KIT | KIT-Bibliothek | Impressum | Datenschutz

Power-Constrained Printed Neuromorphic Hardware Training

Gheshlaghi, Tara ORCID iD icon 1; Zhao, Haibin ORCID iD icon 2; Pal, Priyanjana ORCID iD icon 1; Hefenbrock, Michael 2; Beigl, Michael ORCID iD icon 2; B. Tahoori, Mehdi 1
1 Institut für Technische Informatik (ITEC), Karlsruher Institut für Technologie (KIT)
2 Institut für Telematik (TM), Karlsruher Institut für Technologie (KIT)

Abstract:

With the rising demand for ultra-low-cost and flexible electronics in applications like smart packaging and wearable health monitoring, printed electronics provide an affordable, adaptable, and customizable alternative to conventional silicon. However, these systems often rely on printed batteries or energy harvesters with limited power capacity, making strict power budgets critical. Printed neuromorphic circuits (pNCs) are promising for their analog signal processing, reduced circuit complexity, and energy efficiency in low-power environments. Nonetheless, maintaining robust performance under strict power constraints remains challenging, necessitating advanced optimization techniques. In this work, we propose an augmented Lagrangian approach to enforce task-specific power constraints in pNCs, validated across 13 benchmark datasets. Our method preserves accuracy within strict power budgets while achieving Pareto-optimal power-accuracy trade-offs in a single training run. In contrast, the penalty-based method, which serves as the baseline, requires up to 150 runs per dataset to generate the Pareto front. For low-power scenarios (≈ 20% of the original power), our method
... mehr


Preprint §
DOI: 10.5445/IR/1000179715
Veröffentlicht am 03.03.2025
Originalveröffentlichung
DOI: 10.1109/DAC63849.2025.11132902
Scopus
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technische Informatik (ITEC)
Institut für Telematik (TM)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 22.06.2025
Sprache Englisch
Identifikator ISBN: 979-8-3315-0305-5
KITopen-ID: 1000179715
Erschienen in 62nd ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 22-25 June 2025
Veranstaltung 62nd Design Automation Conference (DAC 2025), San Francisco, CA, USA, 22.06.2025 – 25.06.2025
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Nachgewiesen in Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page