. Plots were generated
using the Python library matplotlib [42].
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Specifically, the optimization of Iy parameters was
performed using MATLAB, utilizing the curve fitting tool-
box. The optimization of the CV restitution parameters was
conducted in Python, employing the minimize function
from SciPy’s optimize package [43]. In both optimization
processes, the root mean square error was used as a loss
function.

3.1 Multiple stimulations and CV restitution

To assess the DREAM’s ability to faithfully replicate CV
restitution, we initially examined its capacity to simulate
paced beats across a range of frequencies specific for each
condition. These experiments were conducted in a rectan-
gular mesh of 50 mm X 10 mm X 0 mm, with the centroid
of the mesh located at (0 pm, O pm, O pm) for each of the 4
resolutions. Preferential cardiomyocyte orientation was set
as constant everywhere in the geometry and aligned with
the x-axis (i.e., 7= (1,0, 0)). Each experiment involved pre-
pacing at a single-cell level for 50 activation cycles at a cycle
length of 250 ms. For monodomain simulations, conductivi-
ties were tuned to match the target CV of 1000 mm/s.

In this numerical experiment, 2 planar wavefronts were
generated for each PCL by stimulating the left side of the
mesh with different frequencies. For monodomain simula-
tions, the stimulus was applied as a transmembrane current
density with an amplitude of 300 pA/cm? for a duration of
2 ms. For the healthy atrial electrophysiology condition
with the ionic model of Courtemanche et al., the PCL was
decreased in 50 ms intervals from 950 to 400 ms, then in
10 ms intervals from 390 to 320 ms, and finally in 1 ms
intervals from 320 to 318 ms. The different intervals were
chosen to cover critical changes in electrophysiological
behavior, as CV and ERP drastically decrease towards the
last propagating PCL. For the ionic models of Bueno-Orovio
et al. and Mitchell and Schaeffer, also shorter PCLs propa-
gated on the mesh. Therefore, the PCL was further decreased
in 1 ms intervals to 250 ms. In the AF condition, the PCL
was decreased for all ionic models from 950 ms to 200 ms
in 50 ms intervals, and from 199 to 118 ms in 1 ms intervals.
The considered PCL values varied across conditions due to
differences in the restitution curves, requiring a range of
PCL values tailored to each condition.
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After the experiments, the CV restitution curves were
determined. To calculate the CV, the ATs of the mesh points
(—15,000 pm, O pm, O pm) and (15, 000 pm, O pm, O pm) were
used. CV was normalized over v,;. The ERP was defined as
the time difference between ATs and RTs from the second
activation cycle plus 8 from Eq. 12 (i.e., shortest propagat-
ing DI).

3.2 Reentryin 2D sheets

To evaluate the impact of mesh resolution on reentry prop-
erties in both models, a 2D sheet geometry was subjected
to S1-S2 protocols. The geometry was represented by
squared unstructured meshes of size 51.2 mm X 51.2 mm X
0 mm, with the centroid of the mesh located at (25, 600 pm,
25,600 pm, 0 pm) for each of the 4 resolutions. Preferential
cardiomyocyte orientation was set as constant everywhere in
the geometry and aligned with the x-axis (i.e., 7= (1,0,0)).
Experiments were conducted for homogeneous reference CV
values of 200, 600 and 1000 mm/s. The Courtemanche et al.
ionic model was pre-paced at 250 ms PCL for 50 activa-
tion cycles. The tissue was pre-paced 5 times with planar
stimuli (S1) from the left border of the sheet. Subsequently,
a single cross-field stimulus (S2) was applied in the bot-
tom left quadrant at various times to induce reentry. After
each simulation, it was assessed whether S2 was applied
too early and got completely blocked, applied too late and
propagated to all directions without any block, or if unidi-
rectional block occurred as a prerequisite to induce reentry.
Reentry duration was defined as the period from S2 appli-
cation to the last AT in the simulation. AS was defined as
the difference between the times when S2 and the last S1
were applied. The vulnerable window duration was deter-
mined as the difference between the earliest and latest AS
values that induced reentry. The sample frequency for AS
values was 1 ms. The mean and standard deviation of the
local reentry cycle length were calculated at 4 nodes, each
located at the same coordinates in all 4 mesh resolutions:
P = (12,800 pm, 25, 600 pm, O pm), Py = (25,600 pm,
12,800 pm, O pm), Py = (38400 pm, 25,600 pm, O pm),
and Pup = (25,600 pm, 38400 pm, O pm). To calculate the
local reentry cycle length, reentries were induced using
DREAM and monodomain simulations with a reference
conduction velocity (CV) of 200 mm/s and a stimulus inter-
val (AS) of 225 ms in the 4 resolutions. The local reentry
cycle length was defined as the difference between the ATs
corresponding to 2 consecutive activation cycles of the same
node after reentry was induced. To evaluate the long-term
stability beyond 1 s of reentry, the simulation was run until
the total simulated time reached 60 s. For each of the 438
cycles within this period, the mean and standard deviation
of the local cycle length across all nodes were calculated.

