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1. Introduction

ABSTRACT

Recently, the use of graph neural networks (GNNs) for leveraging knowledge graphs (KGs) has been on the rise
due to their ability to encode both first-order and higher-order neighbor information. Most GNN-based models
explicitly encode first-order information of an entity but may not effectively capture higher-order information.
To address this, many existing methods overlook the impact of varying relations among neighboring nodes,
leading to the integration of nodes with diverse semantics. This work propose an end-to-end recommendation
model, named Item-Specific Graph Attention Network (IGAT), which jointly utilizes user-item interaction and KG
information to predict user preferences. IGAT incorporates a knowledge-aware attention mechanism that assigns
different weights to neighboring entities based on their relations and latent vector representations in the KG.
Additionally, an item-specific attention mechanism is applied to measure the influence of the target item on the
user’s historical items. To mitigate biases from multi-layer propagation, IGAT utilizes contextualized represen-
tations of both users and items in the recommendation process. Extensive experiments on three benchmark
datasets demonstrate the superior performance of IGAT compared to state-of-the-art KG-based recommendation
models, with results showing that the proposed model outperforms the baselines.

similar users have similar preferences on items. Matrix Factorization
(MF) (Koren et al., 2009) is one such approach that is based on CF, works

With the increase of online information in platforms such as social
media, amazon and e-commerce websites, just to name a few, the need
of recommender systems has increased. Due to this fact, almost every
platform which engages the user is equipped with a recommendation
system. This facilitates the users to reach out to the product of their
interest. Furthermore, this assists businesses to expand their revenue by
appealing their customers with the user-specific content. In the last
decade, different recommendation strategies were proposed including
collaborative filtering (CF) (Shi et al., 2014). CF works by assuming that
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by considering there is some latent relation between the users and items.
MF has been extensively used in the literature for the recommendation
system but MF has one shortcoming that it only relies on user-item
interaction. Thus, it suffers from data sparsity problem as the informa-
tion is only coming from user-item interaction.

Recently, deep learning is being utilized in the recommendation
scenario to transfer the CF approach into deep neural network style. For
example, neural collaborative filtering (NCF) (He et al., 2017) is the
deep neural network style of CF which have two steps; one is embedding
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component while the other is interaction modelling. In embedding
component, vectorized representations of both the users and the items
are made whereas in interaction modelling, vector form of user and item
are utilized to rebuild the user-item interaction. Different interaction
modelling approaches are proposed in the literature such as translation-
based method (Tay et al., 2018) in which Euclidean distance is utilized
as an alternative to inner product. One thing to highlight here is that
these approaches are unfit for yielding satisfactory user and item
embedding. This is because they rely only on descriptive features such as
ID and thus, making the model overfit in deep neural network archi-
tecture. Consequently, data sparsity problem becomes even worse due to
the capturing of complex relationship from the sparse data.

To overcome the problem of data sparsity, researchers have proposed
to utilize side information in the recommendation problem. Hence, the
use of KG is becoming popular and have attracted the attention of
research community (Wang et al., 2019). KG provides fruitful facts and
semantic relatedness between the connected items and entities and thus
helps in capturing the latent connections to enhance the recommenda-
tion quality. By reducing the sparsity problem, KG provides reasoning
ability to the recommendation system via KG links among items. The
prior work done on KG based which is propagational based method: (1)
path-based, (2) embedding based and (3) propagation-based recom-
mendation. Path-based recommendation methods are intuitive in nature
as they rely on hand-crafted paths, thus may not be appropriate to un-
cover new connectivity paths among items. Moreover, in path-based
methods, domain knowledge is required to extract the long-range con-
nectivity among items and entities (Shi et al., 2015; Hu et al., 2018).
Embedding based recommendation methods enforce the regularization
loss to preserve the KG structure. Furthermore, in these methods, KG
relation is captured implicitly and hence may not be appropriate to
capture semantic KG relation explicitly in the recommendation scenario.
Propagation based recommendation methods stack multiple layers to
capture the long-range connectivity among items and thus enhance the
representation of each entity by encoding the neighboring nodes infor-
mation (Wang et al.,, 2020). One problem with propagation-based
methods is that they may allow noisy entities to be added into the ag-
gregation. Furthermore, unique representation of each entity may be
disappeared due to the over-smoothing of each entity in the KG.

Generally, KG is in the form of heterogeneous graph having items
and entities, and this graph context includes the local (directly attached
neighbors) as well as non-local (neighbors of neighbors) entities of the
given target entity. Moreover, there are diverse relations among entities
in KG and several node types, thus, it is heterogeneous in nature. As an
example, KG is shown in the Fig. 1 which illustrates the items and en-
tities connected to each other via different relations. Recently, the
research community have proposed new paradigm of graph neural
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network (GNN) based recommendation methods (Wang et al., 2019)
which try to capture the semantic information of local as well as non-
local graph context of the target entity. Since, there is always the
room for improvement, these GNN based recommendation models
usually suffer from the limitations. Thus, these models may not be
suitable for applications where the below mentioned challenges are
critical.

Challenge 1: Non-local context of the target entity is the key thing as
it assists in enhancing the representation of the entity in KG and thus
provide the useful reasoning of the user preference for recommendation.
Existing methods which utilize path-based approach may not be suitable
to uncover the new connectivity and only rely on the hand-crafted paths
(Dong et al., 2017). Propagation based approach exploit the layers to
capture the long connectivity of items and entities in KG but they ignore
the important relational aspect among entities. Since, entities are con-
nected via different types of relation so ignoring them or treating all of
them equally make these approaches inadequate to capture the user’s
preferences in the recommendation system.

Challenge 2: Generally, historical items of the user are used to
predict her preference for the candidate item (Korean, 2008). Since user
may have interacted with different items and each item may have
different influence in predicting her preference on the candidate item. In
the literature, most of the methods ignore this fact and directly aggre-
gate the user’s historical items to enhance the user representation
without discriminating the varying importance of historical items.
Hence, it is important to discriminate the varying importance of user’s
historical items while aggregating the historical items to learn the user
preference.

