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Abstract
Computer models for simulating cardiac electrophysiology are valuable tools for research and clinical applications. Tradi-
tional reaction–diffusion (RD) models used for these purposes are computationally expensive. While eikonal models offer a 
faster alternative, they are not well-suited to study cardiac arrhythmias driven by reentrant activity. The present work extends 
the diffusion–reaction eikonal alternant model (DREAM), incorporating conduction velocity (CV) restitution for simulating 
complex cardiac arrhythmias. The DREAM modifies the fast iterative method to model cyclical behavior, dynamic boundary 
conditions, and frequency-dependent anisotropic CV. Additionally, the model alternates with an approximated RD model, 
using a detailed ionic model for the reaction term and a triple-Gaussian to approximate the diffusion term. The DREAM 
and monodomain models were compared, simulating reentries in 2D manifolds with different resolutions. The DREAM 
produced similar results across all resolutions, while experiments with the monodomain model failed at lower resolutions. 
CV restitution curves obtained using the DREAM closely approximated those produced by the monodomain simulations. 
Reentry in 2D sheets yielded similar results in vulnerable window and mean reentry duration for low CV in both models. 
In the left atrium, most inducing points identified by the DREAM were also present in the high-resolution monodomain 
model. DREAM’s reentry simulations on meshes with an average edge length of 1600 μm were 87x faster than monodomain 
simulations at 200 μm . This work establishes the mathematical foundation for using the accelerated DREAM simulation 
method for cardiac electrophysiology. Cardiac research applications are enabled by a publicly available implementation in 
the openCARP simulator.

Keywords  Fast iterative method · Reaction diffusion · Cardiac electrophysiology · Reentries

1  Introduction

Computer models have provided meaningful contributions 
to better understand the mechanisms of cardiac arrhythmia 
[1, 2]. An emerging application of cardiac modeling are 

tissue-level simulations to guide treatments such as ablation 
procedures [3]. Tissue-level simulations can be performed 
using reaction diffusion (RD) or eikonal models [4, 5]. RD 
models accurately capture the complex interplay between 
ion channels, cellular, and tissue-level behavior [4, 6]. How-
ever, they often require significant computing time, even on 
high performance computing systems [2]. Therefore, these 
models are hardly compatible with clinical time frames for 
intraprocedural decision support. Eikonal models are an 
alternative to investigate cardiac arrhythmias [5, 7–9]. They 
can be 3 orders of magnitude faster than RD models and 
thus better suited for use in clinical settings (e.g. planning 
ablation procedures) or uncertainty quantification [10, 11]. 
However, various eikonal-based models encounter distinct 
challenges that impede their ability to accurately simulate 
cardiac arrhythmias. These challenges include the absence 
of repolarization and reactivation phenomena, inadequate 
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representation of conduction velocity (CV) and action 
potential duration (APD) restitution (i.e., their dependence 
on activation frequency), and the utilization of numerical 
methods unsuitable for anisotropic propagation [5, 10, 12]. 
While not all eikonal-based models face all these limita-
tions, a model capable of addressing these challenges simul-
taneously could provide a more suitable tool for studying 
arrhythmia compatible with clinical time frames.

Numerical solutions for the eikonal equation are compu-
tationally inexpensive due to its simple formulation and the 
low mesh resolution requirements. The simplest formula-
tions of the eikonal model are only capable of simulating 
one activation per node. Consequently, these versions do not 
account for recovery or reactivation of the cardiomyocytes 
[10, 13]. This shortcoming hinders the simulation of reen-
trant activity, which is a major limitation in the context of 
simulating arrhythmia. To overcome this problem, Pernod 
et al. modified the fast marching method (FMM) to allow 
reactivation of the nodes while solving the eikonal equa-
tion [5]. Later, Gassa et al. extended the method to enable 
the simulation of rotors [14]. Nonetheless, when simulat-
ing anisotropic propagation in cardiac tissue using single 
pass methods like the regular FMM, numercial errors can 
arise because the gradient directions of the eikonal equa-
tion solution do not align with the characteristic directions 
(i.e., the optimal trajectories). This discrepancy affects the 
accurate depiction of anisotropic wave propagation dynam-
ics, particularly in regions where these directions do not lie 
within the same simplex in the mesh discretization. Further 
limitations of single pass methods like FMM in anisotropic 
media are addressed in more detail by Sethian and Vladimir-
sky[15]. Alternative methods have been proposed to solve 
the anisotropic eikonal equation such as the fast iterative 
method (FIM), the buffered FMM, and the anisotropic FMM 
[5, 16, 17].

Neic et al. used the FIM to develop the reaction eikonal 
(RE) model, which incorporates repolarization by linking 
the eikonal equation with a detailed ionic model [10]. How-
ever, it lacks the capability to simulate reactivation and reen-
try. Later, Campos et al. employed the RE model in virtual 
induction and treatment of arrhythmias (VITA), a method 
to investigate ventricular tachycardia [18]. While VITA can 
identify areas in the heart susceptible to isthmus-dependent 
reentry, it can only simulate the first reentry cycle and dis-
regards CV restitution and functional reentry.

Iterative methods to solve the anisotropic eikonal equa-
tion are challenging when simulating reactivation and reen-
try phenomena. There are 2 main factors hindering the accu-
rate simulation of reentries using iterative solution methods. 

First, activation times (ATs) can undergo multiple changes 
while solving the eikonal equation iteratively unlike in single 
pass methods. Second, ATs and repolarization times (RTs), 
i.e. the time after which a node can be reactivated, have a 
mutual dependency. The RT of every node in a given activa-
tion cycle depends on the effective refractory period (ERP) 
and the AT in the same activation cycle. Similarly, the AT 
depends on whether a node has fully recovered from the pre-
vious cycle’s activation before the next activation attempt. 
Managing these conditions becomes intricate when com-
puting the AT for the next activation cycle while constantly 
updating the AT from the previous activation cycle. Another 
important factor to reproduce physiological reentries is to 
incorporate CV restitution. This phenomenon adds addi-
tional complexity as CV becomes dependent on the previ-
ous AT, rather than remaining constant. Therefore, a way to 
calculate the frequency-dependent CV in the eikonal model 
must be included in the method. This can be achieved by tak-
ing the diastolic interval (DI) of previous activation cycles 
in the node that is being activated, or by considering the DI 
of the neighboring nodes [12].

This study builds on an initial version of the diffusion 
reaction eikonal alternant model (DREAM) enabling reac-
tivation in anisotropic media through the solution of the 
eikonal equation using the FIM [19]. The DREAM intro-
duced a new strategy that alternates between the eikonal 
and RD models. In the proposed update of the DREAM, 
a novel approach to CV restitution ensures a coherent set 
of CV, DI, and AT values for each revised node during the 
present activation cycle. This work extends the DREAM 
by CV restitution properties while preserving the model’s 
other advantages.

2 � Propagation models

2.1 � Monodomain model

RD models faithfully represent the propagation of the elec-
trical wavefront through the cardiac tissue [20–22]. These 
models are the most detailed because they incorporate more 
physiological mechanisms than other available models. 
However, numerical methods used to solve the RD equations 
rely on high resolution meshes, which is the main cause for 
their high computational cost [4, 23]. The most common 
examples of RD models are the bidomain and the monodo-
main models [24]. In this work, the latter is used as control 
to benchmark the DREAM.
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Derived from the bidomain equations, the monodomain 
model assumes equal intracellular and extracellular anisot-
ropy ratios and is, therefore, computationally more efficient. 
This assumption does not hold true particularly in scenarios 
such as the simulation of defibrillation, where the dynamics 
in the extracellular space play a significant role [25]. How-
ever, for the majority of cardiac electrophysiology simula-
tions, the monodomain model proved to be adequate due 
to its ability to capture various electrophysiological mecha-
nisms accurately, such as source-sink mismatch effects [4, 
24]. The equations of the bidomain model are condensed to 
the monodomain equation:

where � is the surface-to-volume ratio, while Cm denotes the 
membrane capacitance. The transmembrane voltage is indi-
cated by Vm and �

m
 represents the tissue conductivity tensor. 

The ionic transmembrane current density, denoted as Iion , 
depends on Vm and the state variables �⃗𝜂 , which determine 
the behavior of the ion channels in the cell membrane and 
the sarcoplasmic reticulum. Additionally, Is is the transmem-
brane stimulus current density. The myocardium is repre-
sented by Ω . There is a non-flux boundary condition at �Ω , 
the boundary of the domain Ω . The outward surface normal 
vector is represented by �⃗nsurf.

2.2 � Eikonal model

The anisotropic eikonal model, based on the macroscopic 
kinetics of wavefront propagation, seeks to determine the 
activation time (AT) of points within the myocardium 
through the following equation: [21, 22]:

where T ∶ Ω → ℝ
≥0 ∪ {∞} , maps every point in the myo-

cardium to its corresponding AT. Moreover, Γi denotes the 
subset of points in the myocardium where the i-th stimulus 
is applied at time Ti ∈ ℝ

≥0 , for i = 1,… , ns , with ns ∈ ℕ rep-
resenting the total number of stimuli. Additionally, if Ti = Tj 
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then i = j . M ∶ Ω → ℝ
3×3 maps points in the myocardium to 

their tensor of squared CV defined as:

Here, l⃗ , t⃗ , and �⃗n form an orthonormal system of vectors in 
the longitudinal, transversal, and sheet-normal directions, 
respectively. Importantly, l⃗ is aligned with the local prefer-
ential myocyte orientation. Furthermore, vl, vt, vn ∶ Ω → ℝ

≥0 
assign the CV values in their respective directions at X.

The FIM is an effective approach for solving the ani-
sotropic eikonal equation as this algorithm is particularly 

suited for unstructured meshes and anisotropic local CV 
functions [16]. The single-thread version of the FIM is 
presented in Algorithm 1. Multi-thread versions are also 
available [16, 26, 27]. For this work, Ω is considered to 
be a 2D manifold embedded in ℝ3 . For this reason, it is 
assumed that vn = vt , however the effect of the normal 
component is small since most of the characteristic direc-
tions (i.e., optimal trajectories) are almost perpendicular 
to �⃗n . To numerically approximate the viscosity solution of 
the eikonal equation, a triangulation T ⊂ P(ΩT) is defined 
over a finite set of points ΩT ⊂ Ω , such that the convex hull 
of ΩT  (i.e., the union of all triangles in T  ) approximates 
Ω . The FIM approximates the viscosity solution of the 
eikonal equation only at the vertices of the triangles in 
T  (i.e., points in ΩT  ). When mentioning a node X ∈ ΩT  , 
we refer to both a vertex in the triangulation and its posi-
tion in ℝ3 . This notation should not cause confusion, as 
each simulation in this work uses only a single mesh and 
coordinate system.

