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1 Introduction

Due to the rapidly increasing amount of satellite
Earth observation imagery available in high tem-
poral and spatial resolution, automated data pro-
cessing chains are highly desired. For this, deep
learning plays a vital role throughout all steps in
data processing. As remote sensing data is of vary-
ing quality, data enhancement is useful to assure
processability throughout an automated, multistage
data processing chain. For this publication, two pro-
cessing steps will be presented designed to support
the robustness of the downstream systems in the
processing chain of the upcoming ******** gatellite
constellation. An overview of mission and satellite
design and its processing chain is given in *.

Both approaches utilize deep learning on almost
raw data, only basic geometric and radiometric cor-
rections are applied beforehand. The first neural
network supports downstream tasks through false-
positive-suppression via cloud masking and the sec-
ond network is improving delineation of buildings for
centroid detection via super resolution. To enable a
highly-precise georeferencing of the raw image data,
a sufficient amount of ground control points (GCPs)
have to be identified within the satellite image. As
the *¥*¥F**¥¥*% mission payload is a line scanner, ev-
ery image line has its own exterior orientation and
needs to be georeferenced seperately. Due to the
high satellite velocities of circa 7 £ and an acqui-
sition rate of 2000 Hz, interpolation between image
lines is viable. There are several common types of
GCPs and ground control shapes including corner
reflectors, buildings or segmented land coverage and
roads. For the ******** migsion, building centroids
detected by a deep neural network will serve as
GCPs in a similar way as described in [1]. The two
processing steps described for this contribution sup-
port the building centroid detection in its robustness
in adverse conditions like cloud coverage or blurred
imagery.

2 Cloud Segmentation:
U-Net and Transformer

To avoid that the neural network for building detec-
tion creates false positives in foggy or cloudy areas,
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Multispectral Remote Sensing Data Enhancement for Automatic
Processing Chains - A U-Net- vs Transformer-based Cloud Seg-
mentation and GAN Super Resolution Approach

a scene segmentation is used to mask out unsuitable
areas within the satellite scenes. Additionally, tasks
further downstream also rely on cloud masking. For
this, we compare two approaches, a U-Net and a
Transformer model. Both are adapted to be able to
operate on multispectral data encompassing up to
nine spectral channels. The U-Net is based on the
basic U-Net architecture [2]. Concerning its architec-
ture, the biggest change is made to the first layers to
enable an eight-channel input. For the Transformer,
two altered versions based on Maskformer [3] with a
Swin Transformer [4] backbone are created, one for
six and one for nine input channels. The dataset is
comprised of PlanetScope [5] scenes both including
four and eight spectral bands. Cloud segmentation
masks provided by Planet are used as ground truth
segmentation masks.

Examplary results of both the U-Net and the
Transformer are shown in Fig. 1

Due to data quality, creating reliable ground truth
maps for further quantitative evaluation is some-
times challenging even for humans. It is difficult to
directly compare different cloud detectors, as differ-
ing datasets provide unique radiometric information
- e.g. the SWIR bands of Sentinel-2 that are not
comprised in PlanetScope data.

In many cases, the Planet ground truth cloud
masks are outperformed in a qualitative visual in-
spection, as the ground truth contains erroneously
masked areas itself. Still, the U-Net occasionally
misclassifies roads as haze or clouds and the Trans-
former sometimes introduces artifacts on singular
patches. Both drawbacks are currently being ad-
dressed and, additionally, the dataset is constantly
expanded to further increase reliability for all kinds
of biomes. The U-Net achieves an mloU of .65 and
the Transformers a mean of .95. Still, the U-Net
presents qualitatively pleasing results.

Overall, the Transformer models provide smoother
masks with less false positive details but sometimes
lacks in detail. This could result from the U-Net
being a pixel-based segmentation.

3 Super Resolution GAN

As the ground sampling distance (GSD) of the
FHHAAAA* gatellites will vary around 4 meters, smaller
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Figure 1. RGB channels of input image, ground truth
provided by Planet and our respective results.

buildings might be contained in mixed pixels or not
be delineated clearly. To support the neural network
in locating as many true positive building centers as
precisely as possible, a dual image super resolution
GAN is used to sharpen the images before inference.
As (very) high resolution imagery of Earth is readily
available on a daily basis, it is possible to assume
that for each satellite scene captured, a reference
scene with equal or better GSD and a maximum
temporal shift of one day is available. Our GAN
utilizes these as a geometric reference during infer-
ence to reduce hallucinations while preserving the
radiometric properties of the original scene.

The basic structure of the dual image super res-
olution GAN is adopted from SRGAN [6]. It is
supplemented with the ability to consider the refer-
ence scene during inference. The generator contains
16 residual blocks and an upsampling block with in
total 1,453,955 parameters, 1,449,731 trainable. The
discriminator is built of seven discriminator blocks
containing convolutional layers, batch normalization
and LeakyReLU. It comprises 107,455,297 parame-
ters, thereof 107,451,585 trainable.

For training, a hallucination-reducing combined
adaptive loss function is created and a novel mixed
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Figure 2. Example of super resolution results on 4 m
GSD PlanetScope data.

pixel approach is introduced to support the GAN in
spectral unmixing. Combined adaptive loss in the
discriminator encompasses a binary cross-entropy
function and a content loss derived from the mean
square error of extracted VGG19 [7] features between
the high resolution ground truth and the generated
image. Content loss reduces hallucination by sup-
pressing the generation of too many new features not
present in the reference image. Artificial mixed pix-
els are fabricated through the generator of the model
and support augmenting the training data. These
mixed pixels contain the combined radiometric infor-
mation of a set of pixels in the high resolution image.
This supports the learning of spectral unmixing and
results in a more stable radiometry in the superre-
solved image. The dataset itself consists of RGB
imagery from the Landsat, Sentinel-2, PlanetScope
and SPOT 6 missions. Worldview-3 data is used for
quantitative validation as it is not contained in the
training data.

An example for the results of the super resolution
GAN is shown in Fig. 2. Averaging over the differ-
ent test combinations, a mean PSNR of 25.30 and
SSIM of 0.81 is achieved. These values are good
but not outperforming some of the state of the art
super resolution GANs listed in [8] concerning these
metrics. However, other models are very specific to
singular datasets whereas our solution is applicable
to a broader range of optical satellite imagery with-
out distorting their unique radiometric properties
due to its mixed pixel approach.

4 Conclusion

Our main contribution for the cloud segmentation
is to enable the utilization of multispectral data
and leveraging its additional information contents
compared to RGB imagery.

Our main contribution is a versatile, hallucination-
reducing and radiometrically accurate super resolu-
tion GAN that is applicable even to satellite datasets
whose radiometric properties were not learned dur-
ing training.

Both processing steps are currently undergoing
application tests to evaluate their contribution to
processing performance under adverse conditions.
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