In this paper, the aforementioned challenges are addressed as we
propose an end to end recommendation model IGAT, which is a prop-
agational based method in which local as well as non-local graph context
is leveraged. The relations among items and entities are not ignored due
to the usage of relational attention mechanism. Moreover, the proposed
model assigns different importance to the user’s historical items to
determine the preference for the target item. In other words, item spe-
cific user preferences are presented to the user. In recent years, the
utilization of KG into the recommendation system is becoming popular,
but either they may not consider the diverse relation of KG into
consideration, while aggregating the neighboring information, or they
may ignore the importance of capturing the varying contributions of a
user’s historical items when aggregating their historical representations.
In this paper, however, these considerations are examined to have better
quality of recommendations, which are also user personalized. This a
capability that existing GNN-based models may not fully capture. To
sum up, this paper has the following main contributions;
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Fig. 1. KG with diverse entities and their relation.



e We propose an end-to-end recommendation model, IGAT, which
effectively incorporate latent collaborative signals from user-item
interactions with KG information.

To mitigate bias introduced by multi-layer propagation, we have
employed the contextualized representations for both users and
items within the model.

e We emphasize the importance of capturing the varying contributions
of a user’s historical items when aggregating their historical
representations.

Extensive experiments have been conducted on three benchmark

datasets from diverse domains to evaluate the effectiveness of IGAT.
The results demonstrate that IGAT outperforms state-of-the-art KG-
based recommendation models.

The remaining sections of the paper are organized as follows. Section

2 presents the most recent work of KG based and GNN based recom-
mendation. In section 3, preliminaries of the problem to be solved is
presented. Section 4 illustrate the proposed framework as well as detail
methodology of the recommendation model whereas in section 5,
experimental results along with the relevant discussion on the results is
described. Section 6 conclude the paper and discuss some of the po-
tential future directions of this study.

2. Related work

In this section, some recent methods proposed in the recommenda-
tion scenario are discussed. Here, we have divided them into three broad
categories i.e. neural collaborative filtering, graph neural networks and
KG-based recommendation. The details of each one is given in the
following sub-sections.

2.1. Neural collaborative filtering

In the literature, neural collaborative filtering (NCF) model are
implemented into two types; one of which is by representation learning
and other one is by matching function learning. The detail of these are
given in the following sections.

Representation learning based CF: In the last decade, matrix factor-
ization (MF) and its variants remained popular in the recommendation
research community (Koren et al., 2009; Hu et al.,, 2014). In these
studies, auxiliary information is incorporated e.g. time, location, text
description etc. which helps the matrix factorization models predict the
user preference. With the advancement of deep learning models in the
recent years, researchers are trying to utilize deep neural networks to
learn the user-item representation along with collaborative filtering. The
authors in (Sedhain et al., 2015) utilize the autoencoder and propose
AutoRec model which learn user and item representation using
autoencoder. DMF (Xue et al., 2017) utilize neural network architecture
which is two pathways in a sense that it factorizes the rating matrix and
then the user-item vectorized representation is learned. Generally
speaking, representation learning based models try to learn user-item
representations in various ways and flexible enough to incorporate the
auxiliary data into the representation learning.

Matching function learning based CF: In recent years, NCF (He et al.,
2017) is proposed which combines MF and multi-layer perceptron
(MLP) in one unified model. In NCF, dot product of MF is replaced with
the neural network and thus the matching function between users and
items is learned through neural network. Another variant of NCF is
proposed which is NNCF (Bai et al., 2017) in which neighbors of users
and items are given as input to the model. ConvNCF (He et al., 2018) is
proposed which uses an outer product as the matching function, to
encode the pairwise correlation between user and item. Wide&Deep
(Cheng, 2016) works by adapting the supervised learning and MLP to
learn the matching function and uses the user-item categorical features.
Besides these studies, others have also utilized auxiliary information for
learning the matching function. In this paper, our focus is to utilize KG as

an auxiliary information in neural collaborative filtering approach.
2.2. Graph neural network

In recent years, graph neural network (GNN) (Zhou et al., 2020);
(Gallicchio and Micheli, 2010) and (Li et al., 2015) which is basically the
extension of convolutional neural network (CNN) is emerging in the
field of recommender systems. As the number of nodes in the graph is
not fixed and thus they are irregular in nature, therefore it makes no
sense to utilize CNN where there is no fixed size matrix as in the case of
images. Consequently, the concept of GNN in recommendation scenario
is proposed in the literature. Moreover, in recommendation system,
there are users and items so it can be seen as a user-item bipartite graph
where the edge between user and item depicts the interaction between
the two. Graph convolutional network (GCN) (Kipf and Welling, 2016)
works by aggregating the information of neighboring nodes to enhance
each target node’s representation. There are two broad categories of
GCN methods; 1) spectral and 2) spatial methods.Spectral methods
perform operation into the transformed Fourier domain where graph
features are transformed first and then the convolution operation is
performed into the Fourier domain. The authors in (Bruna et al., 2013)
perform the eigen decomposition into the Fourier domain by utilizing
the spectral GCN. In (Defferrard et al., 2016), authors have approxi-
mated the convolution operation by utilizing the Chebyshey poly-
nomials, which is an effort to decrease the computational complexity. In
this paper, the proposed model falls in the spatial methods category, so
our more focus is in spatial methods.