3.3 Reentry in the left atrium

The PEERP method [29] was used to induce reentries in a
realistic human left atrial geometry from a publicly avail-
able dataset [44]. This realistic geometry is derived from
an instance of a statistical shape model [45]. Preferential
cardiomyocyte orientation was assigned using a rule-based
method [46]. The endocardial surface was extracted and
remeshed at 4 different resolutions to achieve the desired
average edge lengths. To benchmark the DREAM on coarse
meshes, the adaptations detailed below were introduced; the
remaining parameters were sourced from Azzolin et al. [29].
Modifications were applied equally to both DREAM and
monodomain experiments. From the coarsest mesh (1600 pm
average edge length), 21 points that were evenly spaced
approximately 2 cm apart were selected. Since the lower
resolution meshes were embedded in the higher resolution
ones, each of the 21 points were located at positions where
each of the 4 meshes had a corresponding node. The refer-
ence CV was reduced to 200 mm/s, and the conductances
of the ionic model were adapted to represent AF to increase
the likelihood of inducing reentry without the need for an
additional arrhythmogenic substrate. Pre-pacing on single
cell and tissue level was performed for 50 and 5 activation
cycles, respectively, at a PCL of 250 ms. From the APs trig-
gered by the last tissue pre-pacing, the RT was calculated
and the ERP was defined as RT+60. Afterwards, the tissue
was stimulated at the end of the ERP to try to induce reentry
at each of the 21 chosen locations. Stimulation comprised
all nodes within a 5 mm-radius sphere centered at this loca-
tion. Stimulations were stopped if a reentry was induced or
the maximum number of 4 stimuli per location was reached.

3.4 Computing times

The simulations were executed on a 2023 MacBook Pro,
equipped with a 11-Core Apple M3 Pro processor and 16 GB
6.4 GHz LPDDRS5 memory. Computing times were bench-
marked in 2 experiments across 4 different resolutions using
the AF remodeled ionic model of Courtemanche et al. and a
CV of 200 mm/s. In the first experiment, one single planar
wavefront was stimulated in each of the 2D sheets described
in Sect. 3.2. The computing time was measured from the
onset of the stimulus until 500 ms of simulated time there-
after. The selected duration encompassed the repolarization
phases of all nodes. In the second experiment, a reentry was
induced using the S1-S2 protocol presented in Sect. 3.2. The
computing time was measured starting 200 ms of simulated
time after delivering the S2 stimulus and ending 500 ms of
simulated time after delivering the S2 stimulus, i.e., in the
interval [S24+200 ms, S2+500 ms].
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Fig.4 Restitution curves for
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4 Results meshes with an average edge length 200 pm were used as

4.1 Multiple stimulations and CV restitution

Figure 4 shows the comparison of CV and ERP restitution
curves between the DREAM and monodomain models at
resolutions of 200, 400, 800, and 1600 um. The analysis
reveals distinct characteristics for both the healthy and AF
cases. Specifically, the ionic model of Courtemanche et al.
was used for the healthy and AF remodeled case, whereas
the AF remodeled case employed the ionic models of
Bueno-Orovio et al. and Mitchell and Schaeffer. Table 4
shows the root mean square error (RMSE) of CV and ERP
restitution curves for all considered ionic models with both
healthy and AF conditions. Monodomain simulations on
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reference solution to calculate RMSE. Addressing simula-
tions with the Courtemanche et al. ionic model, DREAM
and monodomain model exhibited similar steepness across
all resolutions for the healthy case in both restitution curves
(Fig. 4a, b), with RMSEs below 8.85 mm/s and 1.52 ms
respectively. In the AF case (Fig. 4c, d), both propagation
models maintained similar steepness and shortest propagat-
ing DI across resolutions. However, the DREAM notably
did not represent the temporary raise of CV during interme-
diate DIs, while the monodomain model showed varying
levels of biphasic restitution across resolutions, with lower
resolutions having a higher maximum CV at intermediate
DIs. The monodomain model demonstrated smaller last
propagating cycle lengths, indicating the shortest possible
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Table 4 Root mean square
error of conduction velocity
(CV) restitution and effective
refractory period (ERP)
restitution for healthy and atrial
fibrillation (AF) conditions,

in DREAM and monodomain
model with Courtemanche

et al., Bueno-Orovio et al.,

and Mitchell and Schaeffer
embedded ionic models at
various resolutions indicated by
average edge length, compared
to the restitution obtained with
the monodomain model at

200 pm

Fig.5 Reentry duration at

a conduction velocity of

200 mm/s for different mesh
resolutions. Average edge
length: a 200 pm, b 400 pm, ¢
800 pm, d 1600 pm. Monodo-
main simulations for coarser
resolutions are not shown due
to propagation failure in ¢ and
d. The horizontal axis shows
AS (time difference between S2
and S1). The vertical axis shows
reentry duration