In the first step of the FIM, the boundary conditions 
of the system are defined by the AT of the source nodes 
(Eq. 4). Then, the neighbors of the nodes that belong to 
any Γi (for i = 1,… , ns ) are included in a set of active 
nodes L ⊂ ΩT  , that is initialize as ∅ , which contains the 
list of nodes that are being updated by the local solver. 
This local solver is referred to as the UPDATE() func-
tion. As soon as L is not empty, the list iteration begins. 
For each iteration, every node X in L is updated and the 
previous solution for its AT is replaced. If the difference 
between the old and the new solution is smaller than a cer-
tain threshold � , the node is then removed from L and each 

(5)M(X) = (v2
l
(X))⃗l⊗ l⃗ + (v2

t
(X))⃗t⊗ t⃗ + (v2

n
(X)) �⃗n⊗ �⃗n.



	 Engineering with Computers

of its neighbors, that are not presently in L, is analyzed. 
For each neighbor, a tentative new solution is calculated 
and only replaces the old solution if the new solution is 
smaller (i.e., earlier) than the old solution. If this condi-
tion is fulfilled, this neighbor is added to L. This process 
is repeated until L is empty. 

Algorithm 1   Fast Iterative Method

L = ∅
for X ∈ ΩT

T (X) ← ∞
for i ∈ 1, . . ., ns

if X ∈ Γi

T (X) ← Ti

for adjacent neighbor XNB of X
add XNB to L

end for
end if

end for
end for
while L �= ∅

for X ∈ L
p ← T (X)
q ← UPDATE(X)
T (X) ← q
if |p− q| < ε

for adjacent neighbor XNB of X
if XNB is not in L

p ← T (XNB)
q ← UPDATE(XNB)
if p > q

T (XNB) ← q
add XNB to L

end if
end if

end for
remove X from L

end if
end for

end while

When solving the eikonal equation on a triangular mesh, 
the local solver aims to determine the smallest AT that fits 
the eikonal equation at a specific node X. For this purpose, 
a tentative AT is calculated for every triangle containing X. 
Let (X, Y, Z) be a triangle in T  , with vertices X, Y , Z ∈ ΩT :

where TY ,Z(X) is the tentative AT that is obtained if the 
characteristic direction lies within the triangle (X, Y, Z). 
Additionally, D(X) is a tensor that holds information about 
the anisotropy of conduction, and vl(X) is the CV along the 
longitudinal direction at node X. Finally, UPDATE(X) is set 
as the minimum AT among all the tentative ATs calculated 
from each triangle containing X:

2.3 � Diffusion reaction eikonal alternant model 
(DREAM)

The DREAM is a mixed model combining an approximation 
of the RD model and the eikonal model. The goal of this 
model is to simulate reactivation patterns on meshes with 
lower resolutions than required for comparable simulations 
with RD models, thereby increasing computational effi-
ciency. The DREAM is inspired by the RE model [10] and 
the multi-frontal FMM [5]. A modified version of the FIM, 
named cyclical FIM (cycFIM), was implemented to solve 
the anisotropic eikonal equation allowing reactivations by 
alternating with the approximated RD model (Sect. 2.3.1).

Figure 1 shows a schematic representation of the steps 
involved in the DREAM. A single DREAM cycle encom-
passes the execution of steps A, B, C, and D where subscript 
indices represent the DREAM cycle’s number. It is crucial 
to differentiate between the DREAM cycle, comprising 
steps A, B, C, and D as shown in Fig. 1b), and the concept 
of the activation cycle in cardiac tissue. Within a DREAM 
cycle, each call of the cycFIM is regarded as a cycFIM 
cycle, which computes one AT value per node for a subset of 
nodes. However, it is important to note that not every review 
of a node will result in an activation cycle for that node, as 
propagation failures can occur. Additionally, not more than 
one AT is calculated per DREAM cycle per node.

At first, the cycFIM applies the first stimulus (i.e., com-
putes the first boundary condition) and iteratively reviews 
every node in L and updates the AT of each node by solving 
the eikonal equation. A list iteration refers to the process 
where each node in L is visited once. Therefore, every cycle 
encompasses one or more list iterations. At the end of each 
list iteration, tmin is the smallest absolute AT among all nodes 
in L. A parameter �inc is defined to limit the increment of tmin 
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throughout the list iterations of a cycFIM. Once the total 
increment of tmin during a cycFIM cycle exceeds �inc , the 
cycFIM cycle ends (Fig. 1a), step A1 , Sect. 2.3.1). Hereby, 
�inc represents the increment of tmin each time cycFIM is 
called. Then, the determined ATs are used to calculate Idiff , 
which approximates the diffusion current expressed in the 
parabolic equation of the RD model. Then, Idiff triggers an 
action potential (AP) (Fig. 1a), step B1 and Sect. 2.3.2), 
which allows to compute Vm in a low resolution mesh. The 
approximated RD model uses Idiff to compute Vm in all 
nodes of the mesh until t = tmin − �s (Fig. 1a), step C1 and 

Sect. 2.3.3). �s is a safety margin in time, ensuring that only 
cells with converged ATs are stimulated by Idiff . Thereby, 
a reliable identification of repolarization times (RTs) is 
enabled. RTs are defined as the time points when Vm of an 
activated node X crosses the threshold of −40 mV with a 
negative slope. If Vm in an activated node does not reach this 
threshold before t = tmin − �s , the ionic model is run inde-
pendently for that node to determine its RT (Fig. 1a), step D1 
and Sect. 2.3.4). To start the next cycle in step A2 , the 
cycFIM iterates again until tmin > tmin,init + 𝜏inc , where tmin,init 
is the last calculated tmin of step A1 . Hereby, the previously 

Fig. 1   a Steps of the diffusion reaction eikonal alternant model 
(DREAM) algorithm in simulated time: eikonal model and approxi-
mated reaction diffusion (RD) model alternate to calculate activa-
tion times (ATs) and transmembrane voltages ( Vm ), respectively. 
The cyclical fast iterative method (cycFIM) is used to calculate ATs 
(steps An ). These ATs are utilized to compute Idiff needed in the RD 
model (steps  Bn ). The approximated RD model determines Vm by 
solving the ODE system of the ionic model and incorporating Idiff 
(steps Cn ). Vm is used to get the repolarization times (RT) needed in 
the cycFIM to allow for reactivation when solving the eikonal equa-
tion (steps Dn ). The subscript index n represents the cycle number 
in the sequence. The parameter �inc represents the increment of tmin 

(minimum AT of the nodes in L) with each cycFIM cycle. If L is 
never empty between stimuli, tmin tends to align approximately with 
multiples of �inc . The parameter �s is the temporal safety margin to 
avoid conflicts between DREAM cycles. b Steps of the DREAM 
algorithm, showing the sequence of a DREAM cycle. In step An , each 
call of the cycFIM is a cycFIM cycle, containing several list itera-
tions. xi,j is the j-th node among mi nodes in L at the start of the i-th 
iteration. Visiting a node calls COHERENCE(), leading to multiple 
COHERENCE() iterations. In each iteration, functions F, G, and H 
calculate AT, DI, and CV, respectively. After �CHR iterations, or upon 
convergence, the final output F(v�CHR

) is used by the cycFIM
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calculated RTs are considered by cycFIM to check whether 
a node can be reactivated. Then, steps B2 , C2 , and D2 are 
performed in the same manner as steps B1 , C1 , and D1 . This 
process is repeated until t reaches tend , corresponding to the 
end of the simulation time. Table 1 shows the variables and 
parameters of the DREAM including their meaning and val-
ues used in this work. The code to run simulations using the 
DREAM is available in the openCARP simulator [28]. In the 
next sections, each of the steps is explained in more detail.

2.3.1 � Cyclical fast iterative method

The cycFIM is called in step An of the DREAM algorithm 
with n ∈ ℕ representing the number of the cycle. Algo-
rithm 2 describes this cycFIM. Some modifications were 
made to the single-thread FIM to allow alternation between 
the eikonal and RD models. Firstly, the boundary conditions 
for the eikonal equation need to be dynamically applied as 
their effect on the system varies depending on the refractory 
state of the nodes receiving the stimuli. Secondly, list itera-
tions should handle RT and manage multiple ATs per node. 
Thirdly, the local solver must ensure coherence among the 

CV, DI, and AT for each node. If L is emptied before all the 
boundary conditions are computed, further aspects must be 
considered since tmin does no longer align with multiples of 
�inc(see Sect. 2.3.5).

Dynamic boundary conditions
Dynamic boundary conditions handle stimuli applied to 

specific areas of the tissue. These conditions vary dynami-
cally as they depend on the refractory state of stimulated 
nodes when stimuli are applied. Unlike conventional eikonal 
models where boundary conditions are computed a priori 
irrespective of their timing, the cycFIM computes bound-
ary conditions (i.e, stimuli) progressively during the sim-
ulation. For this reason, to compute boundary conditions 
in the cycFIM the order in which stimuli are applied must 
be considered. Let T1 < T2 < ⋯ < Tns be the times when 
stimuli ‑sets of nodes where this stimuli are applied. At 
the beginning of the n-th cycFIM cycle, let Ts , for s ∈ ℕ 
and 1 ≤ s ≤ ns , be the time of the s − th stimulus such that 
T1,… , Ts−1 have already been computed during the previ-
ous cycFIM cycles. Moreover, assume that Ts,… , Tns have 
not yet been computed. Therefore, Ts denotes the time of 
the earliest stimulus that has yet to be processed. Boundary 

Table 1   DREAM parameters and variables: absolute times denote specific time points, with values spanning over the entire duration of the 
simulation

Relative times, fixed and typically smaller, constrain the occurrence of absolute times within specified intervals. Maximum permitted iteration 
parameters set limits for iterative processes within the cyclical FIM
aVariable values change throughout the simulation
b t

end
 changes across experiments

Absolute times

Variable Meaning Value

t
min

Minimum AT of nodes in L at the end of each list iteration (–)a

t
min,init

Last t
min

 from the previous DREAM cycle (–)a

t Current time step in RD model (–)a

 Parameter Meaning Value

t
end

End of simulation (–)b

Relative times

Parameter Meaning Value

�
inc

Maximum allowed increment of t
min

 in every DREAM cycle 100 ms
�
max

Maximum allowed difference of AT values among nodes in L 10 ms
�
s

Minimum allowed difference between t
min

 and t 10 ms
� Threshold of convergence 0.01 ms

Maximum iterations

Parameter Meaning Value

�
L
1

Maximum number of list iterations per node per entry into L 50
�
L
2

Maximum number of node returns to L per activation 50
�
CHR

Maximum number of COHERENCE() iterations per node per call 50
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conditions might be computed in 2 scenarios: at the begin-
ning of each cycle if L is empty, or at the beginning of each 
list iteration if L is not empty.

