KIT | KIT-Bibliothek | Impressum | Datenschutz

Evaluating and Training Long-Context Large Language Models for Question Answering on Scientific Papers

Hilgert, Lukas 1; Liu, Danni ORCID iD icon 2; Niehues, Jan ORCID iD icon 1
1 Karlsruher Institut für Technologie (KIT)
2 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

With the number of scientific papers published every year growing and current large language models (LLMs) showing state-of-the-art performance on natural language processing (NLP) tasks, we ask the question if LLMs could be utilized to answer questions on scientific papers.We investigate how well state-of-the-art large language models (LLMs) can answer questions on scientific paper by experimenting with long-context versions of the LLaMA 2 model and evaluating and training on the Qasper dataset.We analyze how well the LLMs handle longer papers and questions that can only be answered by accessing information from far out paragraphs. During our experiments, we see that the performance of these LLMs drops with growing length and position of relevant information.We employ different measures from simple prompts to chain-of-thought prompts and zero-shot usage to fine-tuning with QLoRA.While we still observe a performance loss with increased context length, our measures reduce the effects of this flaw, and we can achieve $F_{1}$ scores similar to bigger models like GPT-4.


Verlagsausgabe §
DOI: 10.5445/IR/1000179692
Veröffentlicht am 03.03.2025
Originalveröffentlichung
DOI: 10.18653/v1/2024.customnlp4u-1.17
Scopus
Zitationen: 3
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 16.11.2024
Sprache Englisch
Identifikator ISBN: 979-88-917618-0-3
KITopen-ID: 1000179692
Erschienen in Proceedings of the 1st Workshop on Customizable NLP: Progress and Challenges in Customizing NLP for a Domain, Application, Group, or Individual (CustomNLP4U), Miami, 16th November 2024
Veranstaltung 1st Workshop on Customizable NLP: Progress and Challenges in Customizing NLP for a Domain, Application, Group, or Individual (CustomNLP4U 2024), Miami, FL, USA, 16.11.2024
Verlag Association for Computational Linguistics (ACL)
Seiten 220 – 236
Nachgewiesen in OpenAlex
Dimensions
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 4 – Hochwertige Bildung
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page