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ABSTRACT

Ruthenium (Ru-) based electrocatalysts have historically shown the highest activity for the oxygen evolution reaction in green Hy production by PEM-based water
electrolysis. However, their instability under industrially relevant operating conditions makes the considerably more expensive and scarcer Ir/IrO»-based electro-
catalysts the materials of choice for industrial use — an important technical bottleneck that contributes to the high levelized-cost of green Hj. Despite decades of
research, meeting the ‘Key Performance Indicators’ of industrial systems with Ru/RuO,-based electrocatalysts is not yet possible, with an in-depth understanding of
the engineering strategies and their induced effects still at an early stage. Framing our review from the perspective of a PEM water electrolyser, and the demands that
the operating environment puts on the core components, we focus on the state-of-the-art Ru-based electrocatalysts and the physicochemical properties that were used
to optimise performance (decrease overpotential and prolong stability). Further, we highlight that due to the intrinsic heterogeneity of the electrocatalysts, an
improvement to a certain figure of merit, e.g., stability or activity, is a complex combination of various interlinked factors. We find that most research efforts focus on
electrocatalyst preparation via trial-and-error methods and evaluation at low currents densities in short durations. We discuss the obstacles such an approach presents
on standardization of results in individual studies, across the community and on the extraction of industrially relevant information. Also, our discussion highlights
potential failure mechanisms and development strategies that may maximise the likelihood of success in an applied scenario. Our review underscores the urgent need
for electrocatalyst synthesis and testing under more standardized (and closer to applied) conditions if the goal is to develop an industrially relevant material.

1. Introduction

1.1. The oxygen evolution reaction challenge, Ir- and Ru-based
electrocatalysts

In hydrogen (Hy) production through a proton exchange membrane
water electrolyser (PEM-WE, described extensively within prominent
reports) [1-4], the oxygen evolution reaction (OER) at the anode is
complemented by the hydrogen evolution reaction (HER) at the cath-
ode. The OER is a kinetically sluggish process compared to the HER and
requires a higher overpotential (), as discussed in many reports [2,5].
To maintain stability under the operating conditions of a PEM-WE, noble
metal-based electrocatalysts (with simultaneously excellent intrinsic
activity towards the OER) are required.

Iridium and iridium dioxide (Ir-/IrO,)-based materials exhibit near-

optimal activity for the OER and are the only stable electrocatalysts
available for commercial-scale PEM electrolysers [1,6,7]. However,
their scarcity presents a true bottleneck in scaling up Hy production to
terawatt-level capacity [8-10]. Ru-based catalysts, and in particular
RuO», are a significantly cheaper (ca. 10 x lower in price) and more
abundant alternative to IrO3 [11]. According to the theoretical ‘volcano’
plot reported by Ngrskov et al. [12], RuO; is the most active pure metal
oxide electrocatalyst for the OER due to its optimal binding energy with
the reaction intermediates [13-15]. However, its dissolution rates are
more than an order of magnitude higher than IrO, under acidic condi-
tions [16,17], and are reported to vary greatly depending on the
composition of the material, the pre-/post-treatment conditions and the
operating conditions [17,18]. The low stability of the material remains
the main hurdle limiting its implementation in a PEM-WE [11,19].
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1.2. Attempts, and rational approaches, to improve Ru-based
electrocatalysts

Attempts have been made to improve the activity and stability of
RuOy (rutile structure) and other Ru-based structures, e.g., ruthenate,
perovskite, pyrochlore, and Ru-single atom systems [20-22], through
alloying, sometimes without considering the immiscibility gap between
the elements [14,23,24,24-47]. Given the 84 stable elements in the
periodic table that can be used for alloying, a large number of studies are
conducted [48-54]. Many of them evaluate the developed poly(nano/-
micro-)crystalline electrocatalyst in an aqueous 3-electrode (half) cell,
reporting overpotentials at 10 mA cm 2 over short time periods without
the use of a reliable baseline for comparison amongst the community
[55]. Efforts to study these ‘applied’ electrocatalysts are usually justified
by a need to improve performance (activity and stability), and to un-
derstand underpinning reason for an enhancement(s) — all in pursuit of
developing more affordable anodes for PEM electrolysers.

However, the “So What?” factor [56] is often missing in the quest for
a new electrocatalyst; Approaches to synthesise an applied material are
dominated by trial-and-error attempts [49-54]. These synthesis
methods do not always enable precise control of atom-specific active
sites, rather producing poly(nano/micro-)crystalline materials with
differing structural, compositional and electronic properties, that are
further modified under experimental conditions [57-60]. Other aspects
(e.g., the electrode preparation method, its physical properties along the
testing protocol) also contribute to the electrochemical response. If the
material is unstable in an aqueous half-cell over short time periods and
at low current densities, then one may wonder whether adding another
electrocatalyst based on a permutation and/or combination of elements
contributes meaningly to PEM-WE development.

If the goal is to ‘understand underpinning reasons for enhancement’,
as stated above, a more rational approach is to study the catalyst’s
functional properties at a level where heterogeneity is minimised and to
use this data to fine-tune its performance. Single crystals or epitaxial
films enable optimisation at such a level via a bottom-up approach
combining theoretical and empirical studies. If, however, the goal, is to
develop an industrially relevant catalyst (where understanding funda-
mental insights is not vital), then screening of the poly(nano/micro-)
crystalline electrocatalyst should be rigorous compared to the currently
used approaches to report activity and stability. Specifically, to stand out
more than just another electrocatalyst, the new electrocatalyst should
compete with state-of-the-art Ir-based materials in a half cell and in a

PEM cell that emulates industrial operating conditions (expanded on
below and in Section 2.1). In the latter case, the electrode architecture,
operating conditions, and hydrodynamics are different compared to that
in a half cell. Thus, the ability to translate or scale the material between
the two testing environments should be verified — a key step in which
complexity is underestimated [61-68]. Rotating disk electrode testing
for example can overestimate the activity, and underestimate the sta-
bility, and differences between Ir and IrO; catalysts compared to when
they are tested within an electrolyser [69]. The number of studies
evaluating electrocatalysts under conditions simulating those in present
day or future PEM-WE systems —i.e. in MEAs that are integrated in a cell
(e.g. >25 sz) or stack, at current densities (>1 A cm 2), temperatures
(60-80 °C), ambient or partially elevated pressures, and durations
(2000-8000 h) tending toward those described in Section 2.1 - coinci-
dently, also remains low. This is all expanded on in later sections.