In the first case, L can be empty for 2 reasons: the simu-
lation has just started and n = s = 1 (i.e., the first stimulus 
must be computed during the first cycFIM cycle), or all 
activation times (ATs) associated with activation waves 
triggered by stimuli applied before Ts have converged, 
and L was emptied during the (n − 1)-th cycFIM cycle. 
To incorporate new nodes into L and start a new list itera-
tion, the s-th stimulus must be computed. In the second 
case, L is not empty and new stimuli might be applied. For 
instance, if Ts falls within the range of allowed activation 
times (ATs) for the nodes in L during this cycFIM cycle 
(i.e., Ts ∈ [tmin,init, tmin,init + �inc + �max] ), then the s-th stim-
ulus can be computed. The parameter �max which imposes 
an upper limit on the ATs of nodes in L will be explained 
in greater detail in the following subsection. Additionally, 
all the subsequent stimuli which times Ts+1, Ts+2,… are 
within this range, can be computed together.

To compute the s-th stimulus in both aforementioned 
cases, each node where the stimulus is applied is con-
sidered independently. Let X ∈ Γs be a node where the 
s-th stimulus is applied at time Ts , and let T(X) and R(X) 
be its last computed AT and RT, respectively. Then, Ts 
is assigned to T(X) if one of the following conditions is 
fulfilled:

In the first condition, the calculation for the present acti-
vation of X has not yet begun and that is the reason why 
T(X) < R(X) . In that case, the solution T(X) is replaced if 
Ts > R(X) , indicating that at Ts , the node has already recov-
ered from the previous activation and is ready to be activated 
again. In the second condition, R(X) < T(X) , i.e., the calcu-
lation for the present activation for X has already begun and 
it is still converging. The solution is updated if R(X) < Ts , 
signifying that the node X is ready to be activated at Ts and 
Ts < T(X) , which means Ts is a better (i.e., earlier) solu-
tion. The nodes with replaced ATs are removed from L, 
while their neighbors are added to L. To faithfully represent 
occurrence of unidirectional propagation, nodes that are 
successfully activated by a given stimulus cannot continue 
to activate nodes where an activation by this stimulus was 
unsuccessful before. Additionally, a delay of 5 ms in RT was 
added to nodes in areas that were unsuccessfully stimulated.

List iteration
The variable tmin,init represents the minimum AT among 

the nodes in L reached at the end of the previous DREAM 
cycle. When L is not empty after computing the first stimu-
lus, tmin,init is initialized to 0 during the first call of cycFIM 

(8)
(

T(X) < R(X) < Ts
)

∨
(

R(X) < Ts < T(X)
)

.

in the first cycle, or adjusted to the value of tmin calculated 
at the end of step An−1 if n > 1 . Additionally, tmin,init serves 
as a reference to be compared to tmin , the smallest AT in L 
at the end of the previous cycFIM cycle. L undergoes mul-
tiple iterations until tmin > tmin,init + 𝜏inc . Then, the function 
COHERENCE() (see next subsection) is applied to each 
node in L. Let X be the node that is being revised and 
T(X) and R(X) its last computed AT and RT, respectively. 
Then, a new solution q is computed by COHERENCE(X) 
to potentially replace T(X). If the difference between the 
old and new AT is smaller than the threshold � , or either 
the old or the new solution is infinite, then X is removed 
from L. To avoid that a node is activated twice in the same 
iteration of the list, an upper bound �max is applied to the 
difference between the maximum AT of the nodes in L 
and tmin . If a certain node has a calculated AT above the 
maximum allowed AT for a given iteration of cycFIM, i.e., 
q > tmin,init + 𝜏inc + 𝜏max , then this node will not be removed 
from L and its neighbors will not be visited yet.

When a node is removed from L, its neighbors that are 
not in L are revised as well. Let XNB be a neighbor of X 
with last computed AT and RT being T(XNB) and R(XNB) , 
respectively. If XNB is not in L and a new solution qNB 
is computed, one of the following conditions (similar 
to those for stimuli) must be fulfilled for qNB to replace 
T(XNB):

In the first condition, the calculation for the present acti-
vation of XNB has not yet begun. In that case, the solution 
is replaced (i.e., qNB is assigned as a new tentative AT for 
XNB ) if qNB > R(XNB) , meaning that the node has recov-
ered at qNB . In the second condition, R(XNB) < T(XNB) , 
i.e., calculation of the present activation has already started 
for XNB and is still converging. The solution is replaced 
if RTXNB

< qNB < T(XNB) , which means that the node is 
ready to be activated at qNB and qNB is a better (i.e., ear-
lier) solution. If qNB satisfies either of these two conditions 
and replaces T(XNB) , then XNB is added to the list of active 
nodes, L. Regardless of the previous conditions, if qNB is 
infinite or smaller than t, XNB will not be added to L. When 
all the nodes in L and the neighbors of converging nodes 
have been revised, tmin is recalculated to decide whether 
further iterations are required in step An . To reduce the 
computational cost and to prevent nodes from indefinitely 
exiting and returning to L or iterating inside of L, 2 limits 
were defined: �

L
1

 and �
L
2

 . The parameter �
L
1

 represents the 
maximum number of list iterations per node per entry into 
L, and �

L
2

 , denotes the maximum number of returns to L per 
node per activation. 

(9)

(

T(XNB) < R(XNB) < qNB
)

∨
(

R(XNB) < qNB < T(XNB)
)

.
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Algorithm 2   Cyclical Fast Iterative Method within the n-th DREAM cycle

if L = ∅
Compute boundary conditions

end if
if n = 0

tmin,init = 0
else

tmin,init = tmin
end if
repeat

Compute boundary conditions
for X ∈ L

p ← T (X)
q ← COHERENCE(X)
T (X) ← q
if |p− q| < ε

for adjacent neighbor XNB of X
if XNB is not in L

p ← T (XNB)
qNB ← COHERENCE(XNB)
if (p < R(XNB) < qNB ∨R(XNB) < qNB < p) ∧ (t < qNB < ∞)

T (XNB) ← qNB
add XNB to L

end if
end if

end for
remove X from L

end if
end for
tmin = min{T (X)|X ∈ L}

until L = ∅ OR (tmin − tmin,init) ≥ τinc

Coherence between conduction velocity, diastolic inter-
val and activation time

The local solver for the DREAM seeks to calculate the 
AT for each node. Unlike the standard eikonal model, the 
DREAM accounts for the CV restitution at each node in 
each activation cycle instead of a fixed CV. To implement 
CV restitution, the function UPDATE() in Algorithm 1 is 
replaced by a new function COHERENCE() in Algorithm 2. 
The CV restitution is incorporated in the model by providing 
a template restitution curve, for example calculated from 
monodomain model simulations or inferred from clinical 
data [7]. To integrate this CV restitution phenomenon into 
the DREAM, the feedback loop among AT, CV, and DI must 
be acknowledged. This feedback loop means that calculating 
the AT depends on the CV, which relies on the DI, which in 
turn is influenced by the AT.

When applying the COHERENCE() function to a given 
node X, the reference CV of X, the RT of X from the previous 
activation, and ATs of the neighboring nodes in the present 
activation are known. The reference CV corresponds to the 

maximum possible CV, i.e. vl(X) when the DI is sufficiently 
long and CV becomes unaffected by restitution effects. Res-
titution curves with biphasic behavior, where the maximum 
CV is reached at intermediate DIs instead of long DIs, are 
excluded from this method. If an initial AT is estimated using 
the highest value of the reference CV, this AT will have the 
smallest (i.e., earliest) possible value, resulting in the shortest 
possible DI. If this DI is short, when applying the restitution 
curve, this leads to a slower CV than the reference CV and 
therefore in a higher (i.e., later) AT than the initially estimated 
AT. To calculate a tentative AT for X, the COHERENCE() 
function is utilized to iteratively recalculate CV, DI, and AT 
until a stable state of coherence between these 3 variables is 
reached. Note that these temporary values of the 3 variables 
are referring to the present activation of X. These 3 values 
are recalculated in each COHERENCE() iteration (not to be 
confused with list iteration see Fig. 1b). Each application of 
the local solver involves one or more COHERENCE() itera-
tions, starting with the reference CV and ending with a tenta-
tive value for T(X) to be used in cycFIM. Additionally, the 
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term CV can refer to the speed of the wavefront itself, the 
longitudinal CV when the wavefront moves in the preferential 
cardiomyocyte orientation, or the transversal CV when the 
wavefront moves perpendicularly to this orientation. Although 
the COHERENCE() function utilizes the longitudinal CV (i.e., 
vl(X) ) for its computation and equilibrium is reached among 
AT, DI, and longitudinal CV, this equilibrium also extends to 
the wavefront’s CV.

COHERENCE() calculates the tentative AT of X using the 
functions F, G and H. Each of these functions also depends on 
X. To simplify notation, X as an argument of these functions 
will be omitted. Let F ∶ ℝ

≥0 → ℝ
≥0 ∪ {∞} be the function 

that computes the AT from the CV:

where v∗ is a temporary value for vl(X) and t∗ is a tempo-
rary solution to the eikonal equation (Eq. 3) at node X ∈ Ω 
providing a tentative AT for this node. To solve the eikonal 
equation, Eq. 6 is used to collect all tentative candidates for 
t∗ . The function F is similar to the UPDATE() function of 
FIM but considers additional conditions. Propagation block 
can occur in cycFIM, implying that v = 0 , thus F(0) = ∞ . 
On the other hand, when taking into account the neighboring 
nodes Y and Z for Eq. 6, the triangle XYZ is not considered if 
R(Y) > T(Y) or R(Z) > T(Z) . This implies that the ATs for 

(10)F(v∗) = t∗,

these nodes are not yet computed for the present activation 
cycle and, therefore, must be excluded from the calculation 
of t∗ . Figure 2a shows a schematic representation of function 
F()’s morphology.

Now, let G ∶ ℝ
≥0 ∪ {∞} → ℝ

≥0 ∪ {∞} be the function 
that computes the DI from t∗:

where R(X) is the RT of node X from the previous activa-
tion cycle and d∗ is a temporary value for DI in the present 
activation cycle. Figure 2b shows a schematic representation 
of function G()’s morphology.

Finally, let H ∶ ℝ
≥0 ∪ {∞} → ℝ

≥0 be the function that 
computes the new temporary CV v∗ from the temporary DI 
d∗:

Here, vref represents the reference CV, while � , � , � , and � 
are predefined parameters chosen to fit restitution curves 
for example obtained from monodomain simulations. The 
formulation in Eq. 12 allows expressing the steepness of the 
restitution curve in terms of � , the shift in the x-axis (i.e., DI) 

(11)G(t∗) = d∗ = t∗ − R(X),

(12)H(d∗) = v∗ =

{

vref ⋅
(

1 − 𝜌 ⋅ e
−

log(𝜌)

𝜓
(d∗+𝜅)

)

if d∗ > 𝜃,

0 if d∗ ≤ 𝜃.

