KIT | KIT-Bibliothek | Impressum | Datenschutz

Enhancing UAV-Based Multispectral Semantic Segmentation Through Feature Engineering

Vollmer, Elena ORCID iD icon 1; Benz, Mishal 2; Kahn, James ORCID iD icon 3; Klug, Leon 2; Volk, Rebekka ORCID iD icon 1; Schultmann, Frank ORCID iD icon 1; Götz, Markus ORCID iD icon 3
1 Institut für Industriebetriebslehre und Industrielle Produktion (IIP), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)
3 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Abstract:

Deep learning (DL) is one of the key tools for analyzing images beyond the visible light spectrum, such as thermal data, for energy-related inspection and fault detection. However, publications using multispectral data focus on developing specialized models to handle quality issues without considering the imagery itself. This article investigates how feature engineering (FE), the process of adapting raw data to serve as DL training data, can impact performance when transferring prevalent model architectures to combined red, green, blue (RGB) thermal imagery. The popular U-Net is utilized for the common task of multiclass semantic segmentation in remote sensing. A comprehensive ablation study is performed on a novel, uncrewed aircraft system-based dataset from two German cities to detect thermal urban features. Common performance metrics, training, and energy consumption statistics are compared to find the most suitable combination of platform-specific and general enhancing FE while identifying the impact of resolution, channel count, RGB, and color information. The study reveals FE to significantly influence predictive performance, where the choice of ablation parameters are found to have a 7% –10% impact. ... mehr

Zugehörige Institution(en) am KIT Institut für Industriebetriebslehre und Industrielle Produktion (IIP)
Scientific Computing Center (SCC)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 1939-1404, 2151-1535
KITopen-ID: 1000179635
Erschienen in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Band 18
Seiten 6206–6216
Nachgewiesen in Scopus
Dimensions
OpenAlex

Verlagsausgabe §
DOI: 10.5445/IR/1000179635
Veröffentlicht am 28.02.2025
Seitenaufrufe: 46
seit 02.03.2025
Downloads: 34
seit 02.03.2025
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page