KIT | KIT-Bibliothek | Impressum | Datenschutz

Project 04: Replacement of chemistry simulation by machine learning in an Earth system model (doctoral position, employment at KIT)

Frank, Martin [Hrsg.] ORCID iD icon 1; Ehret, Uwe [Hrsg.] 2; Hühnerfuß, Angela [Hrsg.] 3; kirner, oliver ORCID iD icon 1
1 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)
2 Institut für Wasser und Gewässerentwicklung (IWG), Karlsruher Institut für Technologie (KIT)
3 KIT-Zentrum Mathematik in den Natur-, Ingenieur- und Wirtschaftswissenschaften (KIT-Zentrum MathSEE), Karlsruher Institut für Technologie (KIT)

Abstract:

Project 04: Replacement of chemistry simulation by machine learning in an Earth system model (doctoral position, employment at KIT)
Project description

Earth system modeling plays a central role in climate change research. Earth system models (ESMs) describe processes such as the change in atmospheric dynamics and temperatures and the distribution of aerosols and chemical substances and their interaction with climate change. One of the most computationally intensive processes in ESMs is the calculation of chemistry.

The goal of this doctoral research is to show that the simulation of chemistry within an ESM can be replaced by an AI model. By combining domain knowledge from earth sciences with state-of-the-art ML techniques, the project seeks to develop novel hybrid ESM models that incorporate physical laws and KI driven approaches. Classical climate models use complex partial differential equations (as e.g. Navier-Stokes equations, continuity equations, radiative transfer equations, thermodynamic energy equations, or tracer transport and diffusion equations) to simulate the state of the atmosphere and ocean. More recent ESMs integrate additional processes to the classical climate models, as for example the simulation of chemistry, which is based on a stiff set of ODEs. ... mehr


Zugehörige Institution(en) am KIT Institut für Wasser und Gewässerentwicklung (IWG)
KIT-Zentrum Mathematik in den Natur-, Ingenieur- und Wirtschaftswissenschaften (KIT-Zentrum MathSEE)
Scientific Computing Center (SCC)
Publikationstyp Audio & Video
Publikationsdatum 27.02.2025
Erstellungsdatum 26.02.2025
Sprache Englisch
Identifikator KITopen-ID: 1000179563
Lizenz Creative Commons Namensnennung – Weitergabe unter gleichen Bedingungen 4.0 International
Serie KCDS Virtual Open House 2025
Folge 3
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page