Fig. 2   COHERENCE() call 
with 3 iterations. Numbers 
indicate the sequence in which 
activation times (ATs), diastolic 
intervals (DIs), and conduction 
velocities (CVs) are calculated. 
Red circles correspond to 
temporary values and the green 
circle indicates the final output. 
a Function F mapping CV to 
AT. The vertical red line marks 
the initial input of COHER-
ENCE() (i.e., vref = v0 ) on the 
horizontal axis. The green red 
line marks the final output of 
COHERENCE() (i.e, F(v3) ) on 
the vertical axis, b Function G 
mapping AT to DI, c Func-
tion H mapping DI to CV, d 
Zoom-in of the boxed area in c, 
illustrating temporary DI and 
CV values (color figure online)
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in � and the shortest propagating DI in � . Figure 2c shows 
a schematic representation of function H()’s morphology.

A recursive sequence (vi) can be defined using the com-
position of the functions H, G and F:

The COHERENCE() function approximates the AT that cor-
responds to the CV value which is the limit of the sequence 
defined in Eq. 13:

Since we cannot calculate this limit analytically, the function 
is defined as:

where �CHR is the maximum number of COHERENCE() 
iterations allowed per call. Figure 2 illustrates an example 
of one COHERENCE() call with 3 iterations. The input and 
first element of the sequence is v0 = vref , and the final output 
is F(v3) , representing the AT calculated with v3 , correspond-
ing to the CV obtained in the third iteration. This ensures 
that |F(v3) − F(v2)| < 𝜀 . The function typically converges 
quickly, often within 2 iterations, but an extreme case close 
to propagation failure was chosen in the example to demon-
strate the convergence process more clearly. Moreover, the 
example was chosen to ensure that the function F has its sim-
plest form, t∗ = a +

b

v∗
 , where a is the minimum AT among 

the neighbors of X, and b is the minimum possible value for 
( ������⃗X𝜆X

⊤
D

−1 ������⃗X𝜆X)
1

2 in Eq. 6 among all triangles in T  contain-
ing X and all � ∈ [0, 1] (Fig. 2a). If D is the identity matrix 
(i.e, in the isotropic case), then b is the minimum Euclidean 
distance between X and the perimeter of the polygon formed 
from the union of all triangles containing X. In this exam-
ple, the function F is monotonically decreasing, continu-
ous, and differentiable within (0,+∞) . For this to occur, the 
neighboring node with the minimum AT must belong to the 
triangle where the minimum ( ������⃗X𝜆X

⊤
D

−1 ������⃗X𝜆X)
1

2 is found. In 
the general case where this condition is not necessarily met, 
the function F remains monotonous and continuous but may 
not be differentiable everywhere. Additionally, F(v∗) tends to 
+∞ as v∗ approaches 0, and F(v∗) tends to a as v∗ approaches 
+∞ for any situation.

The proof of convergence of the sequence described in 
Eq. 13 is based on the idea that the sequence can be parti-
tioned into 2 converging subsequences: one increasing ( v2n ) 
and the other decreasing ( v2n+1 ). Furthermore, these subse-
quences are bounded between v0 and v1 , and the difference 

(13)
v0 = vref,

vn+1 = H(G(F(vn))).

(14)COHERENCE(X) ≈ F( lim
n→∞

vn).

(15)

COHERENCE(X) = F(vm) such that |F(vm) − F(vm−1)|

< 𝜀 OR m = 𝜇CHR,

between vn and vn+1 diminishes as n approaches infinity. In 
some cases, the sequence might need to take values of the 
DI below the parameter � before converging. Therefore, 
when computing COHERENCE(), DI values below � are 
allowed as long as the final DI is larger than � , otherwise 
COHERENCE(X) = ∞.

2.3.2 � Approximation of the diffusion current

To allow for Vm calculation in coarse meshes, a current Idiff 
was introduced following the idea of the RE model [10]. In 
step Bn , Idiff is computed by approximating ∇ ⋅ (�m∇Vm) in 
Eq. 1. A similar approach is used in the eikonal model by 
Gassa et al. [14]. In the DREAM, Idiff is defined as a triple 
Gaussian function:

Fig. 3   Idiff fitted to the diffusion current obtained from a pure mono-
domain simulation of a planar wave on a high-resolution mesh. A tri-
ple Gaussian was used to approximate the diffusion current. Adapted 
from [19]

Table 2   Diffusion parameters Idiff for the models by Courtemanche 
et  al., Bueno-Orovio et  al., and Mitchell and Schaeffer used in the 
DREAM simulations, corresponding to each of the three Gaussian 
indices i 

Parameter i Courtemanche et al./
Bueno-Orovio et al

Mitch-
ell and 
Schaeffer

�
i
(μA∕cm

2
) 1 149.5 17.59

2 41.2 − 228.91
3 − 192.2 218.50

�
i
(ms) 1 2.383 4.92

2 2.07 5.19
3 2.56 5.08

�
i
(ms) 1 0.22 0.49

2 0.56 0.92
3 0.29 0.92
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where the parameters �i , �i and, �i are optimized to reduce 
the difference between Idiff and the diffusion current specific 
to the used ionic model. A high-resolution mesh (i.e., aver-
age edge length 200 μm ) was used to run a monodomain 
simulation in the optimization process. A planar wavefront 
was simulated by stimulating at the mesh border. The con-
ductivities were adjusted to obtain a CV of 1000 mm/s. The 
diffusion current was calculated at a node located far from 
the boundaries and the stimulus location. Idiff serves as a 
trigger for an AP, regardless of whether the activation is ini-
tiated directly by a stimulus or through diffusion from neigh-
boring nodes. Figure 3 presents the fit of the triple Gaussian 
model, using the parameters listed in Table 2, to the diffu-
sion current obtained from the monodomain simulation as 
described above. Since the ionic models by Courtemanche 
et al. and Bueno-Orovio et al. yield AP and diffusion cur-
rents with similar morphology, the same set of parameters 
was used for Idiff with both models.

2.3.3 � Approximated reaction diffusion model

After the n-th cycFIM cycle is finished and Idiff is computed, 
the approximated RD model will run (i.e., step Cn ). The 
time interval for this step is: [tmin,init − �s, min(tmin − �s, tend)] 
ensuring that the nodes that trigger an AP during this step 
have converged ATs. The diffusion term in the parabolic 
equation of the RD system is replaced by Idiff:

In this case, the diffusion current is approximated by Idiff and 
only the reaction (ODE) part of the RD system remains to 
be solved. Solving this ODE system independently for each 
node in ΩT  will yield the values for Vm within the interval 
[tmin,init − �s, min(tmin − �s, tend)].

2.3.4 � Identification of repolarization times

Before the (n + 1)-th cycFIM cycle starts, it is important to 
identify which nodes and when are available for reactivation. 
Ideally, Vm of every activated node would reach its RT dur-
ing step Cn . However, recently activated nodes will not have 
recovered at the end of this RD iteration (i.e., at tmin − �s ). 
The aim in step Dn is to compute RTs of these nodes. To 
obtain these times, the ODEs of the single cell models are 
integrated in time until the threshold −40 mV is crossed:

(16)

∇ ⋅ (�m∇Vm)
|

|

|X
≈ Idiff(X) =

3
∑

i=1

�i exp

(

−
(t − T(X) − �i)

2

�2
i

)

,

(17)𝛽Cm

𝜕Vm

𝜕t
= Idiff − 𝛽Iion(Vm, �⃗𝜂).

This process is implemented for each node that was depolar-
ized but not yet repolarized in the previous step. The initial 
conditions are defined by the state variables at t = tmin − �s 
for each node. After the RT is calculated, Vm and �⃗𝜂 are reset 
to the values they had at t = tmin − �s.

2.3.5 � Considerations for empty list scenarios

Additional considerations are required if L is empty but not 
all the boundary conditions have been computed. Let Ts be 
the time when the next stimulus will be applied, then Vm is 
computed until t = Ts − �s . After identifying the RTs, the 
stimulus at Ts must be computed before iterating cycFIM 
again as detailed in Sect. 2.3.1. If L is not empty after com-
puting the stimulus, cycFIM iterates until tmin > Ts + 𝜏inc . 
Given that the list was empty at the end of the previous 
cycle, it is no longer feasible to establish tmin,init . Hence, Ts 
is employed as the reference tmin,init to monitor the incre-
ment of tmin . If all nodes in Γs (i.e., the region in which the 
s-th stimulus is applied) are in the refractory period at time 
Ts , the list will remain empty. In that case, Vm is computed 
until t = Ts+1 − �s , where Ts+1 is the time of the (s + 1)-th 
stimulus. If necessary, subsequent boundary conditions (i.e., 
stimuli applied at times Ts+2,… , Tns ) are computed until the 
list L gain nodes or t = tend.

3 � Benchmarking

To assess the DREAM, it was compared with the mono-
domain model in 3 numerical experiments. First, multiple 
simulations were run on a 2D rectangular tissue mesh, each 
with 2 consecutive planar wavefronts per pacing cycle length 
(PCL) (i.e., interval between wavefronts). The PCL was var-
ied across simulations to analyze CV restitution curves. In 
the second numercial experiment, functional reentry was 
examined in absence of structural abnormalities, i.e. their 
occurrence attributed solely to slow CVs and short ERPs. 
These reentries were induced using an S1-S2 protocol in 
a 2D square mesh. In the third numerical experiment, the 
pacing at the end of the effective refractory period (PEERP) 
protocol was used to investigate reentry in a realistic geom-
etry of a left atrium [29]. These 3 numerical experiments 
were conducted using meshes composed of triangular ele-
ments with 4 different resolutions. The average edge lengths 
were 200, 400, 800, and 1600 μm . To facilitate the com-
parison between different meshes, each node in the lower 
resolution meshes was mapped to a corresponding node 
at the same position in the higher resolution meshes. To 

(18)Cm

dVm

dt
= −Iion(Vm, �⃗𝜂).
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execute monodomain simulations, tissue conductivities were 
adjusted to match the CV values desired for each scenario 
[30, 31]. Anisotropy ratios were set to 4 and 2 for tissue 
conductivity and CV respectively. The Courtemanche et al. 
model with standard parameters was used to represent the 
healthy ionic behavior of atrial cardiomyocytes in the three 
numerical experiments [32]. On the other hand, atrial fibril-
lation (AF) was modeled by modifying ion channel conduct-
ances of the Courtemanche et al. model [33]. To additionally 
assess the compatibility of the DREAM with different ionic 
models, the first numerical experiment (i.e., 2D rectangu-
lar tissue mesh) was also computed utilizing the simplified 
ionic models of Bueno-Orovio et al. [34] and Mitchell and 
Schaeffer [35]. These ionic models were originally devel-
oped for ventricles. Therefore, their parameters were adapted 
for atrial tissue to reflect cellular behavior of healthy and 
AF remodeled cardiomyocytes. The Bueno-Orovio et al. 
model was modified as proposed by Lenk et al. [36] provid-
ing parameter sets for both conditions. The Mitchell and 
Schaeffer ionic model was adjusted according to Gassa et al. 
[14] for healthy atrial cardiomyocytes and case 3 in Corrado 
et al. [37] for AF remodeled cardiomyocytes.

