KIT | KIT-Bibliothek | Impressum | Datenschutz

Towards a Dataset for Paleographic Details in Historical Torah Scrolls

Frank, Laura ORCID iD icon 1; Götzelmann, Germaine ORCID iD icon 1; Tonne, Danah ORCID iD icon 1
1 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Historical textual witnesses used in religious practice have been a research interest for a long time but still remain mysterious. In particular, medieval Torah scrolls show irregularities in the scripture, whose intentions have not yet been revealed. In this paper, we assess the analysis of letter decorations from the perspective of computer vision and investigate the possibilities of extending qualitative research in Jewish Studies by quantitative analysis methods of computer science. For this purpose, we introduce a methodological approach to obtain a reproducible and extensible dataset of Hebrew letters and present a set of labels usable for various machine learning tasks. The evaluation of the dataset in terms of decoration recognition shows promising prediction accuracy rates of up to 90% with standard transfer learning methods and architectures.


Verlagsausgabe §
DOI: 10.5445/IR/1000179797
Veröffentlicht am 05.03.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Scientific Computing Center (SCC)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 27.02.2025
Sprache Englisch
Identifikator ISBN: 978-9897587283
KITopen-ID: 1000179797
HGF-Programm 46.21.02 (POF IV, LK 01) Cross-Domain ATMLs and Research Groups
Erschienen in Proceedings of the 20th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 2: VISAPP
Veranstaltung 20th International Conference on Computer Vision Theory and Applications (VISAPP 2025), Porto, Portugal, 26.02.2025 – 28.02.2025
Verlag SciTePress
Seiten 926–933
Projektinformation toRoll (BMFTR, 01UL2202B)
Schlagwörter Dataset, Hebrew Letter Decoration, Labeling, Image Classification.
Nachgewiesen in Dimensions
Scopus
OpenAlex
Relationen in KITopen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page