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A B S T R A C T

Ruthenium (Ru-) based electrocatalysts have historically shown the highest activity for the oxygen evolution reaction in green H2 production by PEM-based water 
electrolysis. However, their instability under industrially relevant operating conditions makes the considerably more expensive and scarcer Ir/IrO2-based electro
catalysts the materials of choice for industrial use – an important technical bottleneck that contributes to the high levelized-cost of green H2. Despite decades of 
research, meeting the ‘Key Performance Indicators’ of industrial systems with Ru/RuO2-based electrocatalysts is not yet possible, with an in-depth understanding of 
the engineering strategies and their induced effects still at an early stage. Framing our review from the perspective of a PEM water electrolyser, and the demands that 
the operating environment puts on the core components, we focus on the state-of-the-art Ru-based electrocatalysts and the physicochemical properties that were used 
to optimise performance (decrease overpotential and prolong stability). Further, we highlight that due to the intrinsic heterogeneity of the electrocatalysts, an 
improvement to a certain figure of merit, e.g., stability or activity, is a complex combination of various interlinked factors. We find that most research efforts focus on 
electrocatalyst preparation via trial-and-error methods and evaluation at low currents densities in short durations. We discuss the obstacles such an approach presents 
on standardization of results in individual studies, across the community and on the extraction of industrially relevant information. Also, our discussion highlights 
potential failure mechanisms and development strategies that may maximise the likelihood of success in an applied scenario. Our review underscores the urgent need 
for electrocatalyst synthesis and testing under more standardized (and closer to applied) conditions if the goal is to develop an industrially relevant material.

1. Introduction

1.1. The oxygen evolution reaction challenge, Ir- and Ru-based 
electrocatalysts

In hydrogen (H2) production through a proton exchange membrane 
water electrolyser (PEM-WE, described extensively within prominent 
reports) [1–4], the oxygen evolution reaction (OER) at the anode is 
complemented by the hydrogen evolution reaction (HER) at the cath
ode. The OER is a kinetically sluggish process compared to the HER and 
requires a higher overpotential (η), as discussed in many reports [2,5]. 
To maintain stability under the operating conditions of a PEM-WE, noble 
metal-based electrocatalysts (with simultaneously excellent intrinsic 
activity towards the OER) are required.

Iridium and iridium dioxide (Ir-/IrO2)-based materials exhibit near- 

optimal activity for the OER and are the only stable electrocatalysts 
available for commercial-scale PEM electrolysers [1,6,7]. However, 
their scarcity presents a true bottleneck in scaling up H2 production to 
terawatt-level capacity [8–10]. Ru-based catalysts, and in particular 
RuO2, are a significantly cheaper (ca. 10 × lower in price) and more 
abundant alternative to IrO2 [11]. According to the theoretical ‘volcano’ 
plot reported by Nørskov et al. [12], RuO2 is the most active pure metal 
oxide electrocatalyst for the OER due to its optimal binding energy with 
the reaction intermediates [13–15]. However, its dissolution rates are 
more than an order of magnitude higher than IrO2 under acidic condi
tions [16,17], and are reported to vary greatly depending on the 
composition of the material, the pre-/post-treatment conditions and the 
operating conditions [17,18]. The low stability of the material remains 
the main hurdle limiting its implementation in a PEM-WE [11,19].
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PEM cell that emulates industrial operating conditions (expanded on 
below and in Section 2.1). In the latter case, the electrode architecture, 
operating conditions, and hydrodynamics are different compared to that 
in a half cell. Thus, the ability to translate or scale the material between 
the two testing environments should be verified – a key step in which 
complexity is underestimated [61–68]. Rotating disk electrode testing 
for example can overestimate the activity, and underestimate the sta
bility, and differences between Ir and IrO2 catalysts compared to when 
they are tested within an electrolyser [69]. The number of studies 
evaluating electrocatalysts under conditions simulating those in present 
day or future PEM-WE systems – i.e. in MEAs that are integrated in a cell 
(e.g. ≥25 cm2) or stack, at current densities (>1 A cm 2), temperatures 
(60–80 ◦C), ambient or partially elevated pressures, and durations 
(2000–8000 h) tending toward those described in Section 2.1 – coinci
dently, also remains low. This is all expanded on in later sections.

1.3. Are electrocatalysts for the OER getting better?

We will note briefly here that the number of scientific articles 
relating to Ir- and Ru-based OER electrocatalysts is increasing rapidly, as 
shown in Fig. 1 (adapted from the work of Alia [70]). The figure also 
compares cell voltages of PEM systems operated at 1 A cm 2 from 
randomly selected studies published since the 1970s (the data is sum
marised in Appendix 1) against commercial PEM-WE cell voltage 
ranges [71,72]. Most of the anode catalysts that are tested in PEM cells 
for ‘long’ periods are based on Ir- and Ru-oxides. After an initial 
improvement in the overall cell voltage, the value at 1 A cm 2 has not 
improved significantly despite the surge in OER electrocatalysts being 
reported. It should be noted that these studies do not all use cathodes, 
membranes, porous transport layers (PTLs) or experimental conditions 
(e.g., temperature, pressure, electrode area, compression, etc.) that are 
consistent with industrial settings. Due to these caveats, the search for 
newer anode materials is not being translated into better PEM-WE 
systems.

2. Requirements for OER electrocatalysts in PEM water
electrolysers

2.1. Industrial targets for PEM-WE OER electrocatalysts

Three critical merits of an electrocatalyst are activity, durability, and 
(low) cost. For currently installed systems, the capital expenditure 

Fig. 1. Cell voltages at 1 A cm− 2 reported from PEM-WE in literature (summarised in Appendix 1) and the number of papers reporting electrocatalysts for the OER is 
from the work of Alia [70]. In the plot, ‘Other’ is also an Ir-based catalyst (see Appendix 1). The grey shaded region represents proposed target voltages at up to 3 
A cm− 2.

1.2. Attempts, and rational approaches, to improve Ru-based 
electrocatalysts

Attempts have been made to improve the activity and stability of 
RuO2 (rutile structure) and other Ru-based structures, e.g., ruthenate, 
perovskite, pyrochlore, and Ru-single atom systems [20–22], through 
alloying, sometimes without considering the immiscibility gap between 
the elements [14,23,24,24–47]. Given the 84 stable elements in the 
periodic table that can be used for alloying, a large number of studies are 
conducted [48–54]. Many of them evaluate the developed poly(nano/-
micro-)crystalline electrocatalyst in an aqueous 3-electrode (half) cell, 
reporting overpotentials at 10 mA cm 2 over short time periods without 
the use of a reliable baseline for comparison amongst the community 
[55]. Efforts to study these ‘applied’ electrocatalysts are usually justified 
by a need to improve performance (activity and stability), and to un-
derstand underpinning reason for an enhancement(s) – all in pursuit of 
developing more affordable anodes for PEM electrolysers.

However, the “So What?” factor [56] is often missing in the quest for 
a new electrocatalyst; Approaches to synthesise an applied material are 
dominated by trial-and-error attempts [49–54]. These synthesis 
methods do not always enable precise control of atom-specific active 
sites, rather producing poly(nano/micro-)crystalline materials with 
differing structural, compositional and electronic properties, that are 
further modified under experimental conditions [57–60]. Other aspects 
(e.g., the electrode preparation method, its physical properties along the 
testing protocol) also contribute to the electrochemical response. If the 
material is unstable in an aqueous half-cell over short time periods and 
at low current densities, then one may wonder whether adding another 
electrocatalyst based on a permutation and/or combination of elements 
contributes meaningly to PEM-WE development.