CV restitution curve parameters � , � , and � (Eq. 12) 
were tuned to align the CV restitution curve of the DREAM 
with either healthy or AF in monodomain simulations. This 
adjustment was based on the CV restitution curves obtained 
from monodomain simulations in a mesh with an average 
edge length of 200 μm (i.e., high resolution mesh) with 2 
planar wavefronts resulting in the parameters in Table 3.

The Crank–Nicolson method was used to solve the 
parabolic equation of the monodomain model. Moreover, 
the methods described in Sect. 2.3 were used to solve the 
eikonal equation and approximate the diffusion current in 
the DREAM. The ODEs of the ionic model were solved 
using the forward Euler method for Vm and the Rush-Larsen 
method for the gating variables in both the monodomain 
model and the DREAM.

Sheet geometries were created using Gmsh [38] and pro-
cessed with ParaView [39], Meshmixer [40] and MeshLab 
[41]. openCARP [30] was used to run simulations with both 
the DREAM and monodomain model. Plots were generated 
using the Python library matplotlib [42].

Specifically, the optimization of Idiff parameters was 
performed using MATLAB, utilizing the curve fitting tool-
box. The optimization of the CV restitution parameters was 
conducted in Python, employing the minimize function 
from SciPy’s optimize package [43]. In both optimization 
processes, the root mean square error was used as a loss 
function.

3.1 � Multiple stimulations and CV restitution

To assess the DREAM’s ability to faithfully replicate CV 
restitution, we initially examined its capacity to simulate 
paced beats across a range of frequencies specific for each 
condition. These experiments were conducted in a rectan-
gular mesh of 50 mm × 10 mm × 0 mm, with the centroid 
of the mesh located at ( 0 μm , 0 μm , 0 μm ) for each of the 4 
resolutions. Preferential cardiomyocyte orientation was set 
as constant everywhere in the geometry and aligned with 
the x-axis (i.e., l⃗ = (1, 0, 0) ). Each experiment involved pre-
pacing at a single-cell level for 50 activation cycles at a cycle 
length of 250 ms. For monodomain simulations, conductivi-
ties were tuned to match the target CV of 1000 mm/s.

In this numerical experiment, 2 planar wavefronts were 
generated for each PCL by stimulating the left side of the 
mesh with different frequencies. For monodomain simula-
tions, the stimulus was applied as a transmembrane current 
density with an amplitude of 300 μA/cm2 for a duration of 
2 ms. For the healthy atrial electrophysiology condition 
with the ionic model of Courtemanche et al., the PCL was 
decreased in 50 ms intervals from 950 to 400 ms, then in 
10 ms intervals from 390 to 320 ms, and finally in 1 ms 
intervals from 320 to 318 ms. The different intervals were 
chosen to cover critical changes in electrophysiological 
behavior, as CV and ERP drastically decrease towards the 
last propagating PCL. For the ionic models of Bueno-Orovio 
et al. and Mitchell and Schaeffer, also shorter PCLs propa-
gated on the mesh. Therefore, the PCL was further decreased 
in 1 ms intervals to 250 ms. In the AF condition, the PCL 
was decreased for all ionic models from 950 ms to 200 ms 
in 50 ms intervals, and from 199 to 118 ms in 1 ms intervals. 
The considered PCL values varied across conditions due to 
differences in the restitution curves, requiring a range of 
PCL values tailored to each condition.

Table 3   Conduction velocity 
restitution parameters for 
function H() in healthy and 
atrial fibrillation (AF) cases for 
ionic models by: Courtemanche 
et al., Bueno-Orovio et al., and 
Mitchell and Schaeffer, used in 
the DREAM simulations

Courtemanche et al. Bueno-Orovio et al. Mitchell and Schaeffer

Parameter Healthy AF Healthy AF Healthy AF

� (−) 811 100,000 55.13 100,000 4.41 2.90
� (ms) 53 116.41 138.14 118.16 161.47 151.75
� (ms) 137 66.28 139.73 70.64 129.30 103.12
� (ms) 159 159 159 159 159 159
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After the experiments, the CV restitution curves were 
determined. To calculate the CV, the ATs of the mesh points 
( −15, 000 μm, 0 μm, 0 μm ) and ( 15, 000 μm, 0 μm, 0 μm ) were 
used. CV was normalized over vref . The ERP was defined as 
the time difference between ATs and RTs from the second 
activation cycle plus � from Eq. 12 (i.e., shortest propagat-
ing DI).

3.2 � Reentry in 2D sheets

To evaluate the impact of mesh resolution on reentry prop-
erties in both models, a 2D sheet geometry was subjected 
to S1-S2 protocols. The geometry was represented by 
squared unstructured meshes of size 51.2 mm × 51.2 mm × 
0 mm, with the centroid of the mesh located at ( 25, 600 μm , 
25, 600 μm , 0 μm ) for each of the 4 resolutions. Preferential 
cardiomyocyte orientation was set as constant everywhere in 
the geometry and aligned with the x-axis (i.e., l⃗ = (1, 0, 0) ). 
Experiments were conducted for homogeneous reference CV 
values of 200, 600 and 1000 mm/s. The Courtemanche et al. 
ionic model was pre-paced at 250 ms PCL for 50 activa-
tion cycles. The tissue was pre-paced 5 times with planar 
stimuli (S1) from the left border of the sheet. Subsequently, 
a single cross-field stimulus (S2) was applied in the bot-
tom left quadrant at various times to induce reentry. After 
each simulation, it was assessed whether S2 was applied 
too early and got completely blocked, applied too late and 
propagated to all directions without any block, or if unidi-
rectional block occurred as a prerequisite to induce reentry. 
Reentry duration was defined as the period from S2 appli-
cation to the last AT in the simulation. ΔS was defined as 
the difference between the times when S2 and the last S1 
were applied. The vulnerable window duration was deter-
mined as the difference between the earliest and latest ΔS 
values that induced reentry. The sample frequency for ΔS 
values was 1 ms. The mean and standard deviation of the 
local reentry cycle length were calculated at 4 nodes, each 
located at the same coordinates in all 4 mesh resolutions: 
Pleft = ( 12, 800 μm , 25, 600 μm , 0 μm ), Pdown = ( 25, 600 μm , 
12, 800 μm , 0 μm ), Pright = ( 38400 μm , 25, 600 μm , 0 μm ), 
and Pup = ( 25, 600 μm , 38400 μm , 0 μm ). To calculate the 
local reentry cycle length, reentries were induced using 
DREAM and monodomain simulations with a reference 
conduction velocity (CV) of 200 mm/s and a stimulus inter-
val ( ΔS ) of 225 ms in the 4 resolutions. The local reentry 
cycle length was defined as the difference between the ATs 
corresponding to 2 consecutive activation cycles of the same 
node after reentry was induced. To evaluate the long-term 
stability beyond 1 s of reentry, the simulation was run until 
the total simulated time reached 60 s. For each of the 438 
cycles within this period, the mean and standard deviation 
of the local cycle length across all nodes were calculated.

3.3 � Reentry in the left atrium

The PEERP method [29] was used to induce reentries in a 
realistic human left atrial geometry from a publicly avail-
able dataset [44]. This realistic geometry is derived from 
an instance of a statistical shape model [45]. Preferential 
cardiomyocyte orientation was assigned using a rule-based 
method [46]. The endocardial surface was extracted and 
remeshed at 4 different resolutions to achieve the desired 
average edge lengths. To benchmark the DREAM on coarse 
meshes, the adaptations detailed below were introduced; the 
remaining parameters were sourced from Azzolin et al. [29]. 
Modifications were applied equally to both DREAM and 
monodomain experiments. From the coarsest mesh ( 1600 μm 
average edge length), 21 points that were evenly spaced 
approximately 2 cm apart were selected. Since the lower 
resolution meshes were embedded in the higher resolution 
ones, each of the 21 points were located at positions where 
each of the 4 meshes had a corresponding node. The refer-
ence CV was reduced to 200 mm/s, and the conductances 
of the ionic model were adapted to represent AF to increase 
the likelihood of inducing reentry without the need for an 
additional arrhythmogenic substrate. Pre-pacing on single 
cell and tissue level was performed for 50 and 5 activation 
cycles, respectively, at a PCL of 250 ms. From the APs trig-
gered by the last tissue pre-pacing, the RT was calculated 
and the ERP was defined as RT+� . Afterwards, the tissue 
was stimulated at the end of the ERP to try to induce reentry 
at each of the 21 chosen locations. Stimulation comprised 
all nodes within a 5 mm-radius sphere centered at this loca-
tion. Stimulations were stopped if a reentry was induced or 
the maximum number of 4 stimuli per location was reached.