DIs before propagating failure occurred. A more discernible
difference arose in the CV resulting from each propagation
model at this minimal DI. The DREAM demonstrated a

CV (mm/s) ERP (ms)

Ionic model Propagation model ~ Resolution (nm)  Healthy  AF Healthy AF
Courtemache et al. DREAM 200 8.85 7.19 1.52 2.39
400 8.74 7.14 1.52 2.39
800 8.47 7.14 1.50 2.39
1600 8.01 7.26 1.49 2.38
Monodomain® 200 0.00 0.00 0.00 0.00
400 0.63 2.60 0.36 0.09
800 5.88 5.17 0.25 0.46

1600 () ) =) )
Bueno-Orovio et al. DREAM 200 7.21 1595 1.03 1.11
400 6.62 13.60  1.09 1.12
800 6.48 1149 1.02 1.12
1600 7.07 12.08  1.05 1.17
Monodomain® 200 0.00 0.00 0.00 0.00
400 0.98 0.30 0.49 0.08
800 14.36 4.13 1.53 0.18

1600 ) ) =) )
Mitchell and Schaeffer =~ DREAM 200 17.36 10.82  7.09 6.38
400 18.21 8.01 7.21 6.44
800 17.65 7.03 7.22 6.46
1600 19.28 7.76 7.24 6.46
Monodomain® 200 0.00 0.00 0.00 0.00
400 2.80 0.30 0.54 0.03
800 2.20 5.33 0.52 0.04

1600 ) ) =) )

#Propagation failure at 1600 pm average edge length

_* DREAM
1t Monodomain
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higher minimum CV compared to the monodomain model
(Fig. 4c). The ranges of both restitution curves obtained with
DREAM and monodomain model for the Bueno-Orovio
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et al. ionic model resemble those for the Courtemanche et al.
ionic model. The CV and ERP restitution curves (shown for
the AF case in Fig. 4e, f) showed similar steepness. Similar
to simulations with the DREAM and Courtemanche et al.,
the biphasic CV restitution obtained with the monodomain
model and Bueno-Orovio et al. was not reproduced with the
DREAM and Bueno-Orovio et al. The restitution curves for
the ionic model of Mitchell and Schaeffer (shown for the
AF remodeled case in Fig. 4g) and Fig. 4h) showed higher
last propagating cycle lengths for the DREAM compared to
the monodomain model. Pacing cycle length and DI for the
last possible propagation were about 173 ms and 107 ms,
respectively, longer for the DREAM compared to the mono-
domain models. Despite the absence of biphasic behavior
in the monodomain CV restitution curve, the RMSE values
were consistently higher across resolutions for the DREAM
compared to Courtemanche et al. ionic model. Monodomain
simulations resulted in smaller errors for both restitution
curves under both conditions for resolutions without propa-
gation failure. Moreover, DREAM simulations showed a ten-
dency towards higher errors for ionic models with reduced
levels of detail. Simulations across different resolutions
for the DREAM showed similar RMSEs for each condi-
tion and ionic model. For instance, differences in RMSEs
among resolutions in DREAM simulations were smaller
than 5.46 mm/s and 0.5 ms for the CV and ERP restitution
curves respectively per condition and ionic model.

4.2 Reentryin 2D sheets

Figure 5 shows the reentry duration for AS values within
the vulnerable window for each of the resolutions at a CV

of 200 mm/s. The DREAM produced similar results across
all resolutions. In contrast, the monodomain results failed to
propagate during pre-pacing for coarser resolutions (800 and
1600 pm average edge length). For higher resolutions (200
and 400 pm average edge length), both models showed reen-
tries that lasted 1000 ms (i.e., until the simulation reached
t.,q) for most of the tested AS values. However, monodo-
main simulations produced a few reentries that stopped
before 1000 ms for less than 10 AS values sparsely distrib-
uted across the vulnerable window. Moreover, vulnerable
windows were shorter for the monodomain model mainly
because it did not induce reentries for the longest AS values.
For higher CVs, the monodomain model produced reentries
that terminated before the end of the simulation, whereas
simulations with the DREAM yielded a unidirectional block

Table5 Mean + standard deviation of the local reentry cycle length
in ms at 4 points P, across various mesh resolutions, indicated in
average edge lengths in pm, for both the DREAM and monodomain
models

Propagation  Resolution P, P iown Piigne Py,
model
DREAM 200 154 £45 137+ 11 151 +£28 161 +45
400 156 +£46 138 +10 153 +28 163 +44
800 158 £40 143+9 154+22 164 +38
1600 157 £33 149 +£10 154 +20 162 +32
Monodo- 200 136 £28 157 +26 152+28 146 +17
main® 400 162415 174 £24 174+ 19 168 + 24
800 ) ) ) )