If the goal is to ‘understand underpinning reasons for enhancement’, 
as stated above, a more rational approach is to study the catalyst’s 
functional properties at a level where heterogeneity is minimised and to 
use this data to fine-tune its performance. Single crystals or epitaxial 
films enable optimisation at such a level via a bottom-up approach 
combining theoretical and empirical studies. If, however, the goal, is to 
develop an industrially relevant catalyst (where understanding funda-
mental insights is not vital), then screening of the poly(nano/micro-) 
crystalline electrocatalyst should be rigorous compared to the currently 
used approaches to report activity and stability. Specifically, to stand out 
more than just another electrocatalyst, the new electrocatalyst should 
compete with state-of-the-art Ir-based materials in a half cell and in a 



operational/capital expenditure perspective – reducing overall produc
tivity due to downtime [85,86]. To further highlight the stability chal
lenge in PEM electrolysers, an anode electrocatalyst made of RuO2, with 
a Faradaic selectivity of 99.999999 % for the OER, will still dissolve at 
~0.43 mg cm 2 annually (see the Supplementary Information). 
Electrocatalyst degradation is also an accumulative process, and the 
large operational hours in a PEM-WE (compared to applied durations in 
academic literature) will lead to a notable change in the electrocatalyst’s 
activity and degradation of the MEA.

2.2. The electrocatalyst’s properties should be transferable into a PEM- 
WE

Integrating an OER electrocatalyst into a PEM cell must not adversely 
alter the properties that gave its initially promising performance in the 
half cell. In this case, a material used for the most fundamental studies – 
a single-crystal (i.e., a thin layer of epitaxy-grown surface) – is not easily 
or as readily applicable to an industrial electrolyser as a polycrystalline 
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Fig. 2. (a) Potential degradation mechanisms of the electrocatalyst in an MEA. (b) PEM electrolyser performance of RuO2 annealed at different temperatures [98]. 
(c) Metal deposition within the membrane, related H2 spill over and increase in the system’s resistance. d) SEM-EDX mapping of cathode catalyst near membrane (i)
Pt map, (ii) Ir map, and (iii) overlay of Pt and Ir map [136]. (e) The impact of Fe3+ contamination on the cell performance [137]. (f) TEM of (i) fresh anodic catalyst
(ii) used anode (iii) fresh cathode (iv) used cathode [138].

(CAPEX) contribution of the anodic electrocatalyst to the stack is 10–15 
% (with electrocatalyst loadings of ~2–5 mg cm 2) [71]. More impor-
tantly, noble metal supply (particularly Ir) cannot keep up with 
increasing electrolyser size capacities [1,70,73]. Thus, projected mass 
loadings of <0.5 mg cm 2 (by 2030) and ~0.1 mg cm 2 or below (by 
2050) have been suggested to meet future H2 production demands by 
improvements of the membrane electrode assembly (MEA), catalyst 
layer and catalyst itself, the latter by independent development in half 
cells [10,71,74–76]. The activity and stability targets for PEM-WE sys-
tems are also challenging; A cell voltage of 1.6–1.8 V at 3 A cm 2 (Fig. 1) 
with a degradation rate of 2–2.3 mV kh 1 and a total lifetime of 80 khr 
by 2030 have been proposed [25,71,72,77–81].

The electrocatalyst stability particularly must not be an issue, as we 
will discuss through this review. A PEM cell showing exemplary initial 
performance due to a high OER electrocatalyst activity that also has a 
high degradation rate will become obsolete before the targeted opera-
tional hours are met [79,82–85]. In this case, frequently replacing the 
electrocatalyst (and associated components) is expensive from an 



pathway [123]. Interestingly, however, recent experimental evidence 
hints that OER activity and dissolution-driven instability may not be 
correlated in this material – laying claim to the possibility that these two 
processes are decoupled, with important benefits in terms of electro
catalyst development for commercial applications [51]. Development of 
computational simulations and their pragmatic application [11], along 
with the development of experimental tools (e.g. synchrotron spectros
copies [124,125]) and growing accessibility to high-quality epitaxial 
films [126,127] will provide clarity on these important matters.

3.2. Corrosion alters the electrocatalyst’s structure and activity

As previous sections imply, during prolonged operation in the an
ode’s corrosive environment, the electrocatalyst undergoes amorphisa
tion, phase segregation, and even complete dissolution – altering its 
morphology, surface topology and electronic properties, etc. (Fig. 2a) 
[128]. In particular, as many OER electrocatalysts are based on unique 
micro-/nano-structured architectures, they are particularly susceptible 
to particle growth and sintering, reducing the active surface area during 
operation (Fig. 2f) [25,80,81,129–131]. Dissolution and sintering issues 
can be accelerated at high current densities due to hot spot formation (i. 
e. localised areas with increased temperature), which can further dam
age the membrane, cascading the issues [132]. While these factors are
important in a PEM cell under prolonged operation, the lower current
densities and shorter timeframes typically used in half cell studies may
not uncover or even initiate stability issues (Section 6).
Corrosion-induced changes can even be beneficial for the activity when
tested in half cells [133–135].

3.3. Corrosion leads to additional “non”-electrocatalytic changes in 
PEM-WE systems

In addition to corrosion-induced changes to the electrocatalyst, its 
instability adversely affects the properties of the catalytic layer (cata
lyst-ionomer) and membrane in a PEM-WE. For example, dissolution of 
RuO2 can lead to the precipitation of Ru in the membrane (Fig. 2c), 
reducing conductivity to H+ and thus increasing the high-frequency 
resistance [98]. Similar changes were seen in Ir-based anodes (Fig. 2d) 
[6,136,139], where leached cations block ion exchange sites in the 
membrane and ionomer [140]. Inazumi et al. [141], for example, 
studied the long-term stability of PEM-WEs and found that cell voltage 
increase was due to accumulation of Fe, Ni and Cr ions in the membrane 
(originating from the stainless steel tubing) [142]. The commonly used 
Nafion membrane and ionomer are especially vulnerable as metal ions, 
except Li+, have a higher affinity towards Nafion’s sulfonic groups 
compared to protons [143]. Substitution of a proton by metal ions can 
also impact water transport in the membrane due to bulkier solvated 
ions ([M(H2O)x]y + compared to H3O+) [144–146]. Even a small con
centration of ions could be detrimental to PEM performance – for 
example, Li et al. observed that 1 ppm Fe3+ contamination immediately 
increased the cell voltage, and the degradation rate increased from 5.2 
to 128.9 μV h 1 at 0.5 A cm 2 (Fig. 2e) [137]. The cations can also 
catalyse the Fenton reaction, promoting the formation of radicals like 
HO•, HOO• and H•, which may damage the membrane and other com
ponents [147–151].

The cathode electrocatalyst (often Pt on carbon support) can also be 
influenced (‘poisoned’) by the dissolution of the anode materials [73,80,
81,87,137,150,152–154]. Metal cations with a reduction potential 
higher than the operating potential of the cathode can be reduced, 
blocking the electrocatalytic surface and increasing the HER over
potential [155]. Metal cations that have more negative reduction po
tentials (e.g. Ca2+, Ti4+) do not deposit on the electrocatalyst but instead 
precipitate in the form of hydroxides or oxides at the membrane-cathode 
interface, increasing the resistivity of the MEA and decreasing the cell 
performance [156,157].

As highlighted in Sections 3.1-3.3; the instability of the 

electrocatalyst, even if it has an outstanding utilisation factor (activity, 
durability, and cost). Analogously, many polycrystalline electrocatalyst 
screening studies use traditional synthesis methods (sol-gel, molten salt, 
Pechini method etc.) [31,87–92], with which scale-up offers its own 
challenges. Thus, while these approaches provide valuable insights into 
catalyst development using a half cell, their impact/influence on com-
mercial PEM-WE performance is not yet fully understood [68,93].

