KIT | KIT-Bibliothek | Impressum | Datenschutz

CaviTools: Automated processing of xylem cavitation and optical dendrometry image sequences | Version 1.1

Giese, Mathis 1; Ziegler, Yanick ORCID iD icon 1; Ruehr, Nadine ORCID iD icon 1
1 Institut für Meteorologie und Klimaforschung – Atmosphärische Umweltforschung (IMK-IFU), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

CaviTools offers automated processing scripts (Python, terminal-based) to detect and quantify embolism events in image time series of plant xylem material (stems or leaves) based on the Optical Method and to analyse optical dendrometry image sequences. Our work adds to the efforts of the OpenSourceOV community and aims to facilitate image analysis, in particular for large/challenging data sets.

Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung – Atmosphärische Umweltforschung (IMK-IFU)
Publikationstyp Forschungsdaten
Publikationsdatum 08.05.2024
Identifikator KITopen-ID: 1000179646
Lizenz MIT License
Schlagwörter Optical Method, Cavicam, Cavitation, Embolsim, Hydraulic Failure, PLC
Liesmich

The tools build on Chris Lucani's work at https://www.opensourceov.org/ and use the image stabilisation software vidstab by Adam Spannbauer.

To process and analyze image stacks based on the optical method can be challenging, especially with large datasets. Additionally, we have found that not all brightness differences between images correspond to cavitation events. Camera shifts, resin flow, and insects passing through the frame can lead to wrong events. Manually reviewing all images to filter out these artefacts can be very time-consuming. Therefore, we offer the following tools to simplify the workflow of post-processing your data:

  • Automated analysis determining the percentage of cavitated xylem area in stem- or leaf image time series
    • Possibility to individually calibrate processing parameters handling noise
    • Classifier that detects <ins>vertical</ins> stem embolism events and automatically cleans results from artefacts
  • Automated analysis of area change in optical dendrometry image time series
  • Output: Processed images and result datasheets (.xlsx, .csv)
  • Resource efficiency: around 250 images per minute are processed utilizing approximately 300MB of RAM

More info: https://zenodo.org/records/13328771

Art der Forschungsdaten Software

Originalveröffentlichung
DOI: 10.5281/zenodo.11146863
Seitenaufrufe: 25
seit 02.03.2025
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page