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1 Introduction001

Due to the rapidly increasing amount of satellite002

Earth observation imagery available in high tem-003

poral and spatial resolution, automated data pro-004

cessing chains are highly desired. For this, deep005

learning plays a vital role throughout all steps in006

data processing. As remote sensing data is of vary-007

ing quality, data enhancement is useful to assure008

processability throughout an automated, multistage009

data processing chain. For this publication, two pro-010

cessing steps will be presented designed to support011

the robustness of the downstream systems in the012

processing chain of the upcoming ******** satellite013

constellation. An overview of mission and satellite014

design and its processing chain is given in *.015

Both approaches utilize deep learning on almost016

raw data, only basic geometric and radiometric cor-017

rections are applied beforehand. The first neural018

network supports downstream tasks through false-019

positive-suppression via cloud masking and the sec-020

ond network is improving delineation of buildings for021

centroid detection via super resolution. To enable a022

highly-precise georeferencing of the raw image data,023

a sufficient amount of ground control points (GCPs)024

have to be identified within the satellite image. As025

the ******** mission payload is a line scanner, ev-026

ery image line has its own exterior orientation and027

needs to be georeferenced seperately. Due to the028

high satellite velocities of circa 7 km
s and an acqui-029

sition rate of 2000 Hz, interpolation between image030

lines is viable. There are several common types of031

GCPs and ground control shapes including corner032

reflectors, buildings or segmented land coverage and033

roads. For the ******** mission, building centroids034

detected by a deep neural network will serve as035

GCPs in a similar way as described in [1]. The two036

processing steps described for this contribution sup-037

port the building centroid detection in its robustness038

in adverse conditions like cloud coverage or blurred039

imagery.040

2 Cloud Segmentation:041

U-Net and Transformer042

To avoid that the neural network for building detec-043

tion creates false positives in foggy or cloudy areas,044

a scene segmentation is used to mask out unsuitable 045

areas within the satellite scenes. Additionally, tasks 046

further downstream also rely on cloud masking. For 047

this, we compare two approaches, a U-Net and a 048

Transformer model. Both are adapted to be able to 049

operate on multispectral data encompassing up to 050

nine spectral channels. The U-Net is based on the 051

basic U-Net architecture [2]. Concerning its architec- 052

ture, the biggest change is made to the first layers to 053

enable an eight-channel input. For the Transformer, 054

two altered versions based on Maskformer [3] with a 055

Swin Transformer [4] backbone are created, one for 056

six and one for nine input channels. The dataset is 057

comprised of PlanetScope [5] scenes both including 058

four and eight spectral bands. Cloud segmentation 059

masks provided by Planet are used as ground truth 060

segmentation masks. 061

Examplary results of both the U-Net and the 062

Transformer are shown in Fig. 1 063

Due to data quality, creating reliable ground truth 064

maps for further quantitative evaluation is some- 065

times challenging even for humans. It is difficult to 066

directly compare different cloud detectors, as differ- 067

ing datasets provide unique radiometric information 068

- e.g. the SWIR bands of Sentinel-2 that are not 069

comprised in PlanetScope data. 070

In many cases, the Planet ground truth cloud 071

masks are outperformed in a qualitative visual in- 072

spection, as the ground truth contains erroneously 073

masked areas itself. Still, the U-Net occasionally 074

misclassifies roads as haze or clouds and the Trans- 075

former sometimes introduces artifacts on singular 076

patches. Both drawbacks are currently being ad- 077

dressed and, additionally, the dataset is constantly 078

expanded to further increase reliability for all kinds 079

of biomes. The U-Net achieves an mIoU of .65 and 080

the Transformers a mean of .95. Still, the U-Net 081

presents qualitatively pleasing results. 082

Overall, the Transformer models provide smoother 083

masks with less false positive details but sometimes 084

lacks in detail. This could result from the U-Net 085

being a pixel-based segmentation. 086

3 Super Resolution GAN 087

As the ground sampling distance (GSD) of the 088

******** satellites will vary around 4 meters, smaller 089
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Figure 1. RGB channels of input image, ground truth
provided by Planet and our respective results.

buildings might be contained in mixed pixels or not090

be delineated clearly. To support the neural network091

in locating as many true positive building centers as092

precisely as possible, a dual image super resolution093

GAN is used to sharpen the images before inference.094

As (very) high resolution imagery of Earth is readily095

available on a daily basis, it is possible to assume096

that for each satellite scene captured, a reference097

scene with equal or better GSD and a maximum098

temporal shift of one day is available. Our GAN099

utilizes these as a geometric reference during infer-100

ence to reduce hallucinations while preserving the101

radiometric properties of the original scene.102

The basic structure of the dual image super res-103

olution GAN is adopted from SRGAN [6]. It is104

supplemented with the ability to consider the refer-105

ence scene during inference. The generator contains106

16 residual blocks and an upsampling block with in107

total 1,453,955 parameters, 1,449,731 trainable. The108

discriminator is built of seven discriminator blocks109

containing convolutional layers, batch normalization110

and LeakyReLU. It comprises 107,455,297 parame-111

ters, thereof 107,451,585 trainable.112

For training, a hallucination-reducing combined113

adaptive loss function is created and a novel mixed114

Figure 2. Example of super resolution results on 4 m
GSD PlanetScope data.

pixel approach is introduced to support the GAN in 115

spectral unmixing. Combined adaptive loss in the 116

discriminator encompasses a binary cross-entropy 117

function and a content loss derived from the mean 118

square error of extracted VGG19 [7] features between 119

the high resolution ground truth and the generated 120

image. Content loss reduces hallucination by sup- 121

pressing the generation of too many new features not 122

present in the reference image. Artificial mixed pix- 123

els are fabricated through the generator of the model 124

and support augmenting the training data. These 125

mixed pixels contain the combined radiometric infor- 126

mation of a set of pixels in the high resolution image. 127

This supports the learning of spectral unmixing and 128

results in a more stable radiometry in the superre- 129

solved image. The dataset itself consists of RGB 130

imagery from the Landsat, Sentinel-2, PlanetScope 131

and SPOT 6 missions. Worldview-3 data is used for 132

quantitative validation as it is not contained in the 133

training data. 134

An example for the results of the super resolution 135

GAN is shown in Fig. 2. Averaging over the differ- 136

ent test combinations, a mean PSNR of 25.30 and 137

SSIM of 0.81 is achieved. These values are good 138

but not outperforming some of the state of the art 139

super resolution GANs listed in [8] concerning these 140

metrics. However, other models are very specific to 141

singular datasets whereas our solution is applicable 142

to a broader range of optical satellite imagery with- 143

out distorting their unique radiometric properties 144

due to its mixed pixel approach. 145

4 Conclusion 146

Our main contribution for the cloud segmentation 147

is to enable the utilization of multispectral data 148

and leveraging its additional information contents 149

compared to RGB imagery. 150

Our main contribution is a versatile, hallucination- 151

reducing and radiometrically accurate super resolu- 152

tion GAN that is applicable even to satellite datasets 153

whose radiometric properties were not learned dur- 154

ing training. 155

Both processing steps are currently undergoing 156

application tests to evaluate their contribution to 157

processing performance under adverse conditions. 158
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