1600 () ) () -

*Propagation failure at 800 and 1600 pm

Fig.6 a Vulnerable window at (@) (b) ()
different mesh resolutions for 2120 120 120
a conduction velocity (CV) of £ 100 100 100
200 mm/s, b 600 mm/s and ¢ =
1000 mm/s. d Reentry dura- -g 80 80 80
tion (meanzstd) for a CV of 2 60l 60 60
200 mm/s, e 600 mm/s, f and %
1000 mm/s g 404 40 40
Q
o
E 20 20 20
0- 0 0
200 400 800 1600 200 400 800 1600 200 400 800 1600
(d) 1200 (e) 1200 ®
" = DREAM
£ 1000 1000 1000 mms Monodomain
o
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8
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G
E’ 4004 400 400
o
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but did not reactivate the nodes where the S2 stimulus was
applied.

Figure 6a—c show the vulnerable window duration for
the 2 models at each of the 4 resolutions at different ref-
erence CVs. The vulnerable window duration was defined
as the time between the earliest and the latest S2 time that
induced a unidirectional block. Monodomain simulations on
the mesh with an average edge length of 200 pm were taken
as ground truth. The DREAM kept a stable error as mesh
resolution decrease, performing equally even at the coarsest
resolution of 1600 pm. Vulnerable windows were longer for
all CVs and all the resolutions in the DREAM simulations.
These differences in vulnerable window duration between
DREAM simulations in all resolutions and monodomain
simulation at finer resolutions did not increase in simula-
tions with higher reference CV. Figure 6d—f show the reen-
try duration (mean =+ std) for the same reference CVs. For
the slowest CV both models produced longer reentries at
most of AS values. In faster CV, both models resulted in
shorter durations for all resolutions. The DREAM simula-
tions resulted in reentry duration errors across all resolutions
that increased with higher CVs. The discrepancy is grounded

(a)

1600

Resolutions in pm

HANNHNONONO = NM
e

Stimulated poin

O~ 0NO
e = NN

1

mn
—
\4

Fig.7 Inducing points identified by the PEERP protocol. a Distribu-
tion of points that induced reentry in experiments with the DREAM,
the monodomain model or both at different mesh resolutions (aver-
age edge length of 200, 400, 800, or 1600 pm). Each row represents

Fig.8 Left atrium posterior
view of transmembrane volt-
age maps of induced reentries
at different time points after
S2, stimulated at a point close
to the roof. a Monodomain
model with 200 pm average
edge length, b DREAM with
1600 pm average edge length

$2+20 ms

in the fact that the monodomain simulations produced self-
terminated shorter reentries with a few turns within the 2D
sheet at higher reference CV in this particular experiment.
The DREAM simulations, on the other hand, resulted in
propagation patterns with unidirectional blocks that were
incapable of completing a full turn due to the lack of source-
sink mismatch representation.

Table 5 presents the mean and standard deviation of local
reentry cycle lengths observed in DREAM and monodomain
simulations across various resolutions at nodes Py, Pyoun»
Pign> and P,. In monodomain simulations with average
edge lengths of 200 pm, mean local reentry cycle lengths
ranged from 136 to 157 ms, with standard deviations varying
from 17 to 28 ms. DREAM simulations consistently showed
comparable mean and standard deviation values across dif-
ferent resolutions, ranging from 137 to 164 ms and from 9
to 46 ms, respectively. Notably, most of mean local reen-
try cycle lengths from DREAM simulations were closer to
those observed in monodomain simulations at 200 pm than
in simulations at 400 pm.

In the long-term stability analysis, the qualitative behav-
ior of the reentry remained stable beyond the initial 1000 ms,
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an experiment, and each column represents one of the 21 stimulated
points. The square’s color indicates points that produced reentry with
the DREAM, monodomain model, or both. b Number of inducing
points per model and resolution (color figure online)
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Fig.9 Left atrium posterolateral
view of transmembrane voltage
maps of induced reentries at
different time points after S2,
stimulated at a point near the
mitral valve. a Monodomain
model with 200 pm average
edge length, b DREAM with
1600 pm average edge length

S2+20 ms

Table 6 Sensitivity and specificity for the DREAM and monodo-
main model at different mesh resolutions, expressed in average edge
length in pm, considering monodomain experiments at 200 pm as the
ground truth

Propagation model ~ Resolution  Sensitivity (%)  Specificity (%)
DREAM 200 47 100

400 41 100

800 41 75

1600 41 50
Monodomain® 200 100 100

400 94 75

800 ) )

1600 =) ()

*Propagation failure at 800 and 1600 pm

continuing consistently until the simulation reached 60 s.
However, after 13 s, small areas of the sheet began to show
artifacts and activation discordance with the rest of the sheet,
though this did not affect the overall behavior of the reentry.
The mean local cycle length across nodes decreased from
an initial value of 182 ms in the first cycle to 138 ms by
the seventh cycle, remaining steady around this value until

L A 4
L & 4

(a)
Vm in mV
16
(b)

-88

S2+87 ms S2+129 ms S2+298 ms

the 426th cycle, where it measured 137 ms. Similarly, the
standard deviation of the local cycle length dropped from
27.1 to 0.8 ms between the first and seventh cycles, but then
increased to 13 ms by the 426th cycle.