3.4 � Computing times

The simulations were executed on a 2023 MacBook Pro, 
equipped with a 11-Core Apple M3 Pro processor and 16 GB 
6.4 GHz LPDDR5 memory. Computing times were bench-
marked in 2 experiments across 4 different resolutions using 
the AF remodeled ionic model of Courtemanche et al. and a 
CV of 200 mm/s. In the first experiment, one single planar 
wavefront was stimulated in each of the 2D sheets described 
in Sect. 3.2. The computing time was measured from the 
onset of the stimulus until 500 ms of simulated time there-
after. The selected duration encompassed the repolarization 
phases of all nodes. In the second experiment, a reentry was 
induced using the S1-S2 protocol presented in Sect. 3.2. The 
computing time was measured starting 200 ms of simulated 
time after delivering the S2 stimulus and ending 500 ms of 
simulated time after delivering the S2 stimulus, i.e., in the 
interval [S2+200 ms, S2+500 ms].
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4 � Results

4.1 � Multiple stimulations and CV restitution

Figure 4 shows the comparison of CV and ERP restitution 
curves between the DREAM and monodomain models at 
resolutions of 200, 400, 800, and 1600 μm . The analysis 
reveals distinct characteristics for both the healthy and AF 
cases. Specifically, the ionic model of Courtemanche et al. 
was used for the healthy and AF remodeled case, whereas 
the AF remodeled case employed the ionic models of 
Bueno-Orovio et al. and Mitchell and Schaeffer. Table 4 
shows the root mean square error (RMSE) of CV and ERP 
restitution curves for all considered ionic models with both 
healthy and AF conditions. Monodomain simulations on 

meshes with an average edge length 200 μm were used as 
reference solution to calculate RMSE. Addressing simula-
tions with the Courtemanche et al. ionic model, DREAM 
and monodomain model exhibited similar steepness across 
all resolutions for the healthy case in both restitution curves 
(Fig. 4a, b), with RMSEs below 8.85 mm/s and 1.52 ms 
respectively. In the AF case (Fig. 4c, d), both propagation 
models maintained similar steepness and shortest propagat-
ing DI across resolutions. However, the DREAM notably 
did not represent the temporary raise of CV during interme-
diate DIs, while the monodomain model showed varying 
levels of biphasic restitution across resolutions, with lower 
resolutions having a higher maximum CV at intermediate 
DIs. The monodomain model demonstrated smaller last 
propagating cycle lengths, indicating the shortest possible 

Fig. 4   Restitution curves for 
conduction velocity (CV) 
and effective refractory 
period (ERP) obtained from 
experiments using meshes with 
average element edge lengths 
of 200 μm and 800 μm for 
the monodomain model, and 
1600 μm for the DREAM, with 
the healthy and AF remod-
eled Courtemanche et al. ionic 
model, as well as the AF remod-
eled ionic models of Bueno-
Orovio et al. and Mitchell 
and Schaeffer. Results for the 
monodomain model with an 
edge length of 400 μm are not 
shown due to negligible differ-
ences compared to the 200 μm 
results, and the monodomain 
model with 1600 μm edge length 
is excluded due to propagation 
failure. Finer resolutions for the 
DREAM (i.e., 200 μm , 400 μm , 
and 800 μm ) are not displayed 
as they are mostly indistinguish-
able from the 1600 μm results. 
a, c, e, g CV restitution curves 
normalized to the reference CV, 
vref = 1000mm∕s and b, d, f, 
h ERP restitution curves for 
the Courtemanche et al. ionic 
model representing healthy 
and AF remodeled behavior, as 
well as the AF remodeled ionic 
models of Bueno-Orovio et al. 
and Mitchell and Schaeffer, 
respectively
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DIs before propagating failure occurred. A more discernible 
difference arose in the CV resulting from each propagation 
model at this minimal DI. The DREAM demonstrated a 

higher minimum CV compared to the monodomain model 
(Fig. 4c). The ranges of both restitution curves obtained with 
DREAM and monodomain model for the Bueno-Orovio 

Table 4   Root mean square 
error of conduction velocity 
(CV) restitution and effective 
refractory period (ERP) 
restitution for healthy and atrial 
fibrillation (AF) conditions, 
in DREAM and monodomain 
model with Courtemanche 
et al., Bueno-Orovio et al., 
and Mitchell and Schaeffer 
embedded ionic models at 
various resolutions indicated by 
average edge length, compared 
to the restitution obtained with 
the monodomain model at 
200 μm

aPropagation failure at 1600 μm average edge length

CV (mm/s) ERP (ms)

Ionic model Propagation model Resolution ( μm) Healthy AF Healthy AF

Courtemache et al. DREAM 200 8.85 7.19 1.52 2.39
400 8.74 7.14 1.52 2.39
800 8.47 7.14 1.50 2.39
1600 8.01 7.26 1.49 2.38

Monodomaina 200 0.00 0.00 0.00 0.00
400 0.63 2.60 0.36 0.09
800 5.88 5.17 0.25 0.46
1600 (–) (–) (–) (–)

Bueno-Orovio et al. DREAM 200 7.21 15.95 1.03 1.11
400 6.62 13.60 1.09 1.12
800 6.48 11.49 1.02 1.12
1600 7.07 12.08 1.05 1.17

Monodomaina 200 0.00 0.00 0.00 0.00
400 0.98 0.30 0.49 0.08
800 14.36 4.13 1.53 0.18
1600 (–) (–) (–) (–)

Mitchell and Schaeffer DREAM 200 17.36 10.82 7.09 6.38
400 18.21 8.01 7.21 6.44
800 17.65 7.03 7.22 6.46
1600 19.28 7.76 7.24 6.46

Monodomaina 200 0.00 0.00 0.00 0.00
400 2.80 0.30 0.54 0.03
800 2.20 5.33 0.52 0.04
1600 (–) (–) (–) (–)

Fig. 5   Reentry duration at 
a conduction velocity of 
200 mm/s for different mesh 
resolutions. Average edge 
length: a 200 μm , b 400 μm , c 
800 μm , d 1600 μm . Monodo-
main simulations for coarser 
resolutions are not shown due 
to propagation failure in c and 
d. The horizontal axis shows 
ΔS (time difference between S2 
and S1). The vertical axis shows 
reentry duration
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et al. ionic model resemble those for the Courtemanche et al. 
ionic model. The CV and ERP restitution curves (shown for 
the AF case in Fig. 4e, f) showed similar steepness. Similar 
to simulations with the DREAM and Courtemanche et al., 
the biphasic CV restitution obtained with the monodomain 
model and Bueno-Orovio et al. was not reproduced with the 
DREAM and Bueno-Orovio et al. The restitution curves for 
the ionic model of Mitchell and Schaeffer (shown for the 
AF remodeled case in Fig. 4g) and Fig. 4h) showed higher 
last propagating cycle lengths for the DREAM compared to 
the monodomain model. Pacing cycle length and DI for the 
last possible propagation were about 173 ms and 107 ms, 
respectively, longer for the DREAM compared to the mono-
domain models. Despite the absence of biphasic behavior 
in the monodomain CV restitution curve, the RMSE values 
were consistently higher across resolutions for the DREAM 
compared to Courtemanche et al. ionic model. Monodomain 
simulations resulted in smaller errors for both restitution 
curves under both conditions for resolutions without propa-
gation failure. Moreover, DREAM simulations showed a ten-
dency towards higher errors for ionic models with reduced 
levels of detail. Simulations across different resolutions 
for the DREAM showed similar RMSEs for each condi-
tion and ionic model. For instance, differences in RMSEs 
among resolutions in DREAM simulations were smaller 
than 5.46 mm/s and 0.5 ms for the CV and ERP restitution 
curves respectively per condition and ionic model.

4.2 � Reentry in 2D sheets

Figure 5 shows the reentry duration for ΔS values within 
the vulnerable window for each of the resolutions at a CV 

of 200 mm/s. The DREAM produced similar results across 
all resolutions. In contrast, the monodomain results failed to 
propagate during pre-pacing for coarser resolutions (800 and 
1600 μm average edge length). For higher resolutions (200 
and 400 μm average edge length), both models showed reen-
tries that lasted 1000 ms (i.e., until the simulation reached 
tend ) for most of the tested ΔS values. However, monodo-
main simulations produced a few reentries that stopped 
before 1000 ms for less than 10 ΔS values sparsely distrib-
uted across the vulnerable window. Moreover, vulnerable 
windows were shorter for the monodomain model mainly 
because it did not induce reentries for the longest ΔS values. 
For higher CVs, the monodomain model produced reentries 
that terminated before the end of the simulation, whereas 
simulations with the DREAM yielded a unidirectional block 

Fig. 6   a Vulnerable window at 
different mesh resolutions for 
a conduction velocity (CV) of 
200 mm/s, b 600 mm/s and c 
1000 mm/s. d Reentry dura-
tion (mean±std) for a CV of 
200 mm/s, e 600 mm/s, f and 
1000 mm/s

Table 5   Mean ± standard deviation of the local reentry cycle length 
in  ms at 4 points P

x
 across various mesh resolutions, indicated in 

average edge lengths in μm , for both the DREAM and monodomain 
models

aPropagation failure at 800 and 1600 μm

Propagation 
model

Resolution Pleft Pdown Pright Pup

DREAM 200 154 ± 45 137 ± 11 151 ± 28 161 ± 45
400 156 ± 46 138 ± 10 153 ± 28 163 ± 44
800 158 ± 40 143 ± 9 154 ± 22 164 ± 38
1600 157 ± 33 149 ± 10 154 ± 20 162 ± 32

Monodo-
maina

200 136 ± 28 157 ± 26 152 ± 28 146 ± 17
400 162 ± 15 174 ± 24 174 ± 19 168 ± 24
800 (–) (–) (–) (–)
1600 (–) (–) (–) (–)
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but did not reactivate the nodes where the S2 stimulus was 
applied.

Figure 6a–c show the vulnerable window duration for 
the 2 models at each of the 4 resolutions at different ref-
erence CVs. The vulnerable window duration was defined 
as the time between the earliest and the latest S2 time that 
induced a unidirectional block. Monodomain simulations on 
the mesh with an average edge length of 200 μm were taken 
as ground truth. The DREAM kept a stable error as mesh 
resolution decrease, performing equally even at the coarsest 
resolution of 1600 μm . Vulnerable windows were longer for 
all CVs and all the resolutions in the DREAM simulations. 
These differences in vulnerable window duration between 
DREAM simulations in all resolutions and monodomain 
simulation at finer resolutions did not increase in simula-
tions with higher reference CV. Figure 6d–f show the reen-
try duration (mean ± std) for the same reference CVs. For 
the slowest CV both models produced longer reentries at 
most of ΔS values. In faster CV, both models resulted in 
shorter durations for all resolutions. The DREAM simula-
tions resulted in reentry duration errors across all resolutions 
that increased with higher CVs. The discrepancy is grounded 

in the fact that the monodomain simulations produced self-
terminated shorter reentries with a few turns within the 2D 
sheet at higher reference CV in this particular experiment. 
The DREAM simulations, on the other hand, resulted in 
propagation patterns with unidirectional blocks that were 
incapable of completing a full turn due to the lack of source-
sink mismatch representation.

Table 5 presents the mean and standard deviation of local 
reentry cycle lengths observed in DREAM and monodomain 
simulations across various resolutions at nodes Pleft , Pdown , 
Pright , and Pup . In monodomain simulations with average 
edge lengths of 200 μm , mean local reentry cycle lengths 
ranged from 136 to 157 ms, with standard deviations varying 
from 17 to 28 ms. DREAM simulations consistently showed 
comparable mean and standard deviation values across dif-
ferent resolutions, ranging from 137 to 164 ms and from 9 
to 46 ms, respectively. Notably, most of mean local reen-
try cycle lengths from DREAM simulations were closer to 
those observed in monodomain simulations at 200 μm than 
in simulations at 400 μm.