Once the electrocatalyst is incorporated into a PEM cell, additional 
factors become important. As PEM electrolysers must operate at a high 
current density to minimise the levelized cost of H2 (cost to produce 1 kg 
of H2, including the estimated costs of capital investment required and 
the cost of operating the assets involved in its production) [94,95], the 
ohmic losses in the electrocatalytic layers (in addition to that in the 
membrane, PTLs, and bi-polar plates) are required to be as low as 
possible. This factor is often not considered when electrocatalysts are 
studied in half cells, where current densities are at least two orders of 
magnitude lower than in a PEM cell. Furthermore, the electrocatalytic 
layers in half cells (often drop cast layers on flat substrates) are often 
much thinner than the electrocatalytic layers found in a PEM cell (~10 
μm), where a low contact resistance between the electrocatalyst parti-
cles becomes significant [96,97]. For instance, Xing et al. found that 
while RuO2 with poor crystallinity showed superior performance below 
200 mA cm 2 when compared to more crystalline samples, the latter 
showed better performance in PEM cells at higher current densities due 
to a lower film resistance (Fig. 2b) [98].

3. Key challenges for OER electrocatalysts in PEM water 
electrolysers

3.1. Electrocatalyst stability is a major challenge

The OER in a PEM-WE occurs at low pH and at potentials more 
positive than the standard oxidation potential of all metals (>1.5 V vs 
RHE) [99], meaning that pure metals are thermodynamically predicted 
to transition into oxides or ions [100,101]. These conditions thus favour 
catalyst dissolution [17,102–105], dopant leaching [106], structural 
and compositional modifications (Fig. 2a) [25,59,60,82,107–111]. 
While RuO2 may be the most active OER catalyst, based on Pourbaix’s 
data, Schalenbach et al. showed that Ir-, Pt-, and Rh-oxides are the only 
compounds thermodynamically stable for the OER up to 1.6 V vs RHE 
[100]. RuO2 can be partially stabilised by mixing with other elements 
such as Ta, Sn, Nb etc. (see Section 5) [112–115]. However, this de-
creases the overall PEM cell performance [1,88,112] in part as these 
mixed oxides exhibit lower conductivity compared to metallic IrO2 or 
RuO2 [116–118].

As elegantly summarised by Roy et al. [51], RuO2 corrosion (and 
ultimately Ru dissolution) under OER relevant potentials proceeds via 
the reaction: RuO2 + 2H2O → RuO4(aq) + 4H+ + 4e , with its Faradaic 
selectivity reliant on the catalyst’s physicochemical properties (medi-
ated by the synthesis method), and operating conditions [16,119,120]. 
However, mechanistic details relating to individual steps of Ru disso-
lution, and their dependence on RuO2 surface orientation and structure, 
remain convoluted. A point of focus, and debate, is whether the OER 
induces Ru dissolution and whether its activity correlates with the Ru 
dissolution rate (i.e. is there an inverse relationship between activity and 
stability) – as is believed to be the case. Recent theoretical work has 
shown that water oxidation and the OER induce the dissolution of the 
catalytically active Rucus sites by a preceding surface reconstruction, 
coupled with a loss of OER activity [121,122]. The dissolution rates of 
these Rucus sites [51–53] on pristine and defective (step, terraced or 
kinked, etc.) surfaces have been found to correlate, albeit to different 
extents, with the OER activity; These two processes are believed to share 
common reaction intermediates that can even mediate the OER pathway 
(i.e. are highly active for specific steps along the OER) and minimise its 
overpotential [119,123]. Further, dissolution may be stabilised by the 
water oxidation process and through the lattice oxygen evolution 



(Fig. 3a and b, discussed below), their overpotential remains ~200 mV – 
seemingly confirming a theoretical limit as suggested by others [167].

Fig. 3a shows a comparison of electrocatalyst overpotentials re
ported in literature (summarised in Appendix 2) – green circles repre
sent the engineered materials, and grey circles are baseline materials 
used for comparison. The scatter in the engineered and benchmark 
materials is similar – this suggests that a standard benchmark may not 
have been identified and makes comparison across the community 
innately biased. Similar order of magnitude differences in the observed 
activity of Ir and IrO2 baseline materials have also been reported [168]. 
This is generally unsurprising, as a minor change in the synthesis pro
cedure can change the material’s physicochemical properties and 
observed OER activity (discussed in Section 5.2). For instance, we pre
pared a benchmark RuO2 (via the fairly simple Adams Fusion method) 
[169] that showed an overpotential of ~200 mV – close to some of the
best-performing electrocatalysts (Fig. SI1). Even when RuO2 is prepared
in such a trivial way, the performance metrics can vary (expanded on in
Section 6) [159,170,171]. Trasatti, over 30 years ago [115], highlighted
that two different operators in the same laboratory might not achieve
similar electrochemical properties for, albeit more complex IrO2–RuO2 
coated anodes, despite following identical preparation protocols
(Fig. 3c). The voltametric charge varied depending on the solvent used
and the operator conducting the experiment. Other studies also high
light disparities in voltametric charge of electrodes of alike compositions
prepared in different laboratories [172]. A recent report from Tesch
et al. [173] has shown that the OER overpotential of an electrocatalyst

Fig. 3. (a) Overpotential of electrocatalysts reported in the literature (data from Appendix 2). The green circles are the engineered electrocatalyst, and the grey 
circles are the benchmark materials used for comparison. (b) The relationship between Tafel slope and overpotential. (c) Voltametric charge as a function of 
xIrO2+(1-x)RuO2 electrode for (1) precursors dissolved in water, (2) precursor dissolved in isopropanol, same operator, (3) precursor dissolved in water, another 
operator, (4) precursors in isopropanol another operator (figure and associated text in this caption were reproduced from the work of Trasatti) [115]. (d) Tafel slope 
of IrO2–RuO2 as a function of Ru content in literature (Appendix 3). (For interpretation of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.)

electrocatalyst not only influences its inherent ability to drive the OER 
but can also impact the membrane and cathode in a PEM cell. While 
reducing the cost of the electrocatalytic material is important for a PEM- 
WE, balancing this against the operating efficiency and stack lifetime is 
essential from an economic perspective. Thus, beyond research focusing 
on developing the electrocatalyst alone, dynamic changes and their in-
fluence on the stability of the new electrocatalyst when integrated into 
the MEA are areas requiring attention from the academic community 
[70]. This is all discussed further in the context of the electrocatalyst and 
operating conditions in Sections 4 and 5.

4. Preparation, characterisation, and performance of Ru-based 
OER electrocatalysts

4.1. A summary of literature performance, use of baseline materials and 
reproducibility

Ru-based electrocatalysts have been prepared in many ways to ‘en-
gineer’ their properties (i.e. crystal structure, stoichiometry, atomic and 
structural defect presence, electrochemically active surface area (ECSA)) 
[158,159]. Often, however, attributes that improve activity are detri-
mental to long-term stability. For instance, a rough surface with a high 
ECSA, atomically defective surfaces [160,161] or amorphous materials 
show higher activity than a crystalline, stoichiometric benchmark but 
show poor stability against corrosion [18,102,162–166]. While these 
engineered electrocatalysts are commonly more active than the baseline 



tin-oxide) anode, the doped ions can leach out during operation [201], 
leading to a change in the conductivity and hence Ohmic losses, as 
observed by a 90 mV cell voltage increase of a PEM-WE at 1 A cm 2 after 
only 4 h of polarisation [190]. In the case of IrOx supported on ATO, a 
Faradaic efficiency of only 94% for the OER was achieved due to the 
significant instability of the ATO support [202]. Higher anodic currents 
also inevitably result in the oxidation of the support during long oper
ation, as observed in the case of micro-sized Ti metal particles [7] and 
Magnéli phase Ti suboxides TinO2n-1 [203]. Detachment of the electro
catalyst particles from the support is another common problem in the 
absence of a strong metal-support interaction [202,204]. These chal
lenges are also discussed from the context of the substrate in Section 5.4.