4.3 Reentry in the left atrium

Figure 7 shows the number of inducing points of the
21 stimulation points in the left atrium per experiment.
Monodomain experiments at higher resolutions (average
edge lengths 200 and 400 pm) showed the same number
of inducing points. On the other hand, monodomain simu-
lations failed to induce any reentry at lower resolutions
(average edge lengths 800 and 1600 pm) due to propaga-
tion failure. DREAM experiments showed a lower number
of inducing points compared to monodomain experiments.
However, DREAM experiments showed a similar amount
of inducing points across all resolutions. For some experi-
ments, both models showed similar mechanisms of reentry
at the same inducing point. For example, Fig. 8 shows
simulations in the same inducing point in which both the
DREAM and monodomain model produced a figure-of-
eight reentry. Despite this example showing the same

blonar wavefion, b reenry 250 @ 250 (b)
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£
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mechanism of reentry, the one induced by the DREAM
lasted longer time. Figure 9 shows an example where the
DREAM shows a figure-of-eight reentry while the mono-
domain model shows a spiral reentry. This difference arose
from the lack of source-sink mismatch representation in
the DREAM. In both cases, the reentries were sustained
for the full 1000 ms simulated. Table 6 provides sensitivity
and specificity of both models in the resolutions that did
not have propagation failure running the PEERP protocol.
Monodomain results at the highest resolution (i.e., aver-
age edge length of 200 pm) were used as ground truth.
DREAM simulations exhibited better specificity than sen-
sitivity, as most inducing points identified by the DREAM
were also found by the monodomain model, whereas not
all points found by the monodomain model were captured
by the DREAM. On the other hand, DREAM performance
was consistent across all resolutions, except for a signifi-
cant drop in specificity for the coarsest resolution (i.e.,
average edge length of 1600 pm) to 50%.

4.4 Computing times

Figure 10 illustrates the computing times that the DREAM
and monodomain model took for simulating a planar wave-
front and reentry across different mesh resolutions. The
proportion of computing time for the different steps of both
models remained consistent across resolutions. Therefore,
the detailed computing times for each step are mentioned
only for simulations on a mesh with an average edge length
of 200 pm. In both the planar wavefront and reentry experi-
ment, for all resolutions, simulations with the DREAM were
faster than those with the monodomain model. DREAM
simulations on coarser resolution meshes (1600 pm) were
122 times faster in the planar wavefront experiment and
approximately 87 times faster in the reentry experiment than
monodomain simulations on finer mesh resolutions (200 pm
).

In the DREAM simulations for the planar wavefront,
the majority of the computing time was spent solving the
ionic model equations (Fig. 1 step C), which took 83 s. The
second most time-consuming step was calculating recovery
times (Fig. 1 step D), which took 6 ms, followed by iterat-
ing the cycFIM (Fig. 1 step A), which took 5 s. Computing
14 (Fig. 1 step B) required 2.5 s. In the same scenario, the
monodomain model spent 80 s computing the ionic model
and 138 s solving the parabolic equation.

When simulating the reentry with the DREAM, the
majority of computing time was spent in step C, followed
by steps A, D, and B, taking 51, 22, 16, and 2 s respectively
(See Fig. 1). Given the significant role of diffusion currents
in reentries, the monodomain simulations devoted most of
their time to solving the parabolic equation (97 s), with only
51 s spent on computing the ionic current.

5 Discussion
5.1 Advantages and novel aspects of the DREAM

The DREAM benefits from the consistency of the eikonal
model across mesh resolutions. Across all experiments, it
was possible to obtain similar results with all tested resolu-
tions. Unlike the monodomain model that requires fine mesh
resolutions, hence more computational effort, the DREAM
yields similar results at lower resolutions. This characteristic
allows the DREAM to perform faster simulations.

Most of the eikonal models that have attempted to incorpo-
rate reentry phenomena use the FMM as a numerical method
[5, 14] and implementations are not publicly available. More-
over, the regular FMM struggles with anisotropic propagation
because this algorithm assumes the characteristic direction
to be always colinear with the wavefront gradient, which is
not true for anisotropic cases [15]. To address this limitation,
Pernod et al. developed the anisotropic FMM, which incorpo-
rates an additional “CHANGED” list to enable recursive cor-
rections [5]. Similarly, Cristiani proposed a similar method,
introducing the “BUFFER” list with the same recursive
correction concept [17]. In his study, he conducted various
tests comparing the buffered FMM against the regular FMM,
focusing on anisotropy problems. His findings revealed that
the regular FMM calculated incorrect solutions with vary-
ing degrees of error across different anisotropic scenarios and
resolutions. For instance, in an experiment with an anisotropy
ratio of approximately 5 on a 2D grid of varying resolutions,
the regular FMM was evaluated for its accuracy in solving the
anisotropic eikonal equation, which in our case corresponds to
finding ATs. The errors in the solution of the eikonal equation
were 40 to 50 times larger compared to those of the buffered
FMM, with the fast sweeping method, which is a classical
iterative method, used as the reference solution [47].

