KIT | KIT-Bibliothek | Impressum | Datenschutz

MicroNAS for memory and latency constrained hardware aware neural architecture search in time series classification on microcontrollers

King, Tobias 1; Zhou, Yexu 1; Röddiger, Tobias ORCID iD icon 1; Beigl, Michael ORCID iD icon 1
1 Institut für Telematik (TM), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

The use and research of neural networks on very small processor systems are currently still limited. One of the main reasons is that the design of microcontroller-architecture-aware ML models that take into account user-defined constraints on memory consumption and run-time are very difficult to implement. Therefore, we adapt the concept of differentiable neural architecture search (DNAS) to solve the time series classification problem on resource-constrained microcontrollers (MCUs). This paper explores and demonstrates for the first time that this problem can be solved using Neural Architecture Search (NAS). The key of our specific hardware-aware approach, MicroNAS, is an integration of a DNAS approach, Latency Lookup Tables, Dynamic Convolutions and a novel search space specifically designed for time series classification on MCUs. The resulting system is hardware-aware and can generate neural network architectures that satisfy user-defined limits on execution latency and peak memory consumption. To support our findings, we evaluate MicroNAS under different latency and peak memory constraints. The experiments highlight the ability of MicroNAS to find trade-offs between latency and classification performance across all dataset and microcontroller combinations. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000179785
Veröffentlicht am 04.03.2025
Originalveröffentlichung
DOI: 10.1038/s41598-025-90764-z
Scopus
Zitationen: 1
Web of Science
Zitationen: 1
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Telematik (TM)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 04.03.2025
Sprache Englisch
Identifikator ISSN: 2045-2322
KITopen-ID: 1000179785
Erschienen in Scientific Reports
Verlag Nature Research
Band 15
Heft 1
Seiten Art.-Nr.: 7575
Nachgewiesen in Web of Science
OpenAlex
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page