1.3. Are electrocatalysts for the OER getting better?

We will note briefly here that the number of scientific articles
relating to Ir- and Ru-based OER electrocatalysts is increasing rapidly, as
shown in Fig. 1 (adapted from the work of Alia [70]). The figure also
compares cell voltages of PEM systems operated at 1 A cm 2 from
randomly selected studies published since the 1970s (the data is sum-
marised in Appendix 1) against commercial PEM-WE cell voltage
ranges [71,72]. Most of the anode catalysts that are tested in PEM cells
for ‘long’ periods are based on Ir- and Ru-oxides. After an initial
improvement in the overall cell voltage, the value at 1 A cm 2 has not
improved significantly despite the surge in OER electrocatalysts being
reported. It should be noted that these studies do not all use cathodes,
membranes, porous transport layers (PTLs) or experimental conditions
(e.g., temperature, pressure, electrode area, compression, etc.) that are
consistent with industrial settings. Due to these caveats, the search for
newer anode materials is not being translated into better PEM-WE
systems.

2. Requirements for OER electrocatalysts in PEM water
electrolysers

2.1. Industrial targets for PEM-WE OER electrocatalysts

Three critical merits of an electrocatalyst are activity, durability, and
(low) cost. For currently installed systems, the capital expenditure
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(CAPEX) contribution of the anodic electrocatalyst to the stack is 10-15
% (with electrocatalyst loadings of ~2-5 mg cm 2) [71]. More impor-
tantly, noble metal supply (particularly Ir) cannot keep up with
increasing electrolyser size capacities [1,70,73]. Thus, projected mass
loadings of <0.5 mg cm 2 (by 2030) and ~0.1 mg cm 2 or below (by
2050) have been suggested to meet future Hy production demands by
improvements of the membrane electrode assembly (MEA), catalyst
layer and catalyst itself, the latter by independent development in half
cells [10,71,74-76]. The activity and stability targets for PEM-WE sys-
tems are also challenging; A cell voltage of 1.6-1.8 Vat 3 A cm 2 (Fig. 1)
with a degradation rate of 2-2.3 mV kh ! and a total lifetime of 80 khr
by 2030 have been proposed [25,71,72,77-81].

The electrocatalyst stability particularly must not be an issue, as we
will discuss through this review. A PEM cell showing exemplary initial
performance due to a high OER electrocatalyst activity that also has a
high degradation rate will become obsolete before the targeted opera-
tional hours are met [79,82-85]. In this case, frequently replacing the
electrocatalyst (and associated components) is expensive from an

operational/capital expenditure perspective — reducing overall produc-
tivity due to downtime [85,86]. To further highlight the stability chal-
lenge in PEM electrolysers, an anode electrocatalyst made of RuO,, with
a Faradaic selectivity of 99.999999 % for the OER, will still dissolve at
~0.43 mg cm 2 annually (see the Supplementary Information).
Electrocatalyst degradation is also an accumulative process, and the
large operational hours in a PEM-WE (compared to applied durations in
academic literature) will lead to a notable change in the electrocatalyst’s
activity and degradation of the MEA.

2.2. The electrocatalyst’s properties should be transferable into a PEM-
WE

Integrating an OER electrocatalyst into a PEM cell must not adversely
alter the properties that gave its initially promising performance in the
half cell. In this case, a material used for the most fundamental studies —
a single-crystal (i.e., a thin layer of epitaxy-grown surface) - is not easily
or as readily applicable to an industrial electrolyser as a polycrystalline
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electrocatalyst, even if it has an outstanding utilisation factor (activity,
durability, and cost). Analogously, many polycrystalline electrocatalyst
screening studies use traditional synthesis methods (sol-gel, molten salt,
Pechini method etc.) [31,87-92], with which scale-up offers its own
challenges. Thus, while these approaches provide valuable insights into
catalyst development using a half cell, their impact/influence on com-
mercial PEM-WE performance is not yet fully understood [68,93].

Once the electrocatalyst is incorporated into a PEM cell, additional
factors become important. As PEM electrolysers must operate at a high
current density to minimise the levelized cost of Hy (cost to produce 1 kg
of Hy, including the estimated costs of capital investment required and
the cost of operating the assets involved in its production) [94,95], the
ohmic losses in the electrocatalytic layers (in addition to that in the
membrane, PTLs, and bi-polar plates) are required to be as low as
possible. This factor is often not considered when electrocatalysts are
studied in half cells, where current densities are at least two orders of
magnitude lower than in a PEM cell. Furthermore, the electrocatalytic
layers in half cells (often drop cast layers on flat substrates) are often
much thinner than the electrocatalytic layers found in a PEM cell (~10
pm), where a low contact resistance between the electrocatalyst parti-
cles becomes significant [96,97]. For instance, Xing et al. found that
while RuO, with poor crystallinity showed superior performance below
200 mA cm 2 when compared to more crystalline samples, the latter
showed better performance in PEM cells at higher current densities due
to a lower film resistance (Fig. 2b) [98].

3. Key challenges for OER electrocatalysts in PEM water
electrolysers

3.1. Electrocatalyst stability is a major challenge

The OER in a PEM-WE occurs at low pH and at potentials more
positive than the standard oxidation potential of all metals (>1.5 V vs
RHE) [99], meaning that pure metals are thermodynamically predicted
to transition into oxides or ions [100,101]. These conditions thus favour
catalyst dissolution [17,102-105], dopant leaching [106], structural
and compositional modifications (Fig. 2a) [25,59,60,82,107-111].
While RuO; may be the most active OER catalyst, based on Pourbaix’s
data, Schalenbach et al. showed that Ir-, Pt-, and Rh-oxides are the only
compounds thermodynamically stable for the OER up to 1.6 V vs RHE
[100]. RuO3 can be partially stabilised by mixing with other elements
such as Ta, Sn, Nb etc. (see Section 5) [112-115]. However, this de-
creases the overall PEM cell performance [1,88,112] in part as these
mixed oxides exhibit lower conductivity compared to metallic IrOy or
RuO, [116-118].