On the other hand, spatial methods perform the convolution opera-
tion directly on the graph in such a way that each node gets the infor-
mation from its neighboring nodes to enrich its own representation
(Atwood and Towsley, 2016); (Zhang et al., 2018). The authors in
(Micheli, 2009) proposed the basic spatial method in which a given node
gets information from all of its neighboring nodes and then it is summed
up to make the enriched representation of that node. Afterwards, re-
sidual connection is used which at each layer to ensure that information
from the previous layer is preserved. For each node, its neighboring
nodes may vary in number and in the literature, it is tackled by the usage
of sampling approach. In these sampling approaches, fixed number of
neighboring nodes are sampled for each node followed by the aggre-
gator which is used to aggregate the information obtained from the
neighboring nodes (Hamilton et al., 2017). One of the limitations of
these methods is that they only consider homogeneous graph in which
user-item information is being captured.

Graph Attention Network (GAT) (Velickovic et al., 2017) is intro-
duced as an approach to assign varying weights to each neighboring
node depending on its importance. In other words, rather than treating
each node’s neighbor equally, it is rational to aggregate them as per their
weight. This is also realistic in real-world scenario as not each item in the
user’s historical item contribute equally in predicting her preference.
Moreover, usage of these attention approaches helps to deal with the
variable sized input nodes (Sang et al., 2021). In recent years, the
concept of sequential recommendation system is also proposed e.g.
RetaGNN (Hsu et al., 2021) which recommends to each user the next
item based on the user’s last interacted item. IMP-GCN (Liu et al., 2021)
address the over-smoothing problem in high order information aggre-
gation and thus preserve the node’s uniqueness during information ag-
gregation. The limitation of IMP-GCN is that it does not focus on
attention mechanism and treat each neighboring node equally which
may not be appropriate in the real-world scenario. In recent years, the
concept of explainable recommendation is also gaining attention which
assists in enhancing the user satisfaction. KEGNN (Lyu et al., 2023) is
one such recommendation model which recommend items to the user
along with useful explanation. It utilizes the knowledge from the
external database to encode different aspects of the information. Since
the recommendation system often encounter the data sparsity problem
which leads to weak or poor generalizability. To mitigate this problem,



some researchers have introduced the concept of tag-aware recom-
mendation system (Wang et al., 2022). It leverages the personalized tags
so that the modeling of user preferences as well as of item characteristics
can be enriched. KGIC (Zou et al., 2022) leverages a multi-level inter-
active contrastive learning mechanism to enhance the coherence and
sufficiency of information utilization from both CF and KG. KGRec (Yang
et al., 2023) is a self-supervised rationalization method for knowledge-
aware recommender systems. It employs an attentive knowledge
rationalization mechanism which generate rational scores for knowl-
edge triplets, that supports in identifying informative knowledge
connections.

2.3. Knowledge graph-based recommendation

In literature, KG is being widely adopted in the recommendation
system scenario due to their benefit of providing fruitful facts and
reasoning about items. KG based recommendation is classified into three
main categories; 1) path-based, 2) embedding-based, and 3)
propagation-based recommendation. The detail of each category is
given in the following sections.

Path- based methods works by designing the hand-crafted paths to
infer the user preferences. To select from the multiple paths in KG, se-
lective approach (Wang et al., 2019); (Sun et al., 2018) is proposed
which select the most significant paths and enrich the entity represen-
tation. Meta-paths pattern is another path-based approach which limit
the paths of KG. CGAT (Liu et al., 2021) is proposed which present the
concept of biased random walk where gated recurrent unit is employed,
to capture the non-local context (higher order neighbors) of the target
node. Biased random walk strategy is repeated several times to explore
useful entities for the given target node. One of the limitations of the
path-based method is that they require domain knowledge to extract the
useful paths and also this is labor intensive. This factor may make these
methods inefficient to design paths as KG size may reach up to millions
with multiple entities and relations among them.

In embedding based methods, each entity of KG is converted into low
dimensional vectorized form (embedding) whereas the KG structural
proximity is kept preserved. The learning of user and item latent rep-
resentation is regularized by this embedding. CKE (Zhang et al., 2016)
and DKN (Wang et al, 2018) works by generating the semantic
embedding of the KG nodes using knowledge graph embedding (KGE)
methods. Subsequently, to regularize the user and item representation,
these embedding are given to the recommender system as input. KGCN
(Wang et al., 2019) works by embedding the items in KG using graph
neural network. To capture the collaborative signal, this item embed-
ding encodes the information from the neighboring entities of the KG,
and thus enhance their capability for the recommendation.

Propagation-based methods works by propagating information in an
iterative fashion to capture the supplementary information for recom-
mendation (Wang et al., 2023). A lot of research has been conducted in
this approach. RippleNet (Wang et al., 2018) is proposed which exam-
ines the users’ potential preferences by propagating along KG links,
although the significance of connections is ill-defined in it. KGNN-LS
(Wang et al., 2019) is based on the graph convolutional network
(GCN) in such a way that entity’s representation is enriched by acquiring
information from the neighborhood. Nevertheless, both KGCN and
KGNN-LS have not paid attention to capture the explicit collaborative
signal latent in KG, and thus, lead to inadequate item embeddings. To
enrich item embedding, KGAT (Wang et al., 2019) present the collabo-
rative knowledge graph (CKG) where user-item interaction and KG are
combined to perform recursive propagation using GCN. KGAT assumes
that items in user-item bipartite graph as well as related entities in KG as
homogeneous nodes rather than considering them into different latent

spaces. Moreover, as the user interaction with different types of items
have diversity, going deep into the propagation may have different
interpretation than that of the actual item’s representation, thus noise is
being introduced into the learned embedding. CKAN (Wang et al., 2020)
is based on heterogeneous propagation in which collaboration propa-
gation and KG propagation are integrated in a natural way such that
they contribute with varying weights to the embedding learning. One
thing to highlight here is that CKAN does not consider the user-specific
component in their model which essentially means that recommenda-
tion generated may not be particular to each separate user. GACF (Elahi
and Halim, 2022) proposes the relation aware recommendation system
having user-specific component, which generates the recommendations
for each user separately while not ignoring the relational context into
the information propagation step. KGCAN (Elahi et al., 2024) is pro-
posed which captures both relational and contextual entity information
so that the representation of original entity is preserved. Moreover, it
also leverages the user-specific attention mechanism to provide the user
personalized recommendations to each user.

