KIT | KIT-Bibliothek | Impressum | Datenschutz

Opinion: Why all emergent constraints are wrong but some are useful – a machine learning perspective

Nowack, Peer ORCID iD icon 1; Watson-Parris, Duncan
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Global climate change projections are subject to substantial modelling uncertainties. A variety of emergent constraints, as well as several other statistical model evaluation approaches, have been suggested to address these uncertainties. However, they remain heavily debated in the climate science community. Still, the central idea to relate future model projections to already observable quantities has no real substitute. Here, we highlight the validation perspective of predictive skill in the machine learning community as a promising alternative viewpoint. Specifically, we argue for quantitative approaches in which each suggested constraining relationship can be evaluated comprehensively based on out-of-sample test data – on top of qualitative physical plausibility arguments that are already commonplace in the justification of new emergent constraints. Building on this perspective, we review machine learning ideas for new types of controlling-factor analyses (CFAs). The principal idea behind these CFAs is to use machine learning to find climate-invariant relationships in historical data which hold approximately under strong climate change scenarios. ... mehr

Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 1680-7324
KITopen-ID: 1000179659
HGF-Programm 12.98.07 (POF IV, LK 01) KIT Climate and Environment Center
Weitere HGF-Programme 12.11.34 (POF IV, LK 01) Improved predictions from weather to climate scales
Erschienen in Atmospheric Chemistry and Physics
Verlag European Geosciences Union (EGU)
Band 25
Heft 4
Seiten 2365–2384
Vorab online veröffentlicht am 21.02.2025
Nachgewiesen in Dimensions
OpenAlex
Web of Science

Verlagsausgabe §
DOI: 10.5445/IR/1000179659
Veröffentlicht am 28.02.2025
Originalveröffentlichung
DOI: 10.5194/acp-25-2365-2025
Web of Science
Zitationen: 1
Dimensions
Zitationen: 1
Seitenaufrufe: 19
seit 28.02.2025
Downloads: 15
seit 02.03.2025
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page