As elegantly summarised by Roy et al. [51], RuO3 corrosion (and
ultimately Ru dissolution) under OER relevant potentials proceeds via
the reaction: RuO2 + 2H20 — RuOy(aq) + 4H" + 4e , with its Faradaic
selectivity reliant on the catalyst’s physicochemical properties (medi-
ated by the synthesis method), and operating conditions [16,119,120].
However, mechanistic details relating to individual steps of Ru disso-
lution, and their dependence on RuO, surface orientation and structure,
remain convoluted. A point of focus, and debate, is whether the OER
induces Ru dissolution and whether its activity correlates with the Ru
dissolution rate (i.e. is there an inverse relationship between activity and
stability) — as is believed to be the case. Recent theoretical work has
shown that water oxidation and the OER induce the dissolution of the
catalytically active Rucys sites by a preceding surface reconstruction,
coupled with a loss of OER activity [121,122]. The dissolution rates of
these Rugys sites [51-53] on pristine and defective (step, terraced or
kinked, etc.) surfaces have been found to correlate, albeit to different
extents, with the OER activity; These two processes are believed to share
common reaction intermediates that can even mediate the OER pathway
(i.e. are highly active for specific steps along the OER) and minimise its
overpotential [119,123]. Further, dissolution may be stabilised by the
water oxidation process and through the lattice oxygen evolution

pathway [123]. Interestingly, however, recent experimental evidence
hints that OER activity and dissolution-driven instability may not be
correlated in this material — laying claim to the possibility that these two
processes are decoupled, with important benefits in terms of electro-
catalyst development for commercial applications [51]. Development of
computational simulations and their pragmatic application [11], along
with the development of experimental tools (e.g. synchrotron spectros-
copies [124,125]) and growing accessibility to high-quality epitaxial
films [126,127] will provide clarity on these important matters.

3.2. Corrosion alters the electrocatalyst’s structure and activity

As previous sections imply, during prolonged operation in the an-
ode’s corrosive environment, the electrocatalyst undergoes amorphisa-
tion, phase segregation, and even complete dissolution — altering its
morphology, surface topology and electronic properties, etc. (Fig. 2a)
[128]. In particular, as many OER electrocatalysts are based on unique
micro-/nano-structured architectures, they are particularly susceptible
to particle growth and sintering, reducing the active surface area during
operation (Fig. 2f) [25,80,81,129-131]. Dissolution and sintering issues
can be accelerated at high current densities due to hot spot formation (i.
e. localised areas with increased temperature), which can further dam-
age the membrane, cascading the issues [132]. While these factors are
important in a PEM cell under prolonged operation, the lower current
densities and shorter timeframes typically used in half cell studies may
not uncover or even initiate stability issues (Section 6).
Corrosion-induced changes can even be beneficial for the activity when
tested in half cells [133-135].

3.3. Corrosion leads to additional “non”-electrocatalytic changes in
PEM-WE systems

In addition to corrosion-induced changes to the electrocatalyst, its
instability adversely affects the properties of the catalytic layer (cata-
lyst-ionomer) and membrane in a PEM-WE. For example, dissolution of
RuO; can lead to the precipitation of Ru in the membrane (Fig. 2c),
reducing conductivity to H" and thus increasing the high-frequency
resistance [98]. Similar changes were seen in Ir-based anodes (Fig. 2d)
[6,136,139], where leached cations block ion exchange sites in the
membrane and ionomer [140]. Inazumi et al. [141], for example,
studied the long-term stability of PEM-WEs and found that cell voltage
increase was due to accumulation of Fe, Ni and Cr ions in the membrane
(originating from the stainless steel tubing) [142]. The commonly used
Nafion membrane and ionomer are especially vulnerable as metal ions,
except Li", have a higher affinity towards Nafion’s sulfonic groups
compared to protons [143]. Substitution of a proton by metal ions can
also impact water transport in the membrane due to bulkier solvated
ions ([M(H20)]¥ ™ compared to H30") [144-146]. Even a small con-
centration of ions could be detrimental to PEM performance — for
example, Li et al. observed that 1 ppm Fe>" contamination immediately
increased the cell voltage, and the degradation rate increased from 5.2
to 128.9 pvV h Lat 0.5 A cm 2 (Fig. 2e) [137]. The cations can also
catalyse the Fenton reaction, promoting the formation of radicals like
HO®, HOO*® and H” which may damage the membrane and other com-
ponents [147-151].

The cathode electrocatalyst (often Pt on carbon support) can also be
influenced (‘poisoned’) by the dissolution of the anode materials [73,80,
81,87,137,150,152-154]. Metal cations with a reduction potential
higher than the operating potential of the cathode can be reduced,
blocking the electrocatalytic surface and increasing the HER over-
potential [155]. Metal cations that have more negative reduction po-
tentials (e.g. Ca®", Ti*") do not deposit on the electrocatalyst but instead
precipitate in the form of hydroxides or oxides at the membrane-cathode
interface, increasing the resistivity of the MEA and decreasing the cell
performance [156,157].

As highlighted in Sections 3.1-3.3; the instability of the



electrocatalyst not only influences its inherent ability to drive the OER
but can also impact the membrane and cathode in a PEM cell. While
reducing the cost of the electrocatalytic material is important for a PEM-
WE, balancing this against the operating efficiency and stack lifetime is
essential from an economic perspective. Thus, beyond research focusing
on developing the electrocatalyst alone, dynamic changes and their in-
fluence on the stability of the new electrocatalyst when integrated into
the MEA are areas requiring attention from the academic community
[70]. This is alldiscussed further in the context of the electrocatalystand
operating conditions in Sections 4 and 5.