3. Task Formulation

Before we dive into the details of proposed recommendation model,
it is necessary to first understand the preliminaries of KG based
recommendation system. We have two forms of information which are
being incorporated to learn the user preferences on an item. One of these
is user-item interaction and the other is KG information. These two
forms of information are discussed in the following sections.

3.1. User-item interaction

We have a set of users U and a set of items I in the typical recom-
mendation scenario. The user interact with an item and this interaction
is denoted by the link or edge in the bipartite graph e.g. user u has liked
an item i or viewed an item and the link between the user and item
reflects their interaction. We have a user-item interaction matrix Y €
RM*N which is constructed from these interactions (where M and N
represents the number of users and items respectively in the matrix).
Each entry y,; in the matrix Y is either O or 1 representing the implicit
feedback such as;

~_ J 1if user-item interaction (u,i)
Yui = 0 otherwise.

3.2. KG information

KG is utilized as the auxiliary information which helps to overcome
the sparsity of user-item interaction matrix. KG G is a directed graph
which have head and tail entities linked via relation r. Thus, it is in the
form of triple fact (h, r, t) representing the relation r between head h and
tail t entity. It is important to note here is that KG supplements the deep
facts and semantic rich information about items.

By utilizing the user-item interaction Y and KG information G, our
recommendation task is to determine the probability score that a given
user u would like to interact with the given item i having no interaction
before (unobserved interaction). More formally, this probability score is
given as y,; = .7 (4,iY, G, ®), having © as all the parameters of the
model. All the notations used in this paper are presented along with their
description in the Table 1.

4. Proposed framework

The goal of utilizing KG in the recommendation system is to alleviate
the sparsity issue which is inherent in the user-item interaction.



Table 1
Notations along with their interpretations.

Notation Interpretation

U Set of users

1 Set of items

G Knowledge graph

(h,r,t) (head, relation, tail) a triplet of knowledge graph
Y User-item interaction information
YVui Probability score

Pu Contextualized user representation
q; Contextualized item representation
) Neural parameters of the model

H Learning rate

IF Historical items of user u

J Cross entropy loss

LRrs Loss function

P Dropout probability

However, KG is equipped with many fruitful facts and relations, thus,
extracting the relevant information from the KG is the key thing in the
recommendation scenario. For this reason, we propose IGAT, an end-to-
end recommendation model which jointly exploits user-item interaction
and KG to predict the user preferences on items. We now present the
IGAT model and the framework which is shown in Fig. 2. The proposed
model consists of three main components: 1) Knowledge propagation-
based item modeling, 2) Contextualized attention-aware user
modeling, and 3) Model prediction. The probability that a user would
prefer an item is predicted from the user-item representations learned
from the first two components.

4.1. Knowledge propagation-based item modeling

Based on GCN architecture, where the representation of each node is
enhanced by propagating along the links, we build on this to capture the
neighbors’ information in the KG. As the item behaves like a bridge
between the user and KG, so we aim to model the item by propagating

along KG. In this way, the fruitful facts are encoded in the item’s rep-
resentation, thus providing reasoning about the user preferences. The
single GCN layer encodes the information of directly attached neighbors
of the given node. Thus, stacking L-layers assist to capture the L-hops
away information of neighbors. Unlike path-based methods, no manual
feature engineering and designing of paths are required in propagation-
based methods.

KG has diverse types of entities and relations among them, so each
entity may have a different meaning. It may not be appropriate to
incorporate neighboring entity information while ignoring its relation
and type. For example, two movies may have too many common things
in terms of the cast but they may have a different genre. To incorporate
such information in KG propagation, we propose a knowledge
propagation-based model which assigns different weights to the neigh-
boring tail entities when encountering different head entities. Consider a
KG triplet (h, r, t) having head entity h, tail entity t, and relation r be-
tween them. The attention mechanism which assigns varying weights to
tail (neighboring) entities is given as;

ki=Y x(enr)e @
Tl

Here, ey, is the embedding of head entity, e; is the tail entity’s embedding
while r is the relation embedding. z(ep, r) is the decay factor that assigns
varying weights to each tail entity. It is defined as given;

7(en, ) = 6(W2ReLU(W; (en||r) + b1) + ba) 2)
Wi, W, are trainable weight matrices whereas b;, b, are biases. || rep-
resents concatenation operation to aggregate two embeddings. ¢ rep-
resents the sigmoid activation function. To normalize the coefficients
across all the triples, we have utilized the softmax function (Memisevic
et al., 2010) given as;

exp(z(en, )]

> (nrteroyexpla(en, 7] ®
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Algorithm 1 IGAT Optimization

Input:

User-item interaction Y,

Knowledge graph G

Output:

Score function y(u,i)

. All parameters are initialized using Xavier initializer

. for epoch = 1 to max_epochs do

. Sample of batch of size b1 from Y;

. Sample of batch of size b2 from G;

. Perform forward propagation to compute score y(u,i);

. Calculate the gradients using backpropagation of batch w.r.t ©;
. Use Adam optimizer to update the parameters © having learning rate ;
. end for

. return y(u, i)

O O N U B W=

Hence, the generated attentive weight signifies the importance of rele-
vant tail entities in the propagation step. By stacking L-layers, we can
encode L-hops nodes information and enrich the item representation.
The contextualized representation of the item is obtained by aggregating
the original item representation e, with the encoded item representation
from multiple layers. It is defined as follows;

qi = en||k; (C)]
4.2. Contextualized attention-aware user modeling

For each user, her historical items are utilized to determine her po-
tential preference (Shi et al., 2014). SVD++ model (Korean, 2008) is
proposed which considers historical items of a user u as her implicit
feedback and determines the significance of the user’s historical items I,
on the target item i. In the literature, most methods that utilize historical
items for representing the user preference, do not consider the effect of
the target item on her historical items. In this paper, an item-specific
attention mechanism is proposed which assigns weights to each histor-
ical item based on its significance to the target item. Instead of treating
each historical item equally, our item-specific attention mechanism as-
signs weight to each historical item j of user u, based on their signifi-
cance to the target item i. Given the user’s historical item I, its
embedding form is given as;

e = Bli.j)g 5)

jek;