In the long-term stability analysis, the qualitative behav-
ior of the reentry remained stable beyond the initial 1000 ms, 

Fig. 7   Inducing points identified by the PEERP protocol. a Distribu-
tion of points that induced reentry in experiments with the DREAM, 
the monodomain model or both at different mesh resolutions (aver-
age edge length of 200, 400, 800, or 1600 μm ). Each row represents 

an experiment, and each column represents one of the 21 stimulated 
points. The square’s color indicates points that produced reentry with 
the DREAM, monodomain model, or both. b Number of inducing 
points per model and resolution (color figure online)

Fig. 8   Left atrium posterior 
view of transmembrane volt-
age maps of induced reentries 
at different time points after 
S2, stimulated at a point close 
to the roof. a Monodomain 
model with 200 μm average 
edge length, b DREAM with 
1600 μm average edge length
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continuing consistently until the simulation reached 60 s. 
However, after 13 s, small areas of the sheet began to show 
artifacts and activation discordance with the rest of the sheet, 
though this did not affect the overall behavior of the reentry. 
The mean local cycle length across nodes decreased from 
an initial value of 182 ms in the first cycle to 138 ms by 
the seventh cycle, remaining steady around this value until 

the 426th cycle, where it measured 137 ms. Similarly, the 
standard deviation of the local cycle length dropped from 
27.1 to 0.8 ms between the first and seventh cycles, but then 
increased to 13 ms by the 426th cycle.

4.3 � Reentry in the left atrium

Figure  7 shows the number of inducing points of the 
21 stimulation points in the left atrium per experiment. 
Monodomain experiments at higher resolutions (average 
edge lengths 200 and 400 μm ) showed the same number 
of inducing points. On the other hand, monodomain simu-
lations failed to induce any reentry at lower resolutions 
(average edge lengths 800 and 1600 μm ) due to propaga-
tion failure. DREAM experiments showed a lower number 
of inducing points compared to monodomain experiments. 
However, DREAM experiments showed a similar amount 
of inducing points across all resolutions. For some experi-
ments, both models showed similar mechanisms of reentry 
at the same inducing point. For example, Fig. 8 shows 
simulations in the same inducing point in which both the 
DREAM and monodomain model produced a figure-of-
eight reentry. Despite this example showing the same 

Fig. 9   Left atrium posterolateral 
view of transmembrane voltage 
maps of induced reentries at 
different time points after S2, 
stimulated at a point near the 
mitral valve. a Monodomain 
model with 200 μm average 
edge length, b DREAM with 
1600 μm average edge length

Table 6   Sensitivity and specificity for the DREAM and monodo-
main model at different mesh resolutions, expressed in average edge 
length in μm , considering monodomain experiments at 200 μm as the 
ground truth

aPropagation failure at 800 and 1600 μm

Propagation model Resolution Sensitivity (%) Specificity (%)

DREAM 200 47 100
400 41 100
800 41 75
1600 41 50

Monodomaina 200 100 100
400 94 75
800 (–) (–)
1600 (–) (–)

Fig. 10   Computing time: a 
planar wavefront, b reentry
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mechanism of reentry, the one induced by the DREAM 
lasted longer time. Figure 9 shows an example where the 
DREAM shows a figure-of-eight reentry while the mono-
domain model shows a spiral reentry. This difference arose 
from the lack of source-sink mismatch representation in 
the DREAM. In both cases, the reentries were sustained 
for the full 1000 ms simulated. Table 6 provides sensitivity 
and specificity of both models in the resolutions that did 
not have propagation failure running the PEERP protocol. 
Monodomain results at the highest resolution (i.e., aver-
age edge length of 200 μm ) were used as ground truth. 
DREAM simulations exhibited better specificity than sen-
sitivity, as most inducing points identified by the DREAM 
were also found by the monodomain model, whereas not 
all points found by the monodomain model were captured 
by the DREAM. On the other hand, DREAM performance 
was consistent across all resolutions, except for a signifi-
cant drop in specificity for the coarsest resolution (i.e., 
average edge length of 1600 μm ) to 50%.

4.4 � Computing times

Figure 10 illustrates the computing times that the DREAM 
and monodomain model took for simulating a planar wave-
front and reentry across different mesh resolutions. The 
proportion of computing time for the different steps of both 
models remained consistent across resolutions. Therefore, 
the detailed computing times for each step are mentioned 
only for simulations on a mesh with an average edge length 
of 200 μm . In both the planar wavefront and reentry experi-
ment, for all resolutions, simulations with the DREAM were 
faster than those with the monodomain model. DREAM 
simulations on coarser resolution meshes (1600 μm ) were 
122 times faster in the planar wavefront experiment and 
approximately 87 times faster in the reentry experiment than 
monodomain simulations on finer mesh resolutions (200 μm
).

In the DREAM simulations for the planar wavefront, 
the majority of the computing time was spent solving the 
ionic model equations (Fig. 1 step C), which took 83 s. The 
second most time-consuming step was calculating recovery 
times (Fig. 1 step D), which took 6 ms, followed by iterat-
ing the cycFIM (Fig. 1 step A), which took 5 s. Computing 
Idiff (Fig. 1 step B) required 2.5 s. In the same scenario, the 
monodomain model spent 80 s computing the ionic model 
and 138 s solving the parabolic equation.

When simulating the reentry with the DREAM, the 
majority of computing time was spent in step C, followed 
by steps A, D, and B, taking 51, 22, 16, and 2 s respectively 
(See Fig. 1). Given the significant role of diffusion currents 
in reentries, the monodomain simulations devoted most of 
their time to solving the parabolic equation (97 s), with only 
51 s spent on computing the ionic current.

5 � Discussion

5.1 � Advantages and novel aspects of the DREAM

The DREAM benefits from the consistency of the eikonal 
model across mesh resolutions. Across all experiments, it 
was possible to obtain similar results with all tested resolu-
tions. Unlike the monodomain model that requires fine mesh 
resolutions, hence more computational effort, the DREAM 
yields similar results at lower resolutions. This characteristic 
allows the DREAM to perform faster simulations.

Most of the eikonal models that have attempted to incorpo-
rate reentry phenomena use the FMM as a numerical method 
[5, 14] and implementations are not publicly available. More-
over, the regular FMM struggles with anisotropic propagation 
because this algorithm assumes the characteristic direction 
to be always colinear with the wavefront gradient, which is 
not true for anisotropic cases [15]. To address this limitation, 
Pernod et al. developed the anisotropic FMM, which incorpo-
rates an additional “CHANGED” list to enable recursive cor-
rections [5]. Similarly, Cristiani proposed a similar method, 
introducing the “BUFFER” list with the same recursive 
correction concept [17]. In his study, he conducted various 
tests comparing the buffered FMM against the regular FMM, 
focusing on anisotropy problems. His findings revealed that 
the regular FMM calculated incorrect solutions with vary-
ing degrees of error across different anisotropic scenarios and 
resolutions. For instance, in an experiment with an anisotropy 
ratio of approximately 5 on a 2D grid of varying resolutions, 
the regular FMM was evaluated for its accuracy in solving the 
anisotropic eikonal equation, which in our case corresponds to 
finding ATs. The errors in the solution of the eikonal equation 
were 40 to 50 times larger compared to those of the buffered 
FMM, with the fast sweeping method, which is a classical 
iterative method, used as the reference solution [47].

Another constraint of the regular FMM is the inability to 
simulate reentry and reactivation. Pernod et al. also devel-
oped the multifrontal FMM, integrating a REFRACTORY 
list to include reentry [5]. However, this adaptation omitted 
the “CHANGED” list essential for managing anisotropic 
propagation, thereby compromising its efficacy in such sce-
narios. Although no reason for this omission is provided, it 
is possible that they faced similar challenges to those moti-
vating this work. Specifically, changes in the solution of the 
eikonal equation make it difficult to determine definitive 
ATs for calculating RTs. Gassa et al. later incorporated ideas 
from the multifrontal FMM, the Dijkstra’s algorithm and the 
Mitchell and Schaeffer membrane model, reproducing spiral 
reentries in the atria [9, 12, 14, 35]. Notably, this adapta-
tion neglected the use of recursive corrections or any other 
mechanism for better handling of anisotropy, possibly due 
to similar challenges encountered in Pernod et al.’s work.
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The numerical solution of the anisotropic eikonal equa-
tion with regular FMM-based methods without recursive 
corrections does not lose stability under grid refinement 
[15]. The error from neglecting recursive corrections can be 
small, especially in experiments with small geometries, low 
anisotropy, and homogeneous properties [15, 17] and errors 
may be less apparent due to the stability of the solution [15]. 
However, arrhythmia simulations of multiple reentry cycles 
in realistic geometries with heterogeneous properties and 
high anisotropy may deviate significantly from the viscosity 
solution. For these complex cases, some of the adaptations 
made in the DREAM might be particularly useful.

The FIM is better suited to solve systems with anisotropic 
conditions [16]. However, the iteration process hinders the 
implementation of reactivation patterns and reentry. The 
DREAM uses the cycFIM framework to manage anisotropic 
propagation through correction mechanisms. The DREAM 
also addresses reentry by incorporating a “safety margin 
in time” �s , allowing for corrections before calculating RT 
based on a reliable AT. This approach could potentially also 
be applied for merging the anisotropic FMM and the mul-
tifrontal FMM, leveraging the strengths of both methods 
[5]. However, the computational cost of buffered FMM and 
the anisotropic FMM can exceed that of iterative methods 
in worst-case scenarios with high anisotropy. This is due to 
the increase in the “BUFFER” and “CHANGED” list sizes, 
respectively [5, 17]. Additionally, an FIM-based algorithm 
is more favorable because it can be parallelized more easily 
while maintaining computational density [16, 26, 27, 48]. 
The DREAM is the first model to use an iterative method 
such as cycFIM, ionic models and CV restitution to simulate 
functional reentry to the best of our knowledge.

Another method that uses the FIM in an alternative 
approach is the VITA method. This method employs the 
RE method based on the FIM approach [10, 16, 18]. Ini-
tially intended for studying ventricular tachycardia, VITA 
explores reentries using the FIM. While VITA relies on scar 
tissue with an isthmus to simulate anatomical reentry, the 
DREAM is capable of simulating reentry in the absence of 
structural abnormalities, including functional and anatomi-
cal reentries. Additionally, the cycFIM within the DREAM 
framework can simulate multiple ATs per node per reen-
try, considering CV restitution and ERP values to analyze 
reentry maintenance and average cycle length. Conversely, 
VITA does not compute multiple ATs per node during 
reentry. Instead, VITA calculates 2 types of ATs using the 
eikonal-based model. The first AT map identifies isochrone 
splitting and merging points, revealing isthmus exits where 
then elements are decoupled to induce unidirectional block 
for the second activation. This unidirectional block does not 
consider the electrophysiological properties at that location 
during repolarization. Subsequently, a second AT map is cal-
culated for each isthmus exit, stimulating where the elements 

were decoupled. This second AT is the only one calculated 
during reentry. Then, the round-trip time (RTT) is defined 
as the time the wavefront takes to go around and reach the 
isthmus exit again. The RTT serves as a surrogate marker 
for possible ablation targets if its value is longer than 50 ms. 
One argument for using RTT as a surrogate instead of per-
sonalized CV restitution and ERP values is that the latter 
are rarely available in clinical settings. While most in silico 
studies do not personalize these variables but rather rely on 
literature references, some clinical and in silico studies have 
explored the effect of personalized CV restitution and ERP 
values on reentry patterns [49–52]. The DREAM in contrast 
can incorporate personalized CV restitution and ERP val-
ues extracted from patient measurements when available by 
adjusting parameters in the embedded ionic model and the 
COHERENCE() function.