4.3. Bulk composition is not necessarily the surface composition

Even under meticulous control of growth and synthesis parameters, 
the (sub-)surface region of micro-/nano-particles can be different from 
the bulk [205–207]. This is particularly the case in bimetallic alloys and 
mixed-metal oxides, where factors governing surface (anti-)segregation 
were studied by Nørskov et al., via an understanding of the surface en
ergy of transition metals (including Ru and Ir) [208].

Let us briefly look at empirical studies relating to Ru–Ir oxides as an 
example. When mixed oxides were synthesised by the annealing of an 
Ir0.5Ru0.5 alloy, the high temperatures led to a change in the surface 
composition from an Ru:Ir ratio of 1:1 to mainly being composed of Ir 
cations - a concentration gradient formed through the first few atomic 
layers (Fig. 4c and d) [209]. Owe et al. found that irrespective of the 
IrxRu1-xO2 composition, the surface Ir concentration was higher 
compared to the bulk [210]. A similar enrichment of Sn on the surface is 
reported in RuO2–SnO2 mixed oxides [211], and preferential segrega
tion of Ir on the surface has also been reported in RuO2–SnO2–IrO2 
[114], IrO2/SnO2

212 etc. However, Nguyen observed surface dominance 
of Ru ions when Ir0.5Ru0.5O2 was synthesised using a one-step or 
two-step synthesis [213]. Upon reviewing research that details the bulk 
and surface compositions of Ir1-xRuxO2, it is generally observed that Ir is 
more prevalent on the surface than in the bulk (Fig. 4b). The degree of 
phase segregation can vary based on the synthetic conditions resulting in 
considerable differences in the particle surface, particularly across 
studies [210,212,214]. Often the surface composition is estimated by 
XPS, and the bulk composition is determined by EDX or nominal 
composition. Considering the probing depth of XPS is a few unit cells 
[215], discrepancies in the sub-surface atomic layers may be more 
pronounced, and care should be taken to determine the correct values.

4.4. Electrocatalyst evolution during operation, activity improvement and 
stabilisation strategies

Key questions in the development of new electrocatalysts for the OER 
is to what extent the composition changes during operation, especially 
at higher currents and during long operation hours. And, if it changes, 
will the electrocatalyst maintain its performance for time periods rele
vant to industrial applications? Also, if the as-made electrocatalyst 
comprises a diverse number of active sites that are constantly changing, 
can one understand the origin of its improved performance or the root 
cause of failure, as mentioned in Section 4.1?

The (sub-)surface region of RuO2 undergoes transformations in its 
physicochemical properties once it contacts the reaction medium 
[205–207,219]. This was seen, for example, in RuO2 nanoparticles via 
changes in the Ru–O coordination number and bond length by in-situ 
x-ray absorption spectroscopy (XAS) (Fig. 5a–c) [216]. Of course, this
region further changes when an electrical potential is applied [107,109,
110,220,221]. As we have now discussed in earlier sections, RuO2 is
thermodynamically unstable at potentials driving the OER (>1.4 V),
making its dissolution via changes in the valence state of Ru and Ru–O
coordination number (forming RuOx, x > 2 species) an inevitable,
kinetically controlled process [16,216,222,223]. Using in-situ ambient

depends on the experimenter, also for an experimenter themselves it can 
change based on pre-conditioning.

To highlight that composition alone is not an ideal descriptor of 
electrocatalytic behaviour, we show in Fig. 3d variations in the Tafel 
slope of Ir1-xRuxO2 prepared in different research groups (Appendix 3). 
While we can see a general decrease in the Tafel slope with an increase 
in the atomic fraction of Ru, the absolute values can vary significantly 
between two materials of similar composition. This extends to activity 
and stability – as we will highlight throughout Section 4 [21,28,38,44, 
174–177]. The difference in observed performance of similar materials 
also results from engineering aspects of the electrocatalytic layer, testing 
protocols, dynamic changes, etc., as we elaborate on in Section 5. Unless 
we are aided by standardised development protocols, the root cause of 
failure (or enhancement of the activity/stability) cannot be efficiently 
understood [178,179]. Through the following (sub-)sections, we will 
build on the topic of discrepancies in the performance of engineered and 
benchmark electrocatalysts.

4.2. Challenges with the synthesis of electrocatalysts

4.2.1. Bulk Ru-based electrocatalysts
Most Ru-based oxide electrocatalysts in literature are prepared using 

sol-gel synthesis, Pechini method, polyol synthesis, aqueous hydrolysis, 
molten salt method, co-precipitation, etc., involving oxidation of metal 
salt in a supporting matrix. The industry commonly uses the Adams- 
fusion method [31,87–92]. However, due to the innate complexity of 
the oxide synthesis process, achieving reproducible activity/stability 
data becomes an issue at the electrocatalyst development stage, leading 
to discrepancies noted in the earlier sections. The fabricated metal ox-
ides’ chemical/structural properties depend on the thermodynamic 
stability of phases, energetics of intermediates and products and kinetics 
of the process. Their properties can also differ based on the precursors 
used [180], diffusion of salts and their solubility, along with oxygen 
partial pressure [57,112,181,182]. Differences in decomposition ki-
netics among precursors and the oxide (facet) formation energy 
contribute also to surface/bulk ion segregation (Section 4.3). Achieving 
reproducible, scalable synthesis is particularly challenging when the 
material takes on unique micro-/nano-architectures (e.g. cubes, rods, 
fibres or wires), as it needs rigorous control over synthetic parameters 
[55,183–185]. Absolute transparency in reporting synthesis methods 
should be offered within publications to aid reproducibility. Nonethe-
less, these materials are being tested in PEM cells, as discussed in later 
sections.

4.2.2. Supported Ru-based electrocatalysts
Producing core-shell structures or dispersing nanoparticles (and 

single atoms) [186–188] on support materials (e.g., TiO2 and SnO2) 
[189,190], similar to how Pt is dispersed on a carbon support in the 
cathode, is a promising way to improve catalyst utilisation [182, 
191–193]. There are synthetic challenges in preparing core-shell or 
supported materials, where a broad range of species can result, such as 
single atom (atomic substitution in general), single site (a cluster that 
has one active site) and stand-alone (electrically isolated) RuO2 nano-
particles [89,194,195]. With single-atom catalysts (SAC) a key synthetic 
challenge is maximising at.% loading while preventing the atoms from 
migrating and agglomerating (i.e. maintaining structural integrity) 
[186,187].

Due to a variety of particles in the ensemble, decoupling contribu-
tions from each component remains a challenge in this form. And while 
various supported materials were tested in PEM cells [90,196–199], this 
strategy is not yet ready for implementation. A key problem in the use of 
support materials (which are poorly conductive and inactive for the 
OER) is the lack of, or further loss of, conductivity from the ensemble 
due to oxidation or dissolution of ions. A decrease in the conductivity 
increases ohmic losses, especially at higher currents [7,200]. This is 
evidenced in several examples; In the case of an IrOx/ATO (antimony 



pressure XPS, Saveleva et al. show that RuO2 undergoes a substantial 
potential-dependent transformation into other Ru species – even at po
tentials of 1.0 V, volatile Ru(VIII) species are detected, whose leaching 
results in an altered surface morphology [224]. Interestingly, the onset 
potential of the OER on RuO2 coincides with its thermodynamic disso
lution (Fig. 5d) [16], and various transient dissolution features are 
observed when oxygen atoms are inserted or removed from the oxides. 
To maintain charge neutrality in the electrocatalyst, either there will be 
a change in the valance state of Ru or a loss of lattice oxygen leading to 
the formation of an amorphous surface layer after a sufficient time 
(Fig. 5e) [217]. Studies have also suggested that partially oxidised or 
low valance state RuO2 improves OER activity [225–229]. Since 
PEM-WEs are operated at high anodic currents, partially oxidised ma
terials are likely to oxidise further after hours of operation. Thus, Ru 
metal or low valance state Ru catalysts will eventually form high valent 
Ru species during the OER [104]. Relating to the following text, we have 
tabulated (in Appendix 2) the Ru-based research work showing the 
leaching of at least one component.