In equation (5), f(i,j) factor controls the attentive weights and assigns
importance to each historical item j of the user. Formally it is given as;

exp [tanh(<ql. ‘qj)WT n b) ]
> kery expltanh((gillgw™ +b) ] (6)

Bi.j) =

In equation (6), ¢; and g; are item i and item j representations, w is the
weight vector, while b is the bias, and tanh is the non-linear activation
function. || represents the concatenation operation which is used to
aggregate g; and gj. To construct the contextualized embedding repre-
sentation of user u, we have concatenated the e and e, (user embed-
ding), followed by the non-linear transformation. Formally it is given as,

My = ReLU[(eu

e};)W—i—b] )

Here, m,, is the contextualized embedding of user u and ReLU is the non-
linear activation function. W and b are trainable weight matrix and bias
respectively. Given m, and original user information e,, the contextu-
alized user representation is defined as;

Pu = (eu]lmy) ®

4.3. Model prediction

For item modeling, KG propagation is employed to learn item rep-
resentation in a layered neural network architecture. Therefore, to
aggregate the item representations from multiple layers, we have
adopted three different aggregators as discussed in the following
sections.

Sum aggregator: As the name suggests, it sums up item representa-
tions from multiple layers and then applies a non-linearity. Formally it is
given as;

fimn = 0<W-Zqi +b> ©)

gi€R;

Where ¢ represents the Sigmoid activation function, W and b are the
weight matrix and bias vector respectively. R; is the set containing the
item representations from multiple layers.

Pooling aggregator: In this aggregator, the maximum value is chosen
from the representation set, and then a non-linear transformation is
applied.

fll)ooling = G(W'pOOlmax (Rl> +b ) (10)

Concatenation aggregator: It concatenates all the representations in
the representation set and forms the single vector representation
capturing information of all the vectors. It is given as;

i — (i)
féoncatenation - U(W (ql !

oo ) +) an

Afterward, having aggregated representations of items and contextual-
ized user representation, we apply the inner product of p, and g; to
compute the probability score given as;

Yw,i) =p, q 12)

¥(u,i) is the probability score that determines if a user u would like to
interact with an item i with which she has not interacted previously.

4.4. Model training

In deep learning, model is trained on the given training data in the
form of batches. After one epoch, all the training data complete its one
pass and then model is given the data again for another epoch. In this
way, model is trained and loss is calculated at each epoch, whereas
model’s parameters (weights) are updated to minimize the loss. The loss
is being calculated using a loss function i.e. cross entropy loss (Zhang
and Sabuncu, 2018) which measures the difference between the pre-
dicted and the actual score.

Now, we have positive interactions as well as negative interactions in
the recommendation scenario. Positive interaction of a user u describes
those items with which user has interacted before. On the same ground,
negative interactions of user u indicate those items with which user has
not interacted before rather they are generated, for each user, by
random sampling from the un-interacted or un-observed item list. To
determine the effect of model training as well as to have a balance ratio,
we consider, for each user, equal number of negative interactions as that
of positive interactions. Cross entropy loss_7 is utilized in this study and
it is given as;

J =

(ilog(p) + (1 y)*log1 py) a2

Z|~
.MZ

I
—-

i

Since the predicted score is basically the probability which is always
within the range [0, 1] and log function in this range have negative
values. That is why, to make loss values positive, it is multiplied with
( 1) as shown in the equation (13). Hence, the loss function of our



recommendation system is as follows;

Lrs = Z( > f<y<u. 0 Y. i>) ( > f(y(.q).,?(uj) ) ) as

ue 7/ \(u, i)eI u, j)el

Here, I indicates the positive interactions with which user has inter-
acted whereas I indicates negative interactions obtained by negative
sampling for each user. Thus, the objective function that learns and
updates the model’s parameters to minimize the loss function is given
by;

ményRsHH@Hg

Where © denotes all the parameters of the model and H@H% indicates the
L2-regularizer that is parameterized by A. The given objective function is
minimized using Adam (Kingma and Ba, 2014) optimizer. Algorithm 1
explains how the optimization is achieved in our model IGAT.

5. Experiments

In this section, we have conducted experiments to evaluate the
proposed model on three benchmark datasets. The results obtained from
the experiments answer the given research questions:

RQ-1: Whether the proposed IGAT perform better as compared to the
state-of-the-art KG-based models on benchmark datasets?

RQ-2: How do different modules of IGAT influence the original
model performance?

RQ-3: Whether the item-specific attention module models the in-
fluence of the target item on the user’s historical items?

RQ-4: How do different settings of hyper-parameters (e.g. embed-
ding size, depth of layer, and aggregation function) impact the proposed
IGAT performance?

5.1. Datasets

In this paper, we have utilized three publicly available benchmark
datasets for the experiment purpose. These benchmark datasets belong
to different domains, the detail of which is given briefly as follows;

e MovieLens-20 M: This dataset is being widely used in movie
recommendation and it comprises of almost 20 million ratings given
by more than 138 thousand users. These ratings are given on the
scale of 1 to 5.

Last.FM: This dataset comprises of almost 2 thousand users whose
music track count information is recorded. It is provided by Last.FM
music system.

Book-Crossing: This comprises of more than 17 thousand user’s
ratings on the scale of O to 10. Here, books are treated as items and it
is provided by book crossing community.

