KIT | KIT-Bibliothek | Impressum | Datenschutz

Synthetic Data in Supervised Monocular Depth Estimation of Laparoscopic Liver Images

Walkner, Heiko 1; Krames, Lorena 1; Nahm, Werner 1
1 Institut für Biomedizinische Technik (IBT), Karlsruher Institut für Technologie (KIT)

Abstract:

Monocular depth estimation is an important topic
in minimally invasive surgery, providing valuable information
for downstream application, like navigation systems. Deep
learning for this task requires high amount of training data for
an accurate and robust model. Especially in the medical field
acquiring ground truth depth information is rarely possible due
to patient security and technical limitations. This problem is
being tackled by many approaches including the use of syn-
thetic data. This leads to the question, how well does the syn-
thetic data allow the prediction of depth information on clini-
cal data. To evaluate this, the synthetic data is used to train and
optimize a U-Net, including hyperparameter tuning and aug-
mentation. The trained model is then used to predict the depth
on clinical image and analyzed in quality, consistency over the
same scene, time and color. The results demonstrate that syn-
thetic data sets can be used for training, with an accuracy of
over 77% and a RMSE below 10 mm on the synthetic data set,
do well on resembling clinical data, but also have limitations
due to the complexity of clinical environments. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000179637
Veröffentlicht am 28.02.2025
Originalveröffentlichung
DOI: 10.1515/cdbme-2024-2162
Scopus
Zitationen: 1
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Biomedizinische Technik (IBT)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 01.12.2024
Sprache Englisch
Identifikator ISSN: 2364-5504
KITopen-ID: 1000179637
Erschienen in Current Directions in Biomedical Engineering
Verlag De Gruyter
Band 10
Heft 4
Seiten 661 – 664
Nachgewiesen in OpenAlex
Scopus
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page