Attempts have been made to improve the activity and stability of 
RuO2 by doping with noble- and transition metals [14,230]. Select noble 
metals (e.g. Ir) are favoured as they preserve the surface functionality of 
RuO2 for electrocatalytic reactions – this functionality is suspected to be 
rooted in its electronic and magnetic structure (determined by a very 
complex interplay of lattice-, spin-rotational, and time-reversal sym
metries), as described in theoretical and experimental studies [117,
231–234]. The noble metals are also more stable against dissolution 
than other 3-5d transition metals in the acidic conditions within a PEM 
electrolyser; however, they are also more expensive than these elements, 
which motivates studies involving the latter. In either case, unless a solid 
solution is formed, there will be multiple phases in the particle [31,112,
211,235], with different physicochemical properties [236]. In partic
ular, the metallic conductivity of RuO2 will be hampered by changes in 
the electronic structure or by the formation of grain and domain 

boundaries. Of relevance for the potential application of RuO2 in PEM 
cells is the use of Ti, Ir, Ta, Nb and particularly Ir as it offers stability 
while not compromising conductivity [112,209,237–239]. Danilovic 
et al. showed that when a near-perfect solid solution of an Ir–Ru alloy 
was subject to anodic polarisation, the atomic composition of the surface 
region altered, creating an Ir-rich environment after the leaching of the 
less stable Ru [209]. Cherevko et al. showed that Ir1-xRuxO2 nano
particles had an Ir-enriched surface after the initial dissolution of Ru 
during OER [240]. In IrO2–RuO2 anodes, a disparity in the dissolution 
rates of constituent metal atoms was also observed [241]. 
Escudero-Escribano et al. showed that sputtering of sub-monolayer IrOx 
layers onto a 40 nm RuO2 thin film could drastically improve its sta
bility, but as expected, the OER overpotential increased by 40 mV at 5 
mA cm 2 [242]. Mayrhofer et al. found that the IrRuOx with 25 at.% Ir 
has a similar activity to that of RuO2 initially. If the electrode is polarised 
with just 1 mA cm 2 for 5 min, the activity decreases drastically due to Ir 
enrichment (and Ru dissolution) on the surface and becomes closer to 
that of the initial activity of 60 at.% Ir (Fig. 6b) [241]. Similarly, the 
activity of the Au–Ru electrocatalyst changed significantly during 
cycling where the Tafel slope changed from 60 to 110 mV dec 1 after 
repeated cycling [243].

Walton et al. prepared doped RuO2 using the significantly cheaper 
than noble metal Mg, Ni, Cu and Zn transition metals. The doped ma
terials showed inferior performance to RuO2, with dopant dissolution 
leaving a Ru-rich surface [63]. Tan et al. reported that Co-doped RuO2 
prepared via oxidation of a Co–Ru alloy undergoes significant leaching 
of Co metal during cyclic voltammetry between 1.2 and 1.5 V [244]. The 
cycling process increased the Ru oxidation state and changed the coor
dination environment around both the Co and Ru atoms. Ko et al. found 
that Ni K-edge XANES features of a RuNiO2, even at open circuit voltage, 
are substantially different compared to the as-made material [245]. Ru 
and Ni leached into the solution during cyclic voltammetry with a higher 
rate of leaching for Ni during the first cycle. The electronic and local 

Fig. 4. Influences of annealing on the surface and sub-surface regions of Ir–Ru alloys. (a) Common synthesis methods for metal-oxides. (b) Comparing surface to bulk 
Ir/Ru ratios in literature (Appendix 4). Surface, sub-surface and bulk composition comparison for an as-made sputtered IrRu alloy (c) and of an IrRuOx catalyst after 
annealing (d) [209].



structure of NiRuOx became similar to hydrous RuOx even at a low po
tential. Zhang et al. observed that Ru-M (M = Cr, Co or Zn) alloys un
dergo severe degradation during the OER, whereas Ru–Mn alloys form 

an amorphous layer of RuOx that serves as a catalytically active 
component (Fig. 5f). Mn was not detected in the surface and sub-surface 
regions after electrochemical cycling [218]. The leaching of Mn and 
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Fig. 5. In-situ investigation on RuO2 nanoparticles in 0.5H2SO4 electrolyte: (a) Potential-dependent edge energy shift relative to the dry (as-made) sample. (b) 
Potential-dependent Ru–O first shell coordination number. (c) Potential-dependent bond length for first shell Ru–O [216]. (d) Polarisation curve (blue line) and 
mass-spectra (red line) for RuO2 electrode at 1 mV/s, in 0.5 M H2SO4 [16]. (e) RuO2 DSA electrode before (i) and after (ii) OER for 1 h [217]. (f) Element distribution 
(from TEM) in RuMn electrode before (i) and after (ii) cyclic voltammetry [218]. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.)

.b.a

Fig. 6. (a) Structural evolution of a catalyst and change in activity with time – ‘pre-catalyst’ in the figure refers to the as-prepared material. (b) Variation of potential 
at a current density of 5 mA cm− 2 in IrO2–RuO2 anodes before and after 5 min anodic polarisation at 1 mA cm− 2 [241].



structural features and a superimposition of different reactions [265,
266]. This is logical considering the geometry of currently used half cells 
and that synthesis methods result in a wide distribution of particle sizes 
of innate heterogeneity; as implied above, different lattice planes and 
topological features within (edges, steps, kinks, etc.) have distinct 
chemical affinity, activation energy and reactivity for steps along the 
OER [267–271]. They also give a spatially nonuniform current or po
tential distribution. Thus, the same material can have a non-negligible 
contrast in performance when tested in different laboratories [258,
272]. These observations, and the differences in baseline material per
formance, once again indicate that standard characterisation methods 
for OER electrocatalysts, such as those reported for solar cells and other 
energy storage devices, are needed [273–276].

5. The electrocatalytic layer and testing protocols

5.1. Electrocatalytic layer preparation

To evaluate the performance in a PEM-WE, an electrode is prepared 
by casting the catalyst on a conductive substrate using a polymer-based 
binder (ionomer), sometimes with a support material or additive to 
promote particle-to-particle contact. The porosity, agglomerate size, and 
ionomer distribution of this heterogeneous layer facilitate proton 
transport from the membrane, electrons transfer to the current collector, 
and reactant interaction with the active sites (Fig. 7a). Thus, when the 
electrocatalyst is tested in a PEM cell, it is unsurprising that its observed 
performance differs due to various other factors; electrode coating 
process, the electrolyte type, testing procedure (conditioning protocol, 
acquisition method) and dynamic changes of the catalytic layer (e.g. 
degradation and bubble formation) [67,168,277–285].