In MovieLens-20 M,1 Last.FM? and Book-Crossing3 datasets (denoted
by ML, FM and BC respectively), interactions are given as explicit
feedback, which are converted into implicit feedback. In case of implicit
feedback, 1 represents the positive interaction which essentially means
that user have interacted with that item. Given the historical informa-
tion of each user, her un-interacted items are randomly sampled from
her historical information to have negative interactions of that user. The
size of negative interactions is kept equal to the size of positive in-
teractions for each user, so that the effect of biasedness is reduced. Since
ML dataset is quite large in size having almost 20 million ratings, we

! https://grouplens.org/datasets/movielens/20m/.
2 https://grouplens.org/datasets/hetrec-2011/.
3 https://www2.informatik.uni-freiburg.de/~cziegler/BX/.

have only considered those ratings which are greater than 4 as positive.
FM and BC datasets are sparse in nature, so no threshold is considered in
FM and BC. As the proposed recommendation model is utilizing user-
item interactions as well as KG, so KG of these benchmark datasets are
obtained from the public repository https://github.com/xiangwan
¢1223. Each dataset has its own KG and given its whole KG, its sub-
KG by considering those KG triples whose confidence level is greater
than 0.9. Furthermore, we have removed those entities which have a
match with other entities or items, to ensure the consistency. The sta-
tistics of these benchmark datasets are presented in the Table 2.

5.2. Baselines

NCF (He et al., 2017): It is collaborative filtering approach where
neural network architecture is utilized to learn the user preferences on
the given item. In this way, data is used to learn the matching function
and the usage of neural network replaces the inner product of user and
item.

RippleNet (Wang et al., 2018): It is embedding-based model which
uses KG information to propagate and aggregate the user’s potential
preferences on the items.

KGCN (Wang et al., 2019): It is state of the art model based on non-
spectral GCN approach having KG into the context. KG structural in-
formation is learnt through aggregation of neighborhood entities, thus
encoding the neighborhood context for the given entity.

KGAT (Wang et al., 2019): It is the KG enhanced recommendation
model which utilizes the attention network to discriminate the neigh-
boring nodes in collaborative KG.

CKAN (Wang et al., 2020): This is propagation-based recommenda-
tion model that utilizes the relational attentive mechanism to discrimi-
nate the neighboring entities based on relational information.

GACF (Elahi and Halim, 2022): It is propagation-based model that
utilizes user-specific attention mechanism for the user’s personalized
recommendation. It works by making user and item triple sets which
propagates into the KG and thus enrich their representation.

5.3. Experimental settings

In the experiments, each dataset is distributed into training, valida-
tion, and testing sets. Firstly, the training set is chosen randomly from
the whole data with a ratio of 60 %. Then, 20 % of data is chosen from
the remaining data as the validation set, followed by the 20 % remaining
data as the testing set. This distribution is adopted due to its wide
acceptance in the recent literature (Elahi and Halim, 2022); (Liu et al.,
2021). For the evaluation of IGAT, click-through rate (CTR) prediction is
utilized in which the model’s performance is measured through AUC and
F1 scores. The CTR prediction score is determined by first using a
training set to train the model, and afterward, the testing set is used to
predict the probability score that how likely a user would interact with
an item having no previous interaction. Xavier initializer (X. Glorot, Y.
Bengio, Understanding the difficulty of training deep feedforward neu-
ral networks, in: Proceedings of the thirteenth international conference
on artificial intelligence and statistics, JMLR Workshop and Conference
Proceedings, 2010) is employed which initializes all the model’s pa-
rameters. To optimize the model during training, Adam (Kingma and Ba,

Table 2
Datasets used along with their description.
ML FM BC

# Users 138,159 1872 17,860
# Items 16,954 3846 14,967
# Interactions 13,501,622 42,346 139,746
# Avg- interactions 98 23 8
Entities 102,569 9,366 77,903
Relations 32 60 25
Triples 499,474 15,518 151,500
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2014) optimizer is used and the batch size of 1024 is selected. To prevent
the model from overfitting, dropout technique is employed which
randomly discards the influence of user and item in the training process.
Here, node dropout technique is used which randomly discards the
nodes (user and item) with p probability, whereas p is empirically cho-
sen as 0.2.

IGAT is implemented in Pytorch,” a deep learning framework, and
different hyperparameters settings are selected by the means of grid

search. The learning rate we adopted is selected from {10 2,4 x 10 3,
10 2,4 x 10 2} while embedding size is selected amongst {4, 8, 16, 32,
64, 128}. The dropout technique is also utilized to reduce the model’s
overfitting, and it is tuned amongst {0.0, 0.1, 0.2, ... 0.6}. For item
modeling, a propagation-based attention mechanism is utilized in which
the optimal depth of layers is different for different datasets (it is re-
ported in the upcoming results section). We kept the dimensions of both,
the embedding and hidden layer equal. Moreover, the open source
implementation of the comparison methods (baselines) is utilized to
assess the IGAT performance on the publicly available datasets. The
selection of hyper-parameters of the baselines is done either empirically
or as done by their authors.