While implementing �s allows to have reentries with mul-
tiple activation cycles in iterative methods, it also entails a 
new challenge successfully addressed by the DREAM. The 
cycFIM in step A

n
 of the n-th DREAM cycle and the RD 

portion in step Cn−1 of the (n − 1)-th DREAM cycle oper-
ate within different, non-overlapping time windows. Con-
sequently, in scenarios such as reentry, it is common for the 
AT of a node to be calculated in step An without the previous 
RT for that node having been calculated by the RD model 
during step Cn−1 , as required by the cycFIM. The DREAM 
overcomes this limitation in step Dn−1 by briefly running the 
ionic model on the activated nodes until the voltage thresh-
old is reached. This enables the ERP restitution to be directly 
obtained from the ionic model instead of relying on provided 
phenomenological curves [5, 7, 53].

This study also demonstrated how the DREAM could 
adapt to different ionic models by adjusting the correspond-
ing parameters. This adaptability allows for the selection of 
the most suitable ionic model for a specific research ques-
tion, depending on the required levels of computational 
speed and physiological detail. For instance, the Courteman-
che et al. model is ideal when detailed biophysical informa-
tion is needed, although it comes at the cost of computa-
tional speed [32]. In contrast, the simplified Bueno-Orovio 
et al. model, which includes the main ionic currents that 
modify the AP morphology and basic calcium dynamics, 
offers intermediate complexity with improved computational 
efficiency [34]. At the other end of the spectrum, the simpli-
fied model of Mitchell and Schaeffer combines fast inward 
and outward currents to represent basic AP dynamics, pro-
viding higher computational speed [35]. The DREAM was 
able to reproduce restitution behaviors very similar to the 
monodomain model when reducing the level of detail in 
the embedded ionic model for the sake of computational 
efficiency, as shown in the comparison between the Cour-
temanche et al. and Bueno-Orovio et al. ionic models. This 
demonstrates that the DREAM is flexible enough to be used 
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in various research scenarios where computational resources 
are a constraint without significantly compromising on 
accuracy.

Another novel aspect of the DREAM lies in its approach 
to incorporate CV restitution. Previous methods typically 
involved incorporating the DI at every node from the previ-
ous activation cycle or the DI of neighboring nodes in the 
present activation cycle [7, 12]. In this study, CV is calcu-
lated using the DI of the present activation cycle, allowing 
for better adaptation to sudden changes in activation fre-
quency and DI. Furthermore, as CV is assigned per node 
rather than per element, the minimization of AT is facilitated 
using analytical formulas such as Eq. 6. This eliminates the 
need for the Dijkstra’s algorithm and additional pathways 
within the triangles can be considered [9]. In contrast, Cor-
rado et al. proposed incorporating the DI within the Dijk-
stra’s algorithm [12] which considers trajectories solely 
along the edges.

5.2 � Limitations and future work

Several attempts have been made to incorporate additional 
properties such as curvature and diffusion effects into the 
pure eikonal model [54–57]. However, existing eikonal mod-
els still struggle to accurately represent complex activation 
patterns, such as multi-wavelet reentry, which are influenced 
by high wavefront curvatures, bath loading, wave collisions, 
and other source-sink mismatch effects. These properties are 
typical of propagation in fibrotic and heterogeneous tissue, 
a key factor in sustaining reentry [55]. To simulate these 
complex activation patterns accurately, it is necessary to 
accurately model diffusion and curvature effects, as well as 
reactivation and repolarization.

In this work, the approximation of the diffusion current 
was incorporated as a function that depends solely on the 
ATs with constant amplitude and duration. This function 
is unaffected by electrophysiological properties of the sur-
rounding tissue. This limitation implies that the DREAM 
at this moment does not consider source-sink mismatch 
effects in the diffusion current and in the CV. Most of the 
differences observed between the DREAM and monodomain 
model in the experiments regarding reentries can be attrib-
uted to this phenomenon. In the RE+ model described by 
Neic et al., Ifoot (analogous to Idiff in the DREAM) is added 
to the parabolic portion of the RD model. On the other hand, 
the RE− model replaces the diffusion term ∇ ⋅ (�i∇Vm) with 
Ifoot . By doing this, the RE+ model managed to obtain similar 
repolarization phases as those obtained in the RD models 
when the tissue had heterogeneous APD. In the DREAM, 
Idiff is implemented as in the RE− model, resulting in sharp 
repolarization gradients that preserve the APD differences 
between neighboring cells. The primary reason for the sharp 
repolarization gradients is that Idiff does not account for the 

diffusion currents during the repolarization phase. Neglect-
ing these diffusion currents during the repolarization phase 
can lead to the appearance of artifacts in localized regions 
during extended simulations. When implementing the RE+ 
approach in the DREAM, one needs to ensure that the RD 
wavefront is never ahead of the eikonal wavefront to prevent 
major artifacts in the membrane models and their refractory 
behavior. This is more difficult for complex activation pat-
terns with spatially heterogeneous curvature than for planar 
or radial excitation spread. For instance, during the repo-
larization phase, new activations (i.e., not predicted by the 
eikonal model) occurred when there was a strong gradient 
between cells with short APD and neighboring cells with 
longer APD. Since Idiff was calibrated using monodomain 
simulations with fixed conductivity values to obtain a CV 
of 1000 mm/s without considering restitution at shorter 
cycle lengths, this might result in small differences in AP 
amplitude.

In the present formulation of the DREAM, changes in 
sodium channel conductance are not explicitly linked to CV 
and Idiff . However, in the approach used to model AF in this 
manuscript, upstroke velocity changes are not critical for the 
dynamics under study [33]. While this approach may be less 
suitable for conditions where sodium channel dysfunction or 
block leads to a significant reduction in CV, we believe that 
CV can still be accurately fitted to patient-specific data or 
obtained from small-scale monodomain simulations for use 
in the DREAM model. In future work, further personaliza-
tion of Idiff and CV to account for conductivity variations, 
Idiff restitution, and changes in ionic model conductances 
may enhance the model’s accuracy.

While this paper is limited to triangles, the DREAM 
algorithm can be executed in tetrahedra by employing a 
similar approach as described in [16] and by implement-
ing DREAM’s adaptations to the tetrahedra equation within 
the local solver, as performed in Eq. 6. Nevertheless, fur-
ther analysis of the computational efficiency is required for 
DREAM simulations in volumetric meshes. While the simu-
lations in this paper were conducted in serial code, paral-
lelization can further enhance the efficiency of the DREAM.

Another promising improvement to decrease the com-
puting time of the DREAM would be to increase the inte-
gration time step when calculating the RT in cases where 
they were not yet provided by the ionic model. Currently, 
RTs are calculated twice at some nodes. In the first calcu-
lation, the membrane potential Vm is determined asynchro-
nously for each cell, but only the RT is saved and passed 
to the eikonal model, without storing Vm . In the second 
calculation, the membrane potential Vm is computed in 
a synchronized manner across all nodes (i.e., each time 
step is calculated for all nodes simultaneously), and the Vm 
values are stored. The need for synchronizing the nodes 
for storing purposes is the reason why the state variables 
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and Vm states are reset between the first and second calcu-
lation. Since diffusion currents during the repolarization 
phase are neglected in the latest version of the DREAM, 
this redundancy does not introduce discrepancies, as the 
same calculations are being repeated. However, future 
improvements could focus on optimizing the process to 
avoid redundant RTs calculations. Additionally, new con-
siderations will be needed when diffusion currents during 
the repolarization phase are incorporated.

In this work, atrial cell models and CV values were tested 
in the context of AF. Nonetheless, other atrial or ventricular 
models can also be used with the DREAM as long as the 
parameters of CV restitution and AP properties are tuned 
accordingly. Investigating the tissue effects of additional 
changes in ionic models, such as pharmacological effects 
or channel mutations, represents another valuable area 
for exploration. On the other hand, the DREAM with the 
embedded ionic model of Mitchell and Schaeffer demon-
strated challenges in reproducing the restitution behavior 
at short pacing cycle lengths observed in the corresponding 
monodomain model. Therefore, a better adjustment of the 
DREAM parameters is required to further improve the faith-
ful representation of CV restitution curve and simulation of 
reentrant scenarios.

More systematic analysis of the new parameters intro-
duced in the DREAM is required to further understand the 
optimal tuning that allows for a good balance between accu-
racy and computational efficiency. We expect that �s should 
increase when the anisotropy ratio increases as more changes 
are required. On the other hand, �inc must be smaller than the 
sum of the longest possible APD and the minimum DI, i.e., 
parameter � in Eq. 12. Moreover, further investigation of the 
COHERENCE() function could enhance the approximation 
of CV restitution, particularly near propagation failure.

The cycFIM embedded in the DREAM could poten-
tially also be used as an alternative method to simulate 
other applications of RD models. In this case, changing 
the ionic model according to the reaction part of the prob-
able application would be necessary. Potential use cases 
include the RD model simulating cyclical phenomena 
like the Belousov–Zhabotinsky reaction, which can also 
exhibit spiral propagation patterns [58].

5.3 � Conclusion

The DREAM presents several advancements in simulating 
cardiac arrhythmias compared to existing eikonal-based 
models while retaining their main advantages and mak-
ing it accessible as part of the openCARP simulator [30]. 
By inheriting consistency across mesh resolutions from 
the eikonal model, the DREAM achieves faster computing 
times compared to RD models for a given desired accuracy. 

Additionally, the DREAM faithfully represents functional 
reentry without the need for structural abnormalities like 
scar tissue. The use of cycFIM enables multiple ATs per 
node, allowing for better analysis of reentry patterns in 
anisotropic media. Moreover, the DREAM permits modi-
fication of CV restitution and ERPs, enhancing the person-
alization of cardiac computer models. Ongoing work aims 
to overcome limitations in representing source-sink bal-
ance. Overall, the DREAM offers promising prospects for 
advancing our understanding and improving treatments of 
cardiac arrhythmias compatible with clinical time frames. 
Finally, the cycFIM may find applications beyond cardiac 
modeling in simulating cyclical phenomena.
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