KIT | KIT-Bibliothek | Impressum | Datenschutz

Large-angle Lorentz Four-dimensional scanning transmission electron microscopy for simultaneous local magnetization, strain and structure mapping

Kang, Sangjun ORCID iD icon 1,2; Töllner, Maximilian 1; Wang, Di ORCID iD icon 1,2; Minnert, Christian; Durst, Karsten; Caron, Arnaud; Dunin-Borkowski, Rafal E.; McCord, Jeffrey; Kübel, Christian ORCID iD icon 1,2; Mu, Xiaoke 1
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Karlsruhe Nano Micro Facility (KNMF), Karlsruher Institut für Technologie (KIT)

Abstract:

Small adjustments in atomic configurations can significantly impact the magnetic properties of matter. Strain, for instance, can alter magnetic anisotropy and enable fine-tuning of magnetism. However, the effects of these changes on nanoscale magnetism remain largely unexplored. In particular, when strain fluctuates at the nanoscale, directly linking structural changes with magnetic behavior poses a substantial challenge. Here, we develop an approach, LA-Ltz-4D-STEM, to map structural information and magnetic fields simultaneously at the nanoscale. This approach opens avenues for an in-depth study of structure-property correlations of magnetic materials at the nanoscale. We applied LA-Ltz-4D-STEM to image strain, atomic packing, and magnetic fields simultaneously in a deformed amorphous ferromagnet with complex strain variations at the nanoscale. An anomalous magnetic configuration near shear bands, which reside in a magnetostatically high-energy state, was observed. By performing pixel-to-pixel correlation of the different physical quantities across a large field of view, a critical aspect for investigating industrial ferromagnetic materials, the magnetic moments were classified into two distinct groups: one influenced by magnetoelastic coupling and the other oriented by competition with magnetostatic energy.


Verlagsausgabe §
DOI: 10.5445/IR/1000179416
Veröffentlicht am 24.02.2025
Originalveröffentlichung
DOI: 10.1038/s41467-025-56521-6
Scopus
Zitationen: 2
Web of Science
Zitationen: 2
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Karlsruhe Nano Micro Facility (KNMF)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 2041-1723
KITopen-ID: 1000179416
HGF-Programm 43.35.01 (POF IV, LK 01) Platform for Correlative, In Situ & Operando Charakterizat.
Erschienen in Nature Communications
Verlag Nature Research
Band 16
Heft 1
Seiten Art.-Nr.: 1305
Vorab online veröffentlicht am 03.02.2025
Schlagwörter TEM, 2019-021-025786
Nachgewiesen in OpenAlex
Web of Science
Dimensions
Scopus
Relationen in KITopen
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page