5.4. Comparison with baselines (RQ-1

In this section, we have described the experimental results of the
proposed IGAT model along with the state-of-the-art baselines. Table 3
states the experimental results where best performance is highlighted
with bold face whereas second best is underlined. From the Table 3, we
have made the following observations.

e On all datasets, IGAT significantly outperforms in comparison to
state-of-the-art baselines with p < 0.5 by adopting Wilcoxon signed
rank statistical test (Shani and Gunawardana, 2011). This highlights
the importance of item specific attention mechanism where the in-
fluence of target item on historical items of the user is considered.
Moreover, contextual representation of the user and the item also
play the role as bias is reduced due to the multi-layer architecture.
Formally, IGAT shows 0.61 %, 1.97 % and 1.84 % increase in ML, FM

Table 3
Experimental results of IGAT and the baselines w.r.t AUC and F1 score.
Dataset Model AUC F1 score
NCF 0.967 0.916
Ripple Net 0.970 0.919
KGCN 0.968 0.922
ML KGAT 0.974 0.923
CKAN 0.976 0.923
GACF 0.983 0.925
IGAT 0.989 0.927
NCF 0.759 0.701
Ripple Net 0.768 0.703
KGCN 0.792 0.706
FM KGAT 0.823 0.740
CKAN 0.843 0.757
GACF 0.861 0.787
IGAT 0.878 0.785
NCF 0.712 0.629
Ripple Net 0.715 0.640
KGCN 0.682 0.631
BC KGAT 0.722 0.652
CKAN 0.750 0.668
GACF 0.762 0.683
IGAT 0.776 0.691

* https://pytorch.org/.

and BC dataset respectively w.r.t AUC in comparison to the second-
best model as underlined in the Table 3.

GACF depicts best performance w.r.t AUC from baselines, which
implies the significance of utilizing semantic rich attention-aware
entity’s representation and hence, assigning varying importance to
the neighbors of given entity. Moreover, GACF is expressive in nature
as it models the latent relation between user and item in an explicit
way. This highlights how incorporating collaborative signal in an
explicit manner is significant to enhance the model performance.

e Among baselines, NCF consistently show worst performance w.r.t
AUC in all the datasets. One possible reason of it is due to the lack of
model’s expressiveness in capturing the latent collaborative signal
between the user-item interactions. Modelling the latent collabora-
tive signal into the recommendation scenario gives more expres-
siveness to the model as well as to reason about the possible
interacting items of the user’s interests. This also verifies the
importance of KG into the recommendation system as it provides
additional fruitful facts and reasoning to the model which in turn
helps to encode the useful information about the user and the item.
In BC dataset, KGCN depicts worst performance w.r.t AUC and sec-
ond worse in ML dataset. As KGCN enrich the entity representation
by sampling from the receptive field which extends as layers are
increased, thus more noisy entities may also introduce into the rep-
resentation learning of an entity. Moreover, treating all the neigh-
boring entities in KG equally is not rational due to the different types
of entities, each one having its own semantics. This highlights the
significance of attention mechanism which assign weights to the
neighboring entities based on their importance.

e Among the benchmark datasets, one thing to note here is that ML
dataset depicts best performance i.e. more than 96 % w.r.t AUC as
compared to other datasets which shows up to 86 % and 77 % per-
formance w.r.t AUC in FM and BC datasets respectively. This is due to
the reason that ML is large dataset as compared to FM and BC having
large number of user interactions and links per user. In this way,
more information ML contains in itself and less information is being
learnt from the latent entity’s embedding.

Compared with KGAT, CKAN shows best performance w.r.t AUC by
0.21 %, 2.43 % and 3.88 % increase in ML, FM and BC dataset
respectively. This verifies the significance of incorporating the het-
erogeneous propagation where user-item interaction and KG are
treated in different spaces i.e. items and entities are not treated ho-
mogeneously rather they are treated in separate spaces and are in-
tegrated in a natural manner. However, when CKAN is compared
with proposed IGAT, CKAN depicts low performance w.r.t AUC in all
datasets. The possible reason is due to the attention mechanism in
CKAN as both the user and item are enriched with same attention
mechanism thus less expressiveness the model contains.

5.5. Ablation study (RQ-2)

In this paper, the contribution of different components of IGAT is
assessed by their removal from the original base model and making its
variants. We have conducted experiments to verify their effectiveness,
also the experimental results are reported in the Table 4 which make a
comparison of original IGAT with that of its variants. Two variants of
IGAT are given follows:

IGAT /contextual: Here, we have removed (disabled) the contextualized
representation of user as well as item. For user, we consider the user

Table 4
Ablation study to compare IGAT with its variants (in terms of AUC).
IGAT/ contextual IGAT/ attention IGAT
ML 0.971 0.978 0.989
FM 0.823 0.842 0.876
BC 0.748 0.757 0.774




representation in equation (7), and for item, we consider the item rep-
resentation in equation (1), which is encoded representation from
multiple layers. Through experiments, the performance of this variant is
compared with original IGAT.

IGAT /attention: The attention mechanism which is utilized in IGAT for
discriminating the importance of different neighboring nodes is disabled
in this variant. More precisely, we took the average of the neighboring
nodes and compare it with original IGAT.

In the Table 4, it can be seen that performance of original IGAT is
superior to that of its both variants, which make it clear that contextual
representation of the user and that of the item is necessary to be
considered, as it plays significance role in boosting its performance. The
following findings are drawn from the Table 4.

o IGAT/contextual 1S compared with IGAT and experimental results in
Table 4 show the effectiveness of context-aware representation of
user and item in the recommendation scenario. Since the uniqueness
of each user and item is preserved as well as the bias due to the in-
formation capturing from large receptive field is reduced. Therefore,
contextualized representation in IGAT show superior performance
when compared with IGAT/ contextual-

Since KG is heterogenous graph having multiple relations and en-
tities, so it may not be rational to treat all the neighboring entities
equally. Rather attention mechanism needs to be considered to avoid
the ignorance of heterogeneity structure during aggregation. That is
why, it can be seen that IGAT is superior in performance as compared
to its variant IGAT/ a¢tention- Moreover, as the number of neighboring
entities for the given target node may vary in KG, therefore, attention
mechanism is suitable in treating the varying number of neighboring
nodes.

5.6. Significance of item specific component (RQ-3)

In the proposed model, we have modeled the influence of target item
on user’s historical items and thus, the user representation is learnt
based on the significance of target item on the user’s historical items
(Fareed et al., 2024; Fareed et al., 2023; Saadat et al., 2024). In this way,
each target item is not treated in the same manner and this discrimi-
nation helps in modeling the latent significance of each target item. For
this purpose, experiments are conducted to determine its effect on the
model performance on each dataset.

