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ABSTRACT: The tailoring of spin-crossover films has made
significant progress over the p ast decade, m ostly m otivated by
the prospect in technological applications. In contrast to spin-
crossover complexes in solution, the investigation of the
ultrafast switching in spin-crossover films has remained scarce.
Combining the progress in molecule synthesis and film growth
with the opportunities at X-ray free-electron lasers, we study the
photoinduced spin-state switching dynamics of a molecular film
at room temperature. The subpicosecond switching from the S
= 0 low-spin ground state to the S§ = 2 high-spin state is
monitored by analyzing the transient evolution of the Fe L; X-
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ray absorption edge fine structure, i.e. element-specifically at the switching center of the Fe (II) complex. Our measurements
show the involvement of an intermediate state in the switching. At large excitation fluences, the fraction of high-spin molecules
saturates at ~50%, which is likely due to molecule—molecule interaction within the film.
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pin-crossover (SCO) complexes may be switched
S between a low- and a high-spin state in response to
various stimuli such as temperature, light, and
pressure.”” The spin transition is accompanied by a change
of geometry, electronic and optical properties of the
compounds. The preparation of SCO thin films, combined
with the multitude of stimuli and read out, provides a rich
variety of potential applications, such as sensors, displays,
actuators, and data storage.‘?’_7
The quality of SCO films, in terms of purity and