4. Preparation, characterisation, and performance of Ru-based
OER electrocatalysts

4.1. A summary of literature performance, use of baseline materials and
reproducibility

Ru-based electrocatalysts have been prepared in many ways to ‘en-
gineer’ their properties (i.e. crystal structure, stoichiometry, atomic and
structural defect presence, electrochemically active surface area (ECSA))
[158,159]. Often, however, attributes that improve activity are detri-
mental to long-term stability. For instance, a rough surface with a high
ECSA, atomically defective surfaces [160,161] or amorphous materials
show higher activity than a crystalline, stoichiometric benchmark but
show poor stability against corrosion [18,102,162-166]. While these
engineered electrocatalysts are commonly more active than the baseline
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(Fig. 3a and b, discussed below), their overpotential remains ~200 mV —
seemingly confirming a theoretical limit as suggested by others [167].
Fig. 3a shows a comparison of electrocatalyst overpotentials re-
ported in literature (summarised in Appendix 2) — green circles repre-
sent the engineered materials, and grey circles are baseline materials
used for comparison. The scatter in the engineered and benchmark
materials is similar — this suggests that a standard benchmark may not
have been identified and makes comparison across the community
innately biased. Similar order of magnitude differences in the observed
activity of Ir and IrO, baseline materials have also been reported [168].
This is generally unsurprising, as a minor change in the synthesis pro-
cedure can change the material’s physicochemical properties and
observed OER activity (discussed in Section 5.2). For instance, we pre-
pared a benchmark RuO; (via the fairly simple Adams Fusion method)
[169] that showed an overpotential of ~200 mV - close to some of the
best-performing electrocatalysts (Fig. SI1). Even when RuOz is prepared
in such a trivial way, the performance metrics can vary (expanded on in
Section 6) [159,170,171]. Trasatti, over 30 years ago [115], highlighted
that two different operators in the same laboratory might not achieve
similar electrochemical properties for, albeit more complex IrO,-RuO4
coated anodes, despite following identical preparation protocols
(Fig. 3c). The voltametric charge varied depending on the solvent used
and the operator conducting the experiment. Other studies also high-
light disparities in voltametric charge of electrodes of alike compositions
prepared in different laboratories [172]. A recent report from Tesch
et al. [173] has shown that the OER overpotential of an electrocatalyst
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depends on the experimenter, also for an experimenter themselves it can
change based on pre-conditioning.

To highlight that composition alone is not an ideal descriptor of
electrocatalytic behaviour, we show in Fig. 3d variations in the Tafel
slope of Irj yRuyO4 prepared in different research groups (Appendix 3).
While we can see a general decrease in the Tafel slope with an increase
in the atomic fraction of Ru, the absolute values can vary significantly
between two materials of similar composition. This extends to activity
and stability — as we will highlight throughout Section 4 [21,28,38,44,
174-177]. The difference in observed performance of similar materials
also results from engineering aspects of the electrocatalytic layer, testing
protocols, dynamic changes, etc., as we elaborate on in Section 5. Unless
we are aided by standardised development protocols, the root cause of
failure (or enhancement of the activity/stability) cannot be efficiently
understood [178,179]. Through the following (sub-)sections, we will
build on the topic of discrepancies in the performance of engineered and
benchmark electrocatalysts.

4.2. Challenges with the synthesis of electrocatalysts

4.2.1. Bulk Ru-based electrocatalysts

Most Ru-based oxide electrocatalysts in literature are prepared using
sol-gel synthesis, Pechini method, polyol synthesis, aqueous hydrolysis,
molten salt method, co-precipitation, etc., involving oxidation of metal
salt in a supporting matrix. The industry commonly uses the Adams-
fusion method [31,87-92]. However, due to the innate complexity of
the oxide synthesis process, achieving reproducible activity/stability
data becomes an issue at the electrocatalyst development stage, leading
to discrepancies noted in the earlier sections. The fabricated metal ox-
ides’ chemical/structural properties depend on the thermodynamic
stability of phases, energetics of intermediates and products and kinetics
of the process. Their properties can also differ based on the precursors
used [180], diffusion of salts and their solubility, along with oxygen
partial pressure [57,112,181,182]. Differences in decomposition ki-
netics among precursors and the oxide (facet) formation energy
contribute also to surface/bulk ion segregation (Section 4.3). Achieving
reproducible, scalable synthesis is particularly challenging when the
material takes on unique micro-/nano-architectures (e.g. cubes, rods,
fibres or wires), as it needs rigorous control over synthetic parameters
[55,183-185]. Absolute transparency in reporting synthesis methods
should be offered within publications to aid reproducibility. Nonethe-
less, these materials are being tested in PEM cells, as discussed in later
sections.

4.2.2. Supported Ru-based electrocatalysts

Producing core-shell structures or dispersing nanoparticles (and
single atoms) [186-188] on support materials (e.g., TiO, and SnO3)
[189,190], similar to how Pt is dispersed on a carbon support in the
cathode, is a promising way to improve catalyst utilisation [182,
191-193]. There are synthetic challenges in preparing core-shell or
supported materials, where a broad range of species can result, such as
single atom (atomic substitution in general), single site (a cluster that
has one active site) and stand-alone (electrically isolated) RuO2 nano-
particles [89,194,195]. With single-atom catalysts (SAC) a key synthetic
challenge is maximising at.% loading while preventing the atoms from
migrating and agglomerating (i.e. maintaining structural integrity)
[186,187].

Due to a variety of particles in the ensemble, decoupling contribu-
tions from each component remains a challenge in this form. And while
various supported materials were tested in PEM cells [90,196-199], this
strategy is not yet ready for implementation. A key problem in the use of
support materials (which are poorly conductive and inactive for the
OER) is the lack of, or further loss of, conductivity from the ensemble
due to oxidation or dissolution of ions. A decrease in the conductivity
increases ohmic losses, especially at higher currents [7,200]. This is
evidenced in several examples; In the case of an IrOy/ATO (antimony

tin-oxide) anode, the doped ions can leach out during operation [201],
leading to a change in the conductivity and hence Ohmic losses, as
observed by a 90 mV cell voltage increase of a PEM-WE at 1 A cm 2 after
only 4 h of polarisation [190]. In the case of IrOx supported on ATO, a
Faradaic efficiency of only 94% for the OER was achieved due to the
significant instability of the ATO support [202]. Higher anodic currents
also inevitably result in the oxidation of the support during long oper-
ation, as observed in the case of micro-sized Ti metal particles [7] and
Magnéli phase Ti suboxides Ti Oz,.1 [203]. Detachment of the electro-
catalyst particles from the support is another common problem in the
absence of a strong metal-support interaction [202,204]. These chal-
lenges are also discussed from the context of the substrate in Section 5.4.

4.3. Bulk composition is not necessarily the surface composition

Even under meticulous control of growth and synthesis parameters,
the (sub-)surface region of micro-/nano-particles can be different from
the bulk [205-207]. This is particularly the case in bimetallic alloys and
mixed-metal oxides, where factors governing surface (anti-)segregation
were studied by Ngrskov et al., via an understanding of the surface en-
ergy of transition metals (including Ru and Ir) [208].