Another constraint of the regular FMM is the inability to
simulate reentry and reactivation. Pernod et al. also devel-
oped the multifrontal FMM, integrating a REFRACTORY
list to include reentry [5]. However, this adaptation omitted
the “CHANGED?” list essential for managing anisotropic
propagation, thereby compromising its efficacy in such sce-
narios. Although no reason for this omission is provided, it
is possible that they faced similar challenges to those moti-
vating this work. Specifically, changes in the solution of the
eikonal equation make it difficult to determine definitive
ATs for calculating RTs. Gassa et al. later incorporated ideas
from the multifrontal FMM, the Dijkstra’s algorithm and the
Mitchell and Schaeffer membrane model, reproducing spiral
reentries in the atria [9, 12, 14, 35]. Notably, this adapta-
tion neglected the use of recursive corrections or any other
mechanism for better handling of anisotropy, possibly due
to similar challenges encountered in Pernod et al.’s work.
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The numerical solution of the anisotropic eikonal equa-
tion with regular FMM-based methods without recursive
corrections does not lose stability under grid refinement
[15]. The error from neglecting recursive corrections can be
small, especially in experiments with small geometries, low
anisotropy, and homogeneous properties [15, 17] and errors
may be less apparent due to the stability of the solution [15].
However, arrhythmia simulations of multiple reentry cycles
in realistic geometries with heterogeneous properties and
high anisotropy may deviate significantly from the viscosity
solution. For these complex cases, some of the adaptations
made in the DREAM might be particularly useful.

The FIM is better suited to solve systems with anisotropic
conditions [16]. However, the iteration process hinders the
implementation of reactivation patterns and reentry. The
DREAM uses the cycFIM framework to manage anisotropic
propagation through correction mechanisms. The DREAM
also addresses reentry by incorporating a ‘“safety margin
in time” 7, allowing for corrections before calculating RT
based on a reliable AT. This approach could potentially also
be applied for merging the anisotropic FMM and the mul-
tifrontal FMM, leveraging the strengths of both methods
[5]. However, the computational cost of buffered FMM and
the anisotropic FMM can exceed that of iterative methods
in worst-case scenarios with high anisotropy. This is due to
the increase in the “BUFFER” and “CHANGED?” list sizes,
respectively [5, 17]. Additionally, an FIM-based algorithm
is more favorable because it can be parallelized more easily
while maintaining computational density [16, 26, 27, 48].
The DREAM is the first model to use an iterative method
such as cycFIM, ionic models and CV restitution to simulate
functional reentry to the best of our knowledge.

Another method that uses the FIM in an alternative
approach is the VITA method. This method employs the
RE method based on the FIM approach [10, 16, 18]. Ini-
tially intended for studying ventricular tachycardia, VITA
explores reentries using the FIM. While VITA relies on scar
tissue with an isthmus to simulate anatomical reentry, the
DREAM is capable of simulating reentry in the absence of
structural abnormalities, including functional and anatomi-
cal reentries. Additionally, the cycFIM within the DREAM
framework can simulate multiple ATs per node per reen-
try, considering CV restitution and ERP values to analyze
reentry maintenance and average cycle length. Conversely,
VITA does not compute multiple ATs per node during
reentry. Instead, VITA calculates 2 types of ATs using the
eikonal-based model. The first AT map identifies isochrone
splitting and merging points, revealing isthmus exits where
then elements are decoupled to induce unidirectional block
for the second activation. This unidirectional block does not
consider the electrophysiological properties at that location
during repolarization. Subsequently, a second AT map is cal-
culated for each isthmus exit, stimulating where the elements
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were decoupled. This second AT is the only one calculated
during reentry. Then, the round-trip time (RTT) is defined
as the time the wavefront takes to go around and reach the
isthmus exit again. The RTT serves as a surrogate marker
for possible ablation targets if its value is longer than 50 ms.
One argument for using RTT as a surrogate instead of per-
sonalized CV restitution and ERP values is that the latter
are rarely available in clinical settings. While most in silico
studies do not personalize these variables but rather rely on
literature references, some clinical and in silico studies have
explored the effect of personalized CV restitution and ERP
values on reentry patterns [49—52]. The DREAM in contrast
can incorporate personalized CV restitution and ERP val-
ues extracted from patient measurements when available by
adjusting parameters in the embedded ionic model and the
COHERENCE() function.