Although GAT is effective in modeling user-item interactions, they
fail to adequately capture the dynamic influence of the target item on a
user’s historical items, which is essential for personalized recommen-
dations. To address this gap, we introduce an item-specific attention
layer. This layer enables the model to weigh historical items differently,
depending on their relevance to the target item, thus providing a more
refined and context-aware representation of user preferences. By
incorporating this enhancement, the performance of recommendation
model is improved, as it better captures the subtle interactions between
users and items, a capability that GAT alone does not fully exploit.

The experimental results are reported and compared with original
IGAT in the Table 5. It can be seen from the Table 5 that the item specific
component is significant in modeling the discriminating effect of the
target item on historical items of the user. By using item specific
component, the performance is increased 1.54 % in ML, 1.74 % in FM,
while 3.06 % in BC dataset. Hence the effectiveness of item specific
component in IGAT is experimentally established.

5.7. Hyper-parameters study (RQ-4)

To determine the impact of different hyper-parameters on the IGAT
performance, extensive experiments have been performed. In the
following sections, experimental results as well as their possible dis-
cussion is given.

5.7.1. Impact of aggregation function

Through experiments, the impact of aggregation function on the
performance of IGAT is assessed and the results are reported in the
Table 6. It is clear from the Table 6 that concatenation aggregator is
outperforming the other two aggregators, as highlighted by the bold
face. One possible reason of it could be that the concatenation aggre-
gator has the property of retaining and encoding more information in
the entity embedding as compared to sum and pool aggregator. That is
why, in all the datasets, concatenation aggregator is performing better
when compared with the other two. Moreover, in the case of the sum and
the pool aggregator, single value is generated from the aggregation of
multiple layers.

5.7.2. Impact of layer’s depth

To evaluate the model’s performance on varying depth of layers,
experiments have been conducted on different datasets. Table 7 reports
the experimental results on each dataset w.r.t AUC where the bold face
entries depicts the best performance. Since each dataset belongs to a
different domain, and thus, each one has different number of in-
teractions per user. Therefore, the impact of depth of layer has different
influence on these datasets. From the Table 7, it is clear that ML dataset,
which is a large dataset having large number of interactions per user as
compared to FM and BC, shows best performance on single layer neural
network. In case of FM and BC dataset, best performance is reported
when three-layer architecture is utilized. One possible explanation of it
could be that ML dataset is so rich that little information is encoded from
the neighboring entities during representation learning, rather neigh-
boring entities are introducing noise as we increase the depth of layers.
One thing to highlight here is that as we increase the depth of layers, the
computational cost of the model also increases, whereas the perfor-
mance decreases after reaching to a certain limit.

5.7.3. Impact of dimensions of embedding

In our work, the dimensional parameters of both entity (head and
tail) as well as relation embedding is same to avoid the bias which may
inject into the different dimensional parameters. Table 8 reports the
experimental results w.r.t AUC where the impact of different dimensions
of embedding is recorded on different datasets. Table 8 demonstrate that
by increasing the embedding dimension from 8 to 64, the performance
increases. As we go from embedding dimension 64 to 128, the perfor-
mance slightly decreases in case of ML and BC dataset. This decrease in
performance is due to the model overfit where more information is being
encoded than the model’s capacity. Thus, the performance of our model
slightly decreases. One thing to highlight here is that IGAT is robust
enough to endure the varying dimensions of embedding as the minor
change is observed in the performance. This indicate that the proposed
IGAT is less reliant on different settings of hyper-parameters.

6. Conclusion and future work

This work presented an end-to-end recommendation model, Item-

Table 5 Table 6
Performance of item specific component in IGAT (in terms of AUC). Impact of aggregation function on IGAT performance (w.r.t AUC).
Without item-specific With item-specific Pool Sum Concatenation
ML 0.974 0.989 ML 0.971 0.983 0.989
FM 0.861 0.876 FM 0.839 0.856 0.878
BC 0.751 0.774 BC 0.747 0.761 0.776




Table 7
Impact of depth of layers (w.r.t AUC).

No. of layers 1 2 3 4
ML 0.989 0.976 0.967 0.959
FM 0.849 0.864 0.877 0.869
BC 0.762 0.768 0.775 0.769
Table 8
Impact of varying dimensions of embedding (w.r.t AUC).
d 8 16 32 64 128
ML 0.967 0.978 0.984 0.988 0.979
FM 0.862 0.869 0.874 0.876 0.879
BC 0.757 0.763 0.770 0.776 0.771

Specific Graph Attention Network (IGAT), which effectively integrated
user-item interaction data with the KG information to encode user
preferences on items. IGAT leverages a knowledge-aware attention
mechanism to assign different weights to neighboring entities in the KG
based on diverse relationships, thus enhancing latent vector represen-
tation. Furthermore, the item-specific attention mechanism models the
influence of the target item on the user’s historical items, contributing
towards more accurate recommendations. To preserve the integrity of
original representations and minimize propagation bias, the current
proposal incorporated contextualized representations of both users and
items within the model. All model parameters were jointly trained to
capture the latent collaborative signals between the users and items.
Through extensive experiments on three benchmark datasets, we
demonstrated that the proposed IGAT approach outperforms several
state-of-the-art KG-based recommendation models, indicating its effec-
tiveness and robustness. The experimental results suggested that IGAT
offers a promising approach for leveraging knowledge graphs in
recommendation tasks, also it demonstrates that the IGAT outperforms
the baselines.

In the future, we aim to develop an effective approach for extracting
relevant higher-order neighbors while minimizing the inclusion of noisy
entities. Additionally, we plan to design an aggregation function capable
of naturally encoding both KG information and user-item interactions,
with the added benefit of reducing model training time. Another po-
tential research direction involves devising a random walk sampling
method to efficiently extract relevant higher-order neighbors for
aggregation.
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