KIT | KIT-Bibliothek | Impressum | Datenschutz

Model determination for high-dimensional longitudinal data with missing observations: an application to microfinance data

Rüter, Lotta ORCID iD icon; Schienle, Melanie ORCID iD icon 1
1 Institut für Volkswirtschaftslehre (ECON), Karlsruher Institut für Technologie (KIT)

Abstract:

We propose an adaption of the multiple imputation random lasso procedure tailored to longitudinal data with unobserved fixed effects which provides robust variable selection in the presence of complex missingness, high-dimensionality, and multicollinearity. We apply it to identify social and financial success factors of microfinance institutions (MFIs) in a data-driven way from a comprehensive, balanced, and global panel with 136 characteristics for 213 MFIs over a 6-year period. We discover the importance of staff structure for MFI success and find that profitability is the most important determinant of financial success. Our results indicate that financial sustainability and breadth of outreach can be increased simultaneously while the relationship with depth of outreach is more mixed.


Zugehörige Institution(en) am KIT Institut für Volkswirtschaftslehre (ECON)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 0964-1998, 1467-985X
KITopen-ID: 1000179720
Erschienen in Journal of the Royal Statistical Society Series A: Statistics in Society
Verlag Wiley-Blackwell
Seiten qnae144
Vorab online veröffentlicht am 20.02.2025
Schlagwörter data-driven model selection for panel data with missingness, empirical economic development, microfinance, stability selection and multiple imputation in lasso
Nachgewiesen in Web of Science
OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page