While implementing 7, allows to have reentries with mul-
tiple activation cycles in iterative methods, it also entails a
new challenge successfully addressed by the DREAM. The
cycFIM in step A, of the n-th DREAM cycle and the RD
portion in step C,_; of the (n — 1)-th DREAM cycle oper-
ate within different, non-overlapping time windows. Con-
sequently, in scenarios such as reentry, it is common for the
AT of a node to be calculated in step A, without the previous
RT for that node having been calculated by the RD model
during step C,_;, as required by the cycFIM. The DREAM
overcomes this limitation in step D,_, by briefly running the
ionic model on the activated nodes until the voltage thresh-
old is reached. This enables the ERP restitution to be directly
obtained from the ionic model instead of relying on provided
phenomenological curves [5, 7, 53].

This study also demonstrated how the DREAM could
adapt to different ionic models by adjusting the correspond-
ing parameters. This adaptability allows for the selection of
the most suitable ionic model for a specific research ques-
tion, depending on the required levels of computational
speed and physiological detail. For instance, the Courteman-
che et al. model is ideal when detailed biophysical informa-
tion is needed, although it comes at the cost of computa-
tional speed [32]. In contrast, the simplified Bueno-Orovio
et al. model, which includes the main ionic currents that
modify the AP morphology and basic calcium dynamics,
offers intermediate complexity with improved computational
efficiency [34]. At the other end of the spectrum, the simpli-
fied model of Mitchell and Schaeffer combines fast inward
and outward currents to represent basic AP dynamics, pro-
viding higher computational speed [35]. The DREAM was
able to reproduce restitution behaviors very similar to the
monodomain model when reducing the level of detail in
the embedded ionic model for the sake of computational
efficiency, as shown in the comparison between the Cour-
temanche et al. and Bueno-Orovio et al. ionic models. This
demonstrates that the DREAM is flexible enough to be used
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in various research scenarios where computational resources
are a constraint without significantly compromising on
accuracy.

Another novel aspect of the DREAM lies in its approach
to incorporate CV restitution. Previous methods typically
involved incorporating the DI at every node from the previ-
ous activation cycle or the DI of neighboring nodes in the
present activation cycle [7, 12]. In this study, CV is calcu-
lated using the DI of the present activation cycle, allowing
for better adaptation to sudden changes in activation fre-
quency and DI. Furthermore, as CV is assigned per node
rather than per element, the minimization of AT is facilitated
using analytical formulas such as Eq. 6. This eliminates the
need for the Dijkstra’s algorithm and additional pathways
within the triangles can be considered [9]. In contrast, Cor-
rado et al. proposed incorporating the DI within the Dijk-
stra’s algorithm [12] which considers trajectories solely
along the edges.

5.2 Limitations and future work

Several attempts have been made to incorporate additional
properties such as curvature and diffusion effects into the
pure eikonal model [54-57]. However, existing eikonal mod-
els still struggle to accurately represent complex activation
patterns, such as multi-wavelet reentry, which are influenced
by high wavefront curvatures, bath loading, wave collisions,
and other source-sink mismatch effects. These properties are
typical of propagation in fibrotic and heterogeneous tissue,
a key factor in sustaining reentry [55]. To simulate these
complex activation patterns accurately, it is necessary to
accurately model diffusion and curvature effects, as well as
reactivation and repolarization.

In this work, the approximation of the diffusion current
was incorporated as a function that depends solely on the
ATs with constant amplitude and duration. This function
is unaffected by electrophysiological properties of the sur-
rounding tissue. This limitation implies that the DREAM
at this moment does not consider source-sink mismatch
effects in the diffusion current and in the CV. Most of the
differences observed between the DREAM and monodomain
model in the experiments regarding reentries can be attrib-
uted to this phenomenon. In the RE* model described by
Neic et al., I, (analogous to I in the DREAM) is added
to the parabolic portion of the RD model. On the other hand,
the RE™ model replaces the diffusion term V - (o;VV,,) with
I By doing this, the RE* model managed to obtain similar
repolarization phases as those obtained in the RD models
when the tissue had heterogeneous APD. In the DREAM,
L4 1s implemented as in the RE™ model, resulting in sharp
repolarization gradients that preserve the APD differences
between neighboring cells. The primary reason for the sharp
repolarization gradients is that /;;; does not account for the

diffusion currents during the repolarization phase. Neglect-
ing these diffusion currents during the repolarization phase
can lead to the appearance of artifacts in localized regions
during extended simulations. When implementing the RE*
approach in the DREAM, one needs to ensure that the RD
wavefront is never ahead of the eikonal wavefront to prevent
major artifacts in the membrane models and their refractory
behavior. This is more difficult for complex activation pat-
terns with spatially heterogeneous curvature than for planar
or radial excitation spread. For instance, during the repo-
larization phase, new activations (i.e., not predicted by the
eikonal model) occurred when there was a strong gradient
between cells with short APD and neighboring cells with
longer APD. Since I was calibrated using monodomain
simulations with fixed conductivity values to obtain a CV
of 1000 mm/s without considering restitution at shorter
cycle lengths, this might result in small differences in AP
amplitude.