Let us briefly look at empirical studies relating to Ru-Ir oxides as an
example. When mixed oxides were synthesised by the annealing of an
Irg sRug 5 alloy, the high temperatures led to a change in the surface
composition from an Ru:Ir ratio of 1:1 to mainly being composed of Ir
cations - a concentration gradient formed through the first few atomic
layers (Fig. 4c and d) [209]. Owe et al. found that irrespective of the
IryRu; xO2 composition, the surface Ir concentration was higher
compared to the bulk [210]. A similar enrichment of Sn on the surface is
reported in RuO2-SnO; mixed oxides [211], and preferential segrega-
tion of Ir on the surface has also been reported in RuO2-SnO,-IrO,
[114], IrOz/SnO%12 etc. However, Nguyen observed surface dominance
of Ru ions when IrgsRugs02 was synthesised using a one-step or
two-step synthesis [213]. Upon reviewing research that details the bulk
and surface compositions of Iry yRu,Os, it is generally observed that Ir is
more prevalent on the surface than in the bulk (Fig. 4b). The degree of
phase segregation can vary based on the synthetic conditions resulting in
considerable differences in the particle surface, particularly across
studies [210,212,214]. Often the surface composition is estimated by
XPS, and the bulk composition is determined by EDX or nominal
composition. Considering the probing depth of XPS is a few unit cells
[215], discrepancies in the sub-surface atomic layers may be more
pronounced, and care should be taken to determine the correct values.

4.4. Electrocatalyst evolution during operation, activity improvement and
stabilisation strategies

Key questions in the development of new electrocatalysts for the OER
is to what extent the composition changes during operation, especially
at higher currents and during long operation hours. And, if it changes,
will the electrocatalyst maintain its performance for time periods rele-
vant to industrial applications? Also, if the as-made electrocatalyst
comprises a diverse number of active sites that are constantly changing,
can one understand the origin of its improved performance or the root
cause of failure, as mentioned in Section 4.1?

The (sub-)surface region of RuO; undergoes transformations in its
physicochemical properties once it contacts the reaction medium
[205-207,219]. This was seen, for example, in RuO5 nanoparticles via
changes in the Ru-O coordination number and bond length by in-situ
x-ray absorption spectroscopy (XAS) (Fig. 5a—c) [216]. Of course, this
region further changes when an electrical potential is applied [107,109,
110,220,221]. As we have now discussed in earlier sections, RuO; is
thermodynamically unstable at potentials driving the OER (>1.4 V),
making its dissolution via changes in the valence state of Ru and Ru-O
coordination number (forming RuOy, x > 2 species) an inevitable,
kinetically controlled process [16,216,222,223]. Using in-situ ambient
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pressure XPS, Saveleva et al. show that RuO, undergoes a substantial
potential-dependent transformation into other Ru species — even at po-
tentials of 1.0 V, volatile Ru(VIII) species are detected, whose leaching
results in an altered surface morphology [224]. Interestingly, the onset
potential of the OER on RuO; coincides with its thermodynamic disso-
lution (Fig. 5d) [16], and various transient dissolution features are
observed when oxygen atoms are inserted or removed from the oxides.
To maintain charge neutrality in the electrocatalyst, either there will be
a change in the valance state of Ru or a loss of lattice oxygen leading to
the formation of an amorphous surface layer after a sufficient time
(Fig. 5e) [217]. Studies have also suggested that partially oxidised or
low valance state RuO, improves OER activity [225-229]. Since
PEM-WEs are operated at high anodic currents, partially oxidised ma-
terials are likely to oxidise further after hours of operation. Thus, Ru
metal or low valance state Ru catalysts will eventually form high valent
Ru species during the OER [104]. Relating to the following text, we have
tabulated (in Appendix 2) the Ru-based research work showing the
leaching of at least one component.

Attempts have been made to improve the activity and stability of
RuO; by doping with noble- and transition metals [14,230]. Select noble
metals (e.g. Ir) are favoured as they preserve the surface functionality of
RuO, for electrocatalytic reactions — this functionality is suspected to be
rooted in its electronic and magnetic structure (determined by a very
complex interplay of lattice-, spin-rotational, and time-reversal sym-
metries), as described in theoretical and experimental studies [117,
231-234]. The noble metals are also more stable against dissolution
than other 3-5d transition metals in the acidic conditions within a PEM
electrolyser; however, they are also more expensive than these elements,
which motivates studies involving the latter. In either case, unless a solid
solution is formed, there will be multiple phases in the particle [31,112,
211,235], with different physicochemical properties [236]. In partic-
ular, the metallic conductivity of RuO, will be hampered by changes in
the electronic structure or by the formation of grain and domain

boundaries. Of relevance for the potential application of RuOy in PEM
cells is the use of Ti, Ir, Ta, Nb and particularly Ir as it offers stability
while not compromising conductivity [112,209,237-239]. Danilovic
et al. showed that when a near-perfect solid solution of an Ir-Ru alloy
was subject to anodic polarisation, the atomic composition of the surface
region altered, creating an Ir-rich environment after the leaching of the
less stable Ru [209]. Cherevko et al. showed that Ir;.xRuyO, nano-
particles had an Ir-enriched surface after the initial dissolution of Ru
during OER [240]. In IrO2-RuO; anodes, a disparity in the dissolution
rates of constituent metal atoms was also observed [241].
Escudero-Escribano et al. showed that sputtering of sub-monolayer IrOy
layers onto a 40 nm RuO; thin film could drastically improve its sta-
bility, but as expected, the OER overpotential increased by 40 mV at 5
mA cm 2 [242]. Mayrhofer et al. found that the IrRuOx with 25 at.% Ir
has a similar activity to that of RuOx initially. If the electrode is polarised
with just 1 mA cm 2 for 5 min, the activity decreases drastically due to Ir
enrichment (and Ru dissolution) on the surface and becomes closer to
that of the initial activity of 60 at.% Ir (Fig. 6b) [241]. Similarly, the
activity of the Au-Ru electrocatalyst changed significantly during
cycling where the Tafel slope changed from 60 to 110 mV dec ! after
repeated cycling [243].

