KIT | KIT-Bibliothek | Impressum | Datenschutz

Methodical Approach to Instance-Specific Reliability Modeling for the Perpetual Innovative Product in the Circular Factory

Leitenberger, Felix ORCID iD icon 1; Dörr, Matthias 1; Gwosch, Thomas 1; Matthiesen, Sven 1
1 Institut für Produktentwicklung (IPEK), Karlsruher Institut für Technologie (KIT)

Abstract:

The Circular Factory reprocesses used products into current-generation products, aiming for perpetual innovation. This requires predicting the reliability of a product's components and subsystems throughout its use life. Each product within the Circular Factory exhibits unique life cycles and processes, necessitating instance-specific reliability models.
This study introduces a novel methodical approach for reliability modeling tailored to the challenges of the Circular Factory, illustrated through a case study on angle grinders. The approach consists of four steps: Developing a non-parametric system reliability model by identifying failure types and assessing their impact; Generating reference data by sensorintegrated products and by X-in-the-Loop test benches; Integrating instance-specific data such as historical loads, tolerances, and material into reliability models; and validating these models at both subsystem and system levels to ensure they accurately reflect expected system reliability. Machine Learning techniques are proposed to enhance model accuracy and to challenge instance-specific reliability challenges.
Critical questions emerged from the theoretical case study, highlighting the necessity for more in-depth investigations. ... mehr

Zugehörige Institution(en) am KIT Institut für Produktentwicklung (IPEK)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2025
Sprache Englisch
Identifikator ISBN: 978-0-7918-8869-8
KITopen-ID: 1000179426
Erschienen in ASME 2024 International Mechanical Engineering Congress and Exposition (IMECE) : Vol. 11: Safety Engineering, Risk and Reliability Analysis
Veranstaltung ASME International Mechanical Engineering Congress and Exposition (IMECE 2024), Portland, OR, USA, 17.11.2024 – 21.11.2024
Verlag The American Society of Mechanical Engineers (ASME)
Seiten Article: V011T14A024
Vorab online veröffentlicht am 23.01.2025
Schlagwörter Product Development, Sustainability, Reliability, Machine Learning, Uncertainty
Nachgewiesen in Dimensions
Scopus
OpenAlex

Seitenaufrufe: 17
seit 24.02.2025
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page