KIT | KIT-Bibliothek | Impressum | Datenschutz

Informed Spectral Normalized Gaussian Processes for Trajectory Prediction

Schlauch, Christian ; Wirth, Christian; Klein, Nadja ORCID iD icon 1
1 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Abstract:

Prior parameter distributions provide an elegant way to represent prior expert knowledge for informed learning. Previous work has shown that using such informative priors to regularize probabilistic deep learning (DL) models increases their performance and data efficiency. However, commonly used sampling-based approximations for probabilistic DL models can be computationally expensive, requiring multiple forward passes and longer training times. Promising alternatives are compute efficient last layer kernel approximations like spectral normalized Gaussian processes (SNGPs). We propose a novel regularization-based continual learning method for SNGPs, which enables the use of informative priors that represent prior knowledge learned from previous tasks. Our proposal builds upon well-established methods and requires no rehearsal memory or parameter expansion. We apply our informed SNGP model to the trajectory prediction problem in autonomous driving by integrating prior drivability knowledge. On two public datasets, we investigate its performance under diminishing training data and across locations, and thereby demonstrate an increase in data efficiency and robustness to location-transfers over non-informed and informed baselines.


Verlagsausgabe §
DOI: 10.5445/IR/1000179691
Veröffentlicht am 03.03.2025
Originalveröffentlichung
DOI: 10.3233/FAIA240843
Scopus
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Scientific Computing Center (SCC)
Publikationstyp Buchaufsatz
Publikationsdatum 16.10.2024
Sprache Englisch
Identifikator ISBN: 978-1-64368-548-9
ISSN: 0922-6389
KITopen-ID: 1000179691
Erschienen in ECAI 2024 – 27th European Conference on Artificial Intelligence, 19–24 October 2024, Santiago de Compostela, Spain – Including 13th Conference on Prestigious Applications of Intelligent Systems (PAIS 2024). Ed.: U. Endriss
Verlag IOS Press
Seiten 3023 – 3030
Serie Frontiers in Artificial Intelligence and Applications ; 392
Nachgewiesen in OpenAlex
Scopus
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page