Walton et al. prepared doped RuO; using the significantly cheaper
than noble metal Mg, Ni, Cu and Zn transition metals. The doped ma-
terials showed inferior performance to RuO,, with dopant dissolution
leaving a Ru-rich surface [63]. Tan et al. reported that Co-doped RuOg
prepared via oxidation of a Co-Ru alloy undergoes significant leaching
of Co metal during cyclic voltammetry between 1.2 and 1.5 V [244]. The
cycling process increased the Ru oxidation state and changed the coor-
dination environment around both the Co and Ru atoms. Ko et al. found
that Ni K-edge XANES features of a RuNiOs, even at open circuit voltage,
are substantially different compared to the as-made material [245]. Ru
and Ni leached into the solution during cyclic voltammetry with a higher
rate of leaching for Ni during the first cycle. The electronic and local
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structure of NiRuOy became similar to hydrous RuOy even at a low po- an amorphous layer of RuOy that serves as a catalytically active
tential. Zhang et al. observed that Ru-M (M = Cr, Co or Zn) alloys un- component (Fig. 5f). Mn was not detected in the surface and sub-surface
dergo severe degradation during the OER, whereas Ru-Mn alloys form regions after electrochemical cycling [218]. The leaching of Mn and



subsequent formation of vacant sites on the Ir-Ru-rich oxide surface was
also seen in an Ir-Ru-Mn ‘nano-cactus’ during an operational cycle
[246]. Dissolution of Sr and a change in the composition and
morphology were also found in a SrIrRu alloy tested for the OER, con-
current with a decrease in stability [247]. Using relatively robust
Ru; xMn;O5 DSA electrodes, we observed that while these electrodes
show lower overpotential at 10 mA cm 2 (Fig. SI2) after 24 h of elec-
trolysis, more than 80 % of Mn leached into the solution. Leaching of Ru
also increased significantly.

While the majority of the above-described Ru-based OER electro-
catalysts consist of rutile RuO,, the perovskite (ABO3) and pyrochlore
(A2B207) are also touted as promising structures to reduce the noble
metal content of applied materials as they offer elemental composition
tunability by the interchange of ions at the A and B sites [21,22,40,
42-44]. However, they are not yet viable alternatives for electro-
catalysts in PEM cells. In Ru-based perovskites, the leaching of elements
from the cationic sites during the OER changes the surface composition
into amorphous RuOx with low concentrations of other ions [39]. While
it was proposed based on theoretical studies that SrRuO3 should show
good OER performance [12], Kim et al. found that the activity of StRuO3
perovskite nanoparticles decayed during anodic polarisation [248]. In
this instance, ICP-OES showed that elemental leaching resulted in a final
Ru/Sr ratio of 0.16. Ji et al. [249] found that both Sr and Ru leach into
the electrolyte and showed the absence of Sr cations at the surface of the
electrode after 30 h of OER at 10 mA cm 2. Concerning pyrochlores, the
extent of A-site and B-site dissolution varies across the literature; in
some studies, more than 50% dissolution of A-sites was reported [21,38,
44,175-177], whereas other studies claimed no dissolution [250].
Hubert et al. indicated, using different A site elements (A =Y, Nd, Gd,
Bi), that ions losses from pyrochlores during the OER as well as their
degree of dissolution differ based on the element itself. After the disso-
lution of the A-sites, these materials again form oxidised, electro-
catalytically active RuOx-species [39,44].

In terms of SACs, continued development is needed in terms of sta-
bility [251-255]. Efforts were made to minimise Ru dissolution
[252-256] using a variety of supports, including Pts—Cu alloy, Co-N4,
Co304, CoFe and NiFe double layer hydroxides and nitrogen-carbon
network (Ru-N4) [251-257]. Of note, Li et al. and Zhai et al. have
shown Ru SACs to drive the OER at 200 mA cm 2 (n =1.5V) and 100
mAcm 2 (n =1.54 V), respectively, with stability claimed for over 100 h
[251,257].

4.5. Deconvoluting the intrinsic activity of a constantly changing
electrocatalyst in an ensemble measurement

Despite reports of higher activities in engineered Ru-based materials
against a baseline material [63,258], their long-term stability under
industrial conditions remains questionable. Overwhelming evidence
exists of structural reconstruction, dissolution of the host and leaching of
dopants (Appendix 2) — all of which can change the reaction kinetics
and thermodynamics [101,107,108,110,259-262]. Overall there is a
lack of clarity regarding the “true” catalyst composition and factors that
govern its performance. As eluded to the introduction, the question re-
mains on what should be assigned as the actual activity or root cause of
instability - a specific property or a convolution of many aspects [109].

Answering such a question is not trivial from an experimental and
theoretical perspective. A small fraction of the catalyst can account for
more or less of the observed turnover [263]. For instance, to highlight
the complexity of this issue: The degree of water dissociation, interme-
diate state binding energies and overall activity/stability trends, were
shown to depend strongly on the lattice orientation and bonding envi-
ronment around an active site in RuO, [11,51-53]. Even minor changes
in the material’s surface quality influence the specific capacitance and
thus the ECSA, affecting the observed performance [264]. However,
reported electrocatalytic data is most commonly a macroscopic property
— an averaged behaviour of the ensemble encompassing a variety of

structural features and a superimposition of different reactions [265,
266]. This is logical considering the geometry of currently used half cells
and that synthesis methods result in a wide distribution of particle sizes
of innate heterogeneity; as implied above, different lattice planes and
topological features within (edges, steps, kinks, etc.) have distinct
chemical affinity, activation energy and reactivity for steps along the
OER [267-271]. They also give a spatially nonuniform current or po-
tential distribution. Thus, the same material can have a non-negligible
contrast in performance when tested in different laboratories [258,
272]. These observations, and the differences in baseline material per-
formance, once again indicate that standard characterisation methods
for OER electrocatalysts, such as those reported for solar cells and other
energy storage devices, are needed [273-276].

5. The electrocatalytic layer and testing protocols
5.1. Electrocatalytic layer preparation

To evaluate the performance in a PEM-WE, an electrode is prepared
by casting the catalyst on a conductive substrate using a polymer-based
binder (ionomer), sometimes with a support material or additive to
promote particle-to-particle contact. The porosity, agglomerate size, and
ionomer distribution of this heterogeneous layer facilitate proton
transport from the membrane, electrons transfer to the current collector,
and reactant interaction with the active sites (Fig. 7a). Thus, when the
electrocatalyst is tested in a PEM cell, it is unsurprising that its observed
performance differs due to various other factors; electrode coating
process, the electrolyte type, testing procedure (conditioning protocol,
acquisition method) and dynamic changes of the catalytic layer (e.g.
degradation and bubble formation) [67,168,277-285].