Commonly used coating methods (e.g. drop casting, spray- or dip- 
coating) result in a distribution of electrocatalyst (electrical 
conductor) and ionomer (proton conductor) that may not be uniform, 
with the further presence of cracks or formation of isolated catalyst 
pockets producing electrically disconnected paths (Fig. 7a). These 
cracks can disrupt the continuous electron transfer path, reducing the 
catalyst layers electronic conductivity [286]. Proton transport, relying 
on the continuity of the ionomer network, can be hindered by the 
presence of cracks [287]. The structural attributes of the CL, such as the 
distribution of ionomers, can directly influence proton transport. The 
ionic conductivity of this binder is orders of magnitude lower than the 
electrical conductivity of the catalyst, varying based on thickness, 
temperature and applied potential [288]. Thus, when an external po
tential is applied to the substrate, the potential distribution across the 
catalytic layer varies. For H2 production to progress efficiently, the 
electrocatalyst particles must be seamlessly connected to both the pro
ton and electron transport pathways. The catalytic sites lacking access to 
either will remain inactive and unutilised. In addition, recent studies 
have found that binders such as Nafion ionomer, and PTFE, conven
tionally viewed as inert, can interact with catalysts leading to substantial 
alteration in their activities [284,289].

5.2. Considerations regarding mass loading of the electrocatalyst

At the half cell stage (where much of the fundamental catalyst 
development happens), figures of merit are mainly reported in terms of 
the overpotential at 10 mA cmgeo

2 (c.f. ‘geo’ is the geometric surface area 
of the electrode), the change in this overpotential after 2 hr290 or 
through a mass normalised activity. We find however that there is no 
consistent value in the literature for the electrocatalyst’s mass loading in 
a given geometric area (as seen from the summary plot in Fig. 7c) – 
despite a strong dependence of the overpotential at a given current 
density on this mass loading parameter (seen in Fig. 7b and b inset), 
highlighting the need for a standardised practice in the evaluation of 
electrocatalyst loading [161,291,292]. However, as geometric area and 
mass normalised activities are engineering perspectives of an electrode, 

subsequent formation of vacant sites on the Ir–Ru-rich oxide surface was 
also seen in an Ir–Ru–Mn ‘nano-cactus’ during an operational cycle 
[246]. Dissolution of Sr and a change in the composition and 
morphology were also found in a SrIrRu alloy tested for the OER, con-
current with a decrease in stability [247]. Using relatively robust 
Ru1-xMnxO2 DSA electrodes, we observed that while these electrodes 
show lower overpotential at 10 mA cm 2 (Fig. SI2) after 24 h of elec-
trolysis, more than 80 % of Mn leached into the solution. Leaching of Ru 
also increased significantly.

While the majority of the above-described Ru-based OER electro-
catalysts consist of rutile RuO2, the perovskite (ABO3) and pyrochlore 
(A2B2O7) are also touted as promising structures to reduce the noble 
metal content of applied materials as they offer elemental composition 
tunability by the interchange of ions at the A and B sites [21,22,40, 
42–44]. However, they are not yet viable alternatives for electro-
catalysts in PEM cells. In Ru-based perovskites, the leaching of elements 
from the cationic sites during the OER changes the surface composition 
into amorphous RuOx with low concentrations of other ions [39]. While 
it was proposed based on theoretical studies that SrRuO3 should show 
good OER performance [12], Kim et al. found that the activity of SrRuO3 
perovskite nanoparticles decayed during anodic polarisation [248]. In 
this instance, ICP-OES showed that elemental leaching resulted in a final 
Ru/Sr ratio of 0.16. Ji et al. [249] found that both Sr and Ru leach into 
the electrolyte and showed the absence of Sr cations at the surface of the 
electrode after 30 h of OER at 10 mA cm 2. Concerning pyrochlores, the 
extent of A-site and B-site dissolution varies across the literature; in 
some studies, more than 50% dissolution of A-sites was reported [21,38, 
44,175–177], whereas other studies claimed no dissolution [250]. 
Hubert et al. indicated, using different A site elements (A = Y, Nd, Gd, 
Bi), that ions losses from pyrochlores during the OER as well as their 
degree of dissolution differ based on the element itself. After the disso-
lution of the A-sites, these materials again form oxidised, electro-
catalytically active RuOx-species [39,44].

In terms of SACs, continued development is needed in terms of sta-
bility [251–255]. Efforts were made to minimise Ru dissolution 
[252–256] using a variety of supports, including Pt3–Cu alloy, Co–N4, 
Co3O4, CoFe and NiFe double layer hydroxides and nitrogen-carbon 
network (Ru–N4) [251–257]. Of note, Li et al. and Zhai et al. have 
shown Ru SACs to drive the OER at 200 mA cm 2 (η = 1.5 V) and 100 
mA cm 2 (η = 1.54 V), respectively, with stability claimed for over 100 h 
[251,257].

4.5. Deconvoluting the intrinsic activity of a constantly changing 
electrocatalyst in an ensemble measurement

Despite reports of higher activities in engineered Ru-based materials 
against a baseline material [63,258], their long-term stability under 
industrial conditions remains questionable. Overwhelming evidence 
exists of structural reconstruction, dissolution of the host and leaching of 
dopants (Appendix 2) – all of which can change the reaction kinetics 
and thermodynamics [101,107,108,110,259–262]. Overall there is a 
lack of clarity regarding the “true” catalyst composition and factors that 
govern its performance. As eluded to the introduction, the question re-
mains on what should be assigned as the actual activity or root cause of 
instability - a specific property or a convolution of many aspects [109]. 

Answering such a question is not trivial from an experimental and 
theoretical perspective. A small fraction of the catalyst can account for 
more or less of the observed turnover [263]. For instance, to highlight 
the complexity of this issue: The degree of water dissociation, interme-
diate state binding energies and overall activity/stability trends, were 
shown to depend strongly on the lattice orientation and bonding envi-
ronment around an active site in RuO2 [11,51–53]. Even minor changes 
in the material’s surface quality influence the specific capacitance and 
thus the ECSA, affecting the observed performance [264]. However, 
reported electrocatalytic data is most commonly a macroscopic property 
– an averaged behaviour of the ensemble encompassing a variety of



they do not always reflect variations in the catalyst’s intrinsic activity 
stemming also from a physicochemical property. In this regard, an 
important aspect to further consider is normalisation against the ECSA. 
The importance of this point was highlighted by McCrory et al. [293] 
concerning the standardisation of OER electrocatalyst testing protocols 
in general and more specifically with respect to RuO2 by Reiser et al. 
[264] – this latter study provided an upper limit of specific capacitance
for use in determining the ECSA of geometrically ill-defined RuO2 cat
alysts from their double-layer capacitance.

5.3. Electrolyte

While 0.5 M H2SO4 and 0.1 M HClO4 were common electrolyte 
choices in literature, our investigation revealed that a diverse range of 
other electrolytes being used (as summarised in Fig. 7d).The choice of 
supporting electrolyte can also alter the observed activity. For example, 
Sunde et al. found that the electrolyte could substantially change the 
OER rate in acidic media, and a higher OER rate is observed with more 
electronegative anions [278]. Similarly, Arminio-Ravelo et al. found 
that the Ir based electrocatalysts are less active in H2SO4 compared to 
HClO4, likely due to stronger adsorption of SO4

2 ions compared to ClO4
ions [277]. In contrast, Alia et al. [168] found that polycrystalline Ir and 
IrOx nanoparticles demonstrate little to no difference in their OER ac
tivities in 0.1 M HClO4 and 0.5H2SO4.

5.4. Electrode substrate

As we described in Section 4.2, and briefly bring the communities 
attention to again here, the electrode substrate used to immobilise the 
electrocatalytic particles plays a role in the electrochemical response 
[199,283]. To highlight an example, Geiger et al. saw that the stability 
and activity of Ir-black depended on the backing substrate. The elec
trocatalyst’s initial activity on gold or glassy carbon (GC) is higher than 

on boron-doped diamond (BDD) and fluorine-doped tin oxide (FTO). 
This was attributed to higher contact resistance between BDD and FTO 
substrates and the electrocatalyst. In a long-term galvanostatic study, 
the electrocatalyst showed a more abrupt increase in overpotential on 
GC and FTO compared to gold and BDD. These observations related to 
passivation (surface oxidation) of the GC and dissolution of FTO – it did 
not represent the behaviour of the pristine electrocatalyst. Clearly, an 
electrocatalyst on two different supports can show different electro
chemical responses, and one should be particularly aware that passiv
ation or degradation of the substrate can result in an incorrect 
estimation of the electrocatalyst’s activity or stability.