In the present formulation of the DREAM, changes in
sodium channel conductance are not explicitly linked to CV
and /. However, in the approach used to model AF in this
manuscript, upstroke velocity changes are not critical for the
dynamics under study [33]. While this approach may be less
suitable for conditions where sodium channel dysfunction or
block leads to a significant reduction in CV, we believe that
CV can still be accurately fitted to patient-specific data or
obtained from small-scale monodomain simulations for use
in the DREAM model. In future work, further personaliza-
tion of /4 and CV to account for conductivity variations,
14 restitution, and changes in ionic model conductances
may enhance the model’s accuracy.

While this paper is limited to triangles, the DREAM
algorithm can be executed in tetrahedra by employing a
similar approach as described in [16] and by implement-
ing DREAM’s adaptations to the tetrahedra equation within
the local solver, as performed in Eq. 6. Nevertheless, fur-
ther analysis of the computational efficiency is required for
DREAM simulations in volumetric meshes. While the simu-
lations in this paper were conducted in serial code, paral-
lelization can further enhance the efficiency of the DREAM.

Another promising improvement to decrease the com-
puting time of the DREAM would be to increase the inte-
gration time step when calculating the RT in cases where
they were not yet provided by the ionic model. Currently,
RTs are calculated twice at some nodes. In the first calcu-
lation, the membrane potential V, is determined asynchro-
nously for each cell, but only the RT is saved and passed
to the eikonal model, without storing V,,. In the second
calculation, the membrane potential V, is computed in
a synchronized manner across all nodes (i.e., each time
step is calculated for all nodes simultaneously), and the V,
values are stored. The need for synchronizing the nodes
for storing purposes is the reason why the state variables
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and V_, states are reset between the first and second calcu-
lation. Since diffusion currents during the repolarization
phase are neglected in the latest version of the DREAM,
this redundancy does not introduce discrepancies, as the
same calculations are being repeated. However, future
improvements could focus on optimizing the process to
avoid redundant RTs calculations. Additionally, new con-
siderations will be needed when diffusion currents during
the repolarization phase are incorporated.

In this work, atrial cell models and CV values were tested
in the context of AF. Nonetheless, other atrial or ventricular
models can also be used with the DREAM as long as the
parameters of CV restitution and AP properties are tuned
accordingly. Investigating the tissue effects of additional
changes in ionic models, such as pharmacological effects
or channel mutations, represents another valuable area
for exploration. On the other hand, the DREAM with the
embedded ionic model of Mitchell and Schaeffer demon-
strated challenges in reproducing the restitution behavior
at short pacing cycle lengths observed in the corresponding
monodomain model. Therefore, a better adjustment of the
DREAM parameters is required to further improve the faith-
ful representation of CV restitution curve and simulation of
reentrant scenarios.

More systematic analysis of the new parameters intro-
duced in the DREAM is required to further understand the
optimal tuning that allows for a good balance between accu-
racy and computational efficiency. We expect that 7, should
increase when the anisotropy ratio increases as more changes
are required. On the other hand, 7;,. must be smaller than the
sum of the longest possible APD and the minimum DI, i.e.,
parameter 6 in Eq. 12. Moreover, further investigation of the
COHERENCE() function could enhance the approximation
of CV restitution, particularly near propagation failure.

The cycFIM embedded in the DREAM could poten-
tially also be used as an alternative method to simulate
other applications of RD models. In this case, changing
the ionic model according to the reaction part of the prob-
able application would be necessary. Potential use cases
include the RD model simulating cyclical phenomena
like the Belousov—Zhabotinsky reaction, which can also
exhibit spiral propagation patterns [58].

5.3 Conclusion

The DREAM presents several advancements in simulating
cardiac arrhythmias compared to existing eikonal-based
models while retaining their main advantages and mak-
ing it accessible as part of the openCARP simulator [30].
By inheriting consistency across mesh resolutions from
the eikonal model, the DREAM achieves faster computing
times compared to RD models for a given desired accuracy.

@ Springer

Additionally, the DREAM faithfully represents functional
reentry without the need for structural abnormalities like
scar tissue. The use of cycFIM enables multiple ATs per
node, allowing for better analysis of reentry patterns in
anisotropic media. Moreover, the DREAM permits modi-
fication of CV restitution and ERPs, enhancing the person-
alization of cardiac computer models. Ongoing work aims
to overcome limitations in representing source-sink bal-
ance. Overall, the DREAM offers promising prospects for
advancing our understanding and improving treatments of
cardiac arrhythmias compatible with clinical time frames.
Finally, the cycFIM may find applications beyond cardiac
modeling in simulating cyclical phenomena.
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