Commonly used coating methods (e.g. drop casting, spray- or dip-
coating) result in a distribution of electrocatalyst (electrical
conductor) and ionomer (proton conductor) that may not be uniform,
with the further presence of cracks or formation of isolated catalyst
pockets producing electrically disconnected paths (Fig. 7a). These
cracks can disrupt the continuous electron transfer path, reducing the
catalyst layers electronic conductivity [286]. Proton transport, relying
on the continuity of the ionomer network, can be hindered by the
presence of cracks [287]. The structural attributes of the CL, such as the
distribution of ionomers, can directly influence proton transport. The
ionic conductivity of this binder is orders of magnitude lower than the
electrical conductivity of the catalyst, varying based on thickness,
temperature and applied potential [288]. Thus, when an external po-
tential is applied to the substrate, the potential distribution across the
catalytic layer varies. For Hy production to progress efficiently, the
electrocatalyst particles must be seamlessly connected to both the pro-
ton and electron transport pathways. The catalytic sites lacking access to
either will remain inactive and unutilised. In addition, recent studies
have found that binders such as Nafion ionomer, and PTFE, conven-
tionally viewed as inert, can interact with catalysts leading to substantial
alteration in their activities [284,289].

5.2. Considerations regarding mass loading of the electrocatalyst

At the half cell stage (where much of the fundamental catalyst
development happens), figures of merit are mainly reported in terms of
the overpotential at 10 mA cmgez0 (c.f. ‘geo’ is the geometric surface area
of the electrode), the change in this overpotential after 2 hr?° or
through a mass normalised activity. We find however that there is no
consistent value in the literature for the electrocatalyst’s mass loading in
a given geometric area (as seen from the summary plot in Fig. 7c) —
despite a strong dependence of the overpotential at a given current
density on this mass loading parameter (seen in Fig. 7b and b inset),
highlighting the need for a standardised practice in the evaluation of
electrocatalyst loading [161,291,292]. However, as geometric area and
mass normalised activities are engineering perspectives of an electrode,
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they do not always reflect variations in the catalyst’s intrinsic activity
stemming also from a physicochemical property. In this regard, an
important aspect to further consider is normalisation against the ECSA.
The importance of this point was highlighted by McCrory et al. [293]
concerning the standardisation of OER electrocatalyst testing protocols
in general and more specifically with respect to RuO; by Reiser et al.
[264] - this latter study provided an upper limit of specific capacitance
for use in determining the ECSA of geometrically ill-defined RuO; cat-
alysts from their double-layer capacitance.

5.3. Electrolyte

While 0.5 M H3SO4 and 0.1 M HCIO4 were common electrolyte
choices in literature, our investigation revealed that a diverse range of
other electrolytes being used (as summarised in Fig. 7d).The choice of
supporting electrolyte can also alter the observed activity. For example,
Sunde et al. found that the electrolyte could substantially change the
OER rate in acidic media, and a higher OER rate is observed with more
electronegative anions [278]. Similarly, Arminio-Ravelo et al. found
that the Ir based electrocatalysts are less active in HySO4 compared to
HCIO4, likely due to stronger adsorption of SO ions compared to ClO4
ions [277]. In contrast, Alia et al. [168] found that polycrystalline Ir and
IrO4 nanoparticles demonstrate little to no difference in their OER ac-
tivities in 0.1 M HCIO4 and 0.5H5SO4.

5.4. Electrode substrate

As we described in Section 4.2, and briefly bring the communities
attention to again here, the electrode substrate used to immobilise the
electrocatalytic particles plays a role in the electrochemical response
[199,283]. To highlight an example, Geiger et al. saw that the stability
and activity of Ir-black depended on the backing substrate. The elec-
trocatalyst’s initial activity on gold or glassy carbon (GC) is higher than

on boron-doped diamond (BDD) and fluorine-doped tin oxide (FTO).
This was attributed to higher contact resistance between BDD and FTO
substrates and the electrocatalyst. In a long-term galvanostatic study,
the electrocatalyst showed a more abrupt increase in overpotential on
GC and FTO compared to gold and BDD. These observations related to
passivation (surface oxidation) of the GC and dissolution of FTO - it did
not represent the behaviour of the pristine electrocatalyst. Clearly, an
electrocatalyst on two different supports can show different electro-
chemical responses, and one should be particularly aware that passiv-
ation or degradation of the substrate can result in an incorrect
estimation of the electrocatalyst’s activity or stability.

6. State of art evolution of the electrocatalyst

Several protocols [272,290,294-296] have been reported for eval-
uating OER electrocatalysts. Among these, the protocol reported by
McCrory et al. [290] is commonly adopted. This protocol recommends
key performance metrics for OER catalysts, including the overpotential
required to achieve a current density of 10 mA cm 2 (geometric area)
and stability of this overpotential over a 2-h duration [290]. However, a
review of the material-centric literature reveals a notable gap in prop-
erly reporting the catalytic activity properties of the materials.

6.1. The Tafel slope dilemma

As discussed in relation to transition state theory by Exner and Over
[297,298], the OER mechanism in the low overpotential region (n =
0.2-0.3 V) starts from a different RuO5 surface structure than in the
higher overpotential region (n > 0.3 V), resulting in contrasting Tafel
slope values. In systems with a complex micro-/nanostructure, this
variation can be from 40 to 200 mV dec ! in different potential regions,
demonstrated using a model RuO; DSA electrode (Fig. 8a). There are
often two orders of magnitude differences between current densities
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used to study model catalysts and those used in an applied scenario.
However, most articles report only one Tafel slope (typically in low
overpotential regions); consequently, the overpotential required to
achieve 100 mA cm 2 or 1 mA cm 2 does not always scale with the
reported Tafel slope [28,292,299,300]. Through a study of the Tafel
slope and difference between potentials at 10 mA cm 2 and 100 mA
em 2in 30 randomly selected reports cited in this review, we can indeed
highlight that the activity data at higher currents indeed do not scale
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with the Tafel slope (Fig. 8b, papers from Table SI1). In recent articles,
the Tafel slope is sometimes estimated by less than a decade of the
current density range, which may result in an erroneous representation
of electrocatalytic performance (also clear from Fig. 7a). As we noted
earlier, sometimes the catalyst that performs well at lower currents fails
to do so at higher currents — this has been further demonstrated using
three model electrocatalysts (Fig. SI4) and a 20 % RuO2/ATO electro-
catalyst (Fig. 9). RuO2/ATO showed a low overpotential at lower