6. State of art evolution of the electrocatalyst

Several protocols [272,290,294–296] have been reported for eval
uating OER electrocatalysts. Among these, the protocol reported by 
McCrory et al. [290] is commonly adopted. This protocol recommends 
key performance metrics for OER catalysts, including the overpotential 
required to achieve a current density of 10 mA cm 2 (geometric area) 
and stability of this overpotential over a 2-h duration [290]. However, a 
review of the material-centric literature reveals a notable gap in prop
erly reporting the catalytic activity properties of the materials.

6.1. The Tafel slope dilemma

As discussed in relation to transition state theory by Exner and Over 
[297,298], the OER mechanism in the low overpotential region (η =
0.2–0.3 V) starts from a different RuO2 surface structure than in the 
higher overpotential region (η > 0.3 V), resulting in contrasting Tafel 
slope values. In systems with a complex micro-/nanostructure, this 
variation can be from 40 to 200 mV dec 1 in different potential regions, 
demonstrated using a model RuO2 DSA electrode (Fig. 8a). There are 
often two orders of magnitude differences between current densities 
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Fig. 7. (a) Nonuniformity and conductivity challenges in a catalytic layer. (b) OER overpotential at 10 mA cm- [2] using IrO2 NPs (nanoparticles, ≈7 nm diameter) as 
a function of electrocatalyst loading [291] (c) Catalytic loading used in literature (Appendix 1). (d) Electrolytes used in the literature (Appendix 1).



used to study model catalysts and those used in an applied scenario. 
However, most articles report only one Tafel slope (typically in low 
overpotential regions); consequently, the overpotential required to 
achieve 100 mA cm 2 or 1 mA cm 2 does not always scale with the 
reported Tafel slope [28,292,299,300]. Through a study of the Tafel 
slope and difference between potentials at 10 mA cm 2 and 100 mA 
cm 2 in 30 randomly selected reports cited in this review, we can indeed 
highlight that the activity data at higher currents indeed do not scale 

with the Tafel slope (Fig. 8b, papers from Table SI1). In recent articles, 
the Tafel slope is sometimes estimated by less than a decade of the 
current density range, which may result in an erroneous representation 
of electrocatalytic performance (also clear from Fig. 7a). As we noted 
earlier, sometimes the catalyst that performs well at lower currents fails 
to do so at higher currents – this has been further demonstrated using 
three model electrocatalysts (Fig. SI4) and a 20 % RuO2/ATO electro
catalyst (Fig. 9). RuO2/ATO showed a low overpotential at lower 

Fig. 8. (a) Polarisation curve of RuO2 DSA electrode in 0.5 M H2SO4, highlighting three Tafel regions between 0.1 mA cm- [2] to 100 mA cm- [2]. (b) The difference 
in overpotential at 100 mA cm- [2] and 10 mA cm- [2] in randomly selected papers in the literature (Table SI1). (c) Stability studies parameters reported in the 
literature. (d) Stability assessment of RuO2 DSA-electrode at different current densities.

.b.a

Fig. 9. Oxygen evolution studies on 20% RuO2 supported onto antimony doped tin oxide in 0.5 M H2SO4 electrolyte. (a) Cyclic voltammetry of the electrode shows a 
fingerprint consistent with RuO2. (b) Linear sweep voltammetry of the electrode. The electrode demonstrates about 210 mV overpotential to reach 10 mA cm− 2.



7. Perspectives and summary

Developments in the field of Ru-based electrocatalysts have reduced
the OER overpotential to low values (<200 mV) at 10 mA cm 2 (Fig. 3a). 
Given that theoretical studies from Koper et al. [167] suggest that a 
surface will always possess an intrinsic overpotential, it may be that the 
OER activity has reached a lower limit, nonetheless, the stability of these 
electrocatalysts at industry-relevant current density values remains an 
issue. Fabricating progressively more complex materials and reporting 
their OER performance under non-standardised testing conditions seems 
to hinder progress toward the development of a stable electrocatalyst for 
PEM systems. An inherent heterogeneity in the electrocatalysts stem
ming from commonly used synthesis methods complicates our ability to 
gain fundamental insights. Single-crystals (offering the highest degree of 
structural/compositional sensitivity) allow one to develop an under
standing of structure-activity/stability relationships – a cogent (and 
increasingly recognised) approach to the design of an active catalyst in 
its polycrystalline form. In this latter case, synthetic methods for cata
lysts with a controlled size distribution, shape or composition are 
required to go from single crystal to industrially relevant powder vol
umes, all the while preserving the positive physical attributes identified 
in the former stage. However, various traits of a polycrystalline elec
trocatalyst overlap in their contribution to its OER performance, 
underscoring the necessity for investigations employing multiple oper
ando techniques, ideally in the same electrochemical cell at the single 
crystal level. It is also essential to conduct round-robin three-electrode 
testing of commercially available OER electrocatalysts across diverse 
laboratory environments, such as those attempted for fuel cells [303], 
and electrolysers [304–306]. The advantage of round-robin tests is to 
provide a full picture of the applicability of a measurement protocol and 
to determine possible weak points. We suggest that intra-lab- vs. 
inter-lab-uncertainty in the activity of OER catalysts must be recognised 
and accounted for when comparing results from different research 
groups. Beyond achieving an understanding of changes in properties at 
the nanoscale (and how they may be controlled), it is crucial to examine 

how this knowledge can be applied and transferred from the half-cell 
level into a PEM-WE – a necessary step in translating lab-scale knowl-
edge into an applied setting. This will also include method development 
to understand issues not encountered in a three-electrode half-cell, such 
as bubble problems and catalyst heterogeneity.

In principle, for industrial applications, understanding the insights of 
catalytic materials beyond what is achieved in the preceding phases is 
not overly critical if the synthesis method can be scaled and the material 
can provide stable and economical operation. To this end, there is a need 
to accelerate the testing of catalysts with promising stability at a lab 
scale under more industrially relevant current densities and to stan-
dardise the testing protocols (below). The latter, as discussed, will 
enable fairer comparison between reported data. Since a commercial 
PEM electrolyser works at high current densities (1–2 A cm 2, 1.4–2.5 V 
at a catalyst loading of 2–5 mg cm 2) for time periods 50–80 ( × 1000) 
hr, the stability and activity tests at 10 mA cm 2 for relatively short 
timescales limit our ability to assess a materials readiness for applied 
settings. To compare activities at low current ranges, instead of report-
ing the overpotential at 10 mA cm 2, it may be useful to report mass and 
ECSA normalised activity at a fixed overpotential; 300 mV (approxi-
mately the typical OER onset for IrO2) is a reasonable point. The long- 
term stability of a catalyst may be gauged at higher current densities 
as 10 mA cm 2 is too low when compared to the target practical ones of 
1 A cm 2 or more for at least 100 h – with an emphasis on analysis of 
catalyst degradation, used catalyst composition, and stoichiometry. We 
note that applied catalysts will need to operate by 2030 under gradually 
higher standards: 3 A cm 2 using less than 1.8 V for >80 ( × 1000) hr 
with loadings of 0.2–0.4 mg cm 2 within the MEA. Notably, they will be 
expected to have degradation rates of ~2–2.3 mV kh 1 (0.13 % khr 1).
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currents yet struggled to achieve a higher current density. This suggests 
that the reporting of Tafel slopes in higher potential regions would also 
be very useful. However, this is overall a complex topic and reporting 
should be done with clear descriptions of testing protocols.