E-iR/V vs. Ag/AgCl
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Fig. 9. Oxygen evolution studies on 20% RuO, supported onto antimony doped tin oxide in 0.5 M H,SO4 electrolyte. (a) Cyclic voltammetry of the electrode shows a
fingerprint consistent with RuO,. (b) Linear sweep voltammetry of the electrode. The electrode demonstrates about 210 mV overpotential to reach 10 mA cm ™2,



currents yet struggled to achieve a higher current density. This suggests
that the reporting of Tafel slopes in higher potential regions would also
be very useful. However, this is overall a complex topic and reporting
should be done with clear descriptions of testing protocols.

6.2. Stability at low vs. high current densities

As stated in Section 5.2, we find that the majority of literature arti-
cles report stability as a change in overpotential at 10 mA cm 2 or show
chronoamperometry at a fixed overpotential for a number of hours (this
has been summarised in Fig. 8c) [290]. Less than 10 % report stability at
currents over 10 mA cm 2. The significance of this can be seen in a few
example: Zhang et al. found that an Ru-Mn alloy-derived electrocatalyst
only saw a 100 mV increase in overpotential after 720 h at 10 mA cm 2,
however, at 100 mA cm 2, the overpotential increased instantly (by
more than 210 mV in less than 1 h) [218]. RuO, nanosheets showed
stability at 1 mA cm 2, but at 10 mA cm 2 the overpotential increased
from 260 mV to 520 mV after 6 h. We found similar observations using
RuO2 DSAs at low and high currents (Fig. 8d).

As we alluded to in earlier sections, the continuous dissolution of
elements and reconstruction of the surface can also generate a higher
ECSA, masking under limited testing times, a change in overpotential.
For example, we found that a RuMnOs electrode had an increase in ECSA
after 24 h OER testing at 10 mA cm 2 (Fig. SI3). If the catalyst loading is
high, the degradation of the catalyst can be masked due to the sluggish
dissolution of the active component, even in a PEM cell [281,301]. If the
stability test was performed for a long duration (O1¢on), a false conclu-
sion of a low degradation rate (high stability) may be drawn. Thus,
galvanostatic or potentiostatic stability tests should be supplemented
with measurement of dissolved ions in the electrolyte [302].

7. Perspectives and summary

Developments in the field of Ru-based electrocatalysts have reduced
the OER overpotential to low values (<200 mV) at 10 mA cm 2 (Fig. 3a).
Given that theoretical studies from Koper et al. [167] suggest that a
surface will always possess an intrinsic overpotential, it may be that the
OER activity has reached a lower limit, nonetheless, the stability of these
electrocatalysts at industry-relevant current density values remains an
issue. Fabricating progressively more complex materials and reporting
their OER performance under non-standardised testing conditions seems
to hinder progress toward the development of a stable electrocatalyst for
PEM systems. An inherent heterogeneity in the electrocatalysts stem-
ming from commonly used synthesis methods complicates our ability to
gain fundamental insights. Single-crystals (offering the highest degree of
structural/compositional sensitivity) allow one to develop an under-
standing of structure-activity/stability relationships — a cogent (and
increasingly recognised) approach to the design of an active catalyst in
its polycrystalline form. In this latter case, synthetic methods for cata-
lysts with a controlled size distribution, shape or composition are
required to go from single crystal to industrially relevant powder vol-
umes, all the while preserving the positive physical attributes identified
in the former stage. However, various traits of a polycrystalline elec-
trocatalyst overlap in their contribution to its OER performance,
underscoring the necessity for investigations employing multiple oper-
ando techniques, ideally in the same electrochemical cell at the single
crystal level. It is also essential to conduct round-robin three-electrode
testing of commercially available OER electrocatalysts across diverse
laboratory environments, such as those attempted for fuel cells [303],
and electrolysers [304-306]. The advantage of round-robin tests is to
provide a full picture of the applicability of a measurement protocol and
to determine possible weak points. We suggest that intra-lab- vs.
inter-lab-uncertainty in the activity of OER catalysts must be recognised
and accounted for when comparing results from different research
groups. Beyond achieving an understanding of changes in properties at
the nanoscale (and how they may be controlled), it is crucial to examine

how this knowledge can be applied and transferred from the half-cell
level into a PEM-WE - a necessary step in translating lab-scale knowl-
edge into an applied setting. This will also include method development
to understand issues not encountered in a three-electrode half-cell, such
as bubble problems and catalyst heterogeneity.

In principle, for industrial applications, understanding the insights of
catalytic materials beyond what is achieved in the preceding phases is
not overly critical if the synthesis method can be scaled and the material
can provide stable and economical operation. To this end, there is a need
to accelerate the testing of catalysts with promising stability at a lab
scale under more industrially relevant current densities and to stan-
dardise the testing protocols (below). The latter, as discussed, will
enable fairer comparison between reported data. Since a commercial
PEM electrolyser works at high current densities (1-2 Acm 2, 1.4-2.5V
at a catalyst loading of 2-5 mg cm 2) for time periods 50-80 ( x 1000)
hr, the stability and activity tests at 10 mA cm 2 for relatively short
timescales limit our ability to assess a materials readiness for applied
settings. To compare activities at low current ranges, instead of report-
ing the overpotential at 10 mA cm 2, it may be useful to report mass and
ECSA normalised activity at a fixed overpotential; 300 mV (approxi-
mately the typical OER onset for IrO,) is a reasonable point. The long-
term stability of a catalyst may be gauged at higher current densities
as 10 mA cm 2 is too low when compared to the target practical ones of
1 A cm 2 or more for at least 100 h — with an emphasis on analysis of
catalyst degradation, used catalyst composition, and stoichiometry. We
note that applied catalysts will need to operate by 2030 under gradually
higher standards: 3 A cm 2 using less than 1.8 V for >80 ( x 1000) hr
with loadings of 0.2-0.4 mg cm 2 within the MEA. Notably, they will be
expected to have degradation rates of ~2-2.3 mV kh 1 (0.13 % khr 1.
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