6.2. Stability at low vs. high current densities

As stated in Section 5.2, we find that the majority of literature arti-
cles report stability as a change in overpotential at 10 mA cm 2 or show 
chronoamperometry at a fixed overpotential for a number of hours (this 
has been summarised in Fig. 8c) [290]. Less than 10 % report stability at 
currents over 10 mA cm 2. The significance of this can be seen in a few 
example: Zhang et al. found that an Ru–Mn alloy-derived electrocatalyst 
only saw a 100 mV increase in overpotential after 720 h at 10 mA cm 2, 
however, at 100 mA cm 2, the overpotential increased instantly (by 
more than 210 mV in less than 1 h) [218]. RuO2 nanosheets showed 
stability at 1 mA cm 2, but at 10 mA cm 2 the overpotential increased 
from 260 mV to 520 mV after 6 h. We found similar observations using 
RuO2 DSAs at low and high currents (Fig. 8d).

As we alluded to in earlier sections, the continuous dissolution of 
elements and reconstruction of the surface can also generate a higher 
ECSA, masking under limited testing times, a change in overpotential. 
For example, we found that a RuMnO2 electrode had an increase in ECSA 
after 24 h OER testing at 10 mA cm 2 (Fig. SI3). If the catalyst loading is 
high, the degradation of the catalyst can be masked due to the sluggish 
dissolution of the active component, even in a PEM cell [281,301]. If the 
stability test was performed for a long duration (O100h), a false conclu-
sion of a low degradation rate (high stability) may be drawn. Thus, 
galvanostatic or potentiostatic stability tests should be supplemented 
with measurement of dissolved ions in the electrolyte [302].
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PEM water electrolyzers: from electrocatalysis to stack development. Int J 
Hydrogen Energy 2010;35(10):5043–52. https://doi.org/10.1016/j. 
ijhydene.2009.09.015.

[81] Siracusano S, Van Dijk N, Backhouse R, Merlo L, Baglio V, Aricò AS. Degradation 
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Brett DJL, Pumera M. Oxygen evolution catalysts under proton exchange 
membrane conditions in a conventional three electrode cell vs. electrolyser 
device: a comparison study and a 3D-printed electrolyser for academic labs. 
J Mater Chem A 2021;9(14):9113–23. https://doi.org/10.1039/D1TA00633A. 
10.1039/D1TA00633A.

[94] Villagra A, Millet P. An analysis of PEM water electrolysis cells operating at 
elevated current densities. Int J Hydrogen Energy 2019;44(20):9708–17. https:// 
doi.org/10.1016/j.ijhydene.2018.11.179.

[95] Wang T, Cao X, Jiao L. PEM water electrolysis for hydrogen production: 
fundamentals, advances, and prospects. Carbon Neutra 2022;1(1):21. https://doi. 
org/10.1007/s43979-022-00022-8.

https://doi.org/10.1186/s40580-022-00311-z
https://doi.org/10.1021/acsnano.9b00184
https://doi.org/10.1021/acsnano.9b00184
https://doi.org/10.1021/jz500610u
https://doi.org/10.1039/C7EE02307C
https://doi.org/10.1021/acsenergylett.8b01178
https://doi.org/10.1021/acs.jpcc.8b04284
https://doi.org/10.1021/acs.jpcc.8b04284
https://doi.org/10.1038/s41929-020-0457-6
https://doi.org/10.1021/acs.jpcc.1c00413
https://doi.org/10.1021/acs.jpcc.1c00413
https://doi.org/10.1016/j.jallcom.2021.162113
https://doi.org/10.1016/j.jallcom.2021.162113
https://doi.org/10.1016/j.marpolbul.2005.10.010
https://doi.org/10.1016/j.coelec.2022.101095
https://doi.org/10.1016/j.coelec.2022.101095
https://doi.org/10.1021/acscatal.2c00123
https://doi.org/10.1016/j.enchem.2022.100091
https://doi.org/10.1002/adma.202007344
https://doi.org/10.1002/adma.202007344
https://doi.org/10.1016/j.coelec.2021.100832
https://doi.org/10.1016/j.coelec.2021.100832
https://doi.org/10.1016/j.coelec.2018.03.034
https://doi.org/10.1021/acs.chemmater.0c01884
https://doi.org/10.1021/acs.chemmater.0c01884
https://doi.org/10.1038/s41929-022-00776-5
https://doi.org/10.1038/s41929-022-00776-5
https://doi.org/10.1038/s41467-021-22296-9
https://doi.org/10.1038/s41563-020-0788-3
https://doi.org/10.1038/s41563-020-0788-3
https://doi.org/10.1149/1945-7111/abdcc9
https://doi.org/10.1021/acsenergylett.2c01820
https://doi.org/10.1149/2.0771915jes
https://doi.org/10.1149/2.0771915jes
https://doi.org/10.1016/j.coche.2021.100703
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Dec/IRENA_Green_hydrogen_cost_2020.pdf
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Dec/IRENA_Green_hydrogen_cost_2020.pdf
https://www.eera-fch.eu/news-and-resources/2121:the-jp-fch-kpis.html
https://www.eera-fch.eu/news-and-resources/2121:the-jp-fch-kpis.html
https://doi.org/10.1016/0360-3199(94)90018-3
https://doi.org/10.1021/acs.energyfuels.3c01473
https://doi.org/10.1016/j.ijhydene.2023.05.031
https://doi.org/10.1016/j.ijhydene.2023.05.031
https://doi.org/10.1016/j.cattod.2023.114140
https://doi.org/10.1016/j.apenergy.2019.01.001
https://doi.org/10.1016/j.apenergy.2019.01.001
http://refhub.elsevier.com/S0360-3199(24)05704-5/sref78
http://refhub.elsevier.com/S0360-3199(24)05704-5/sref78
http://refhub.elsevier.com/S0360-3199(24)05704-5/sref78
https://doi.org/10.1016/j.coelec.2019.08.008
https://doi.org/10.1016/j.coelec.2019.08.008
https://doi.org/10.1016/j.ijhydene.2009.09.015
https://doi.org/10.1016/j.ijhydene.2009.09.015
https://doi.org/10.1016/j.renene.2018.02.024
https://doi.org/10.1016/j.renene.2018.02.024
https://doi.org/10.1016/j.joule.2021.05.005
https://doi.org/10.1021/acsenergylett.1c01869
https://doi.org/10.1149/1.3484496
https://doi.org/10.1149/2.1441704jes
https://doi.org/10.1149/2.1441704jes
https://doi.org/10.1016/0360-3199(82)90050-7
https://doi.org/10.1016/0360-3199(82)90050-7
https://doi.org/10.1016/0360-3199(95)00005-4
https://doi.org/10.1016/0360-3199(95)00005-4
http://refhub.elsevier.com/S0360-3199(24)05704-5/sref88
http://refhub.elsevier.com/S0360-3199(24)05704-5/sref88
http://refhub.elsevier.com/S0360-3199(24)05704-5/sref88
https://doi.org/10.1002/sia.3644
https://doi.org/10.1002/sia.3644
https://doi.org/10.1016/j.ijhydene.2010.10.098
https://doi.org/10.1149/05825.0039ecst
https://doi.org/10.1016/j.apcatb.2014.09.005
https://doi.org/10.1016/j.apcatb.2014.09.005
https://doi.org/10.1039/D1TA00633A
https://doi.org/10.1016/j.ijhydene.2018.11.179
https://doi.org/10.1016/j.ijhydene.2018.11.179
https://doi.org/10.1007/s43979-022-00022-8
https://doi.org/10.1007/s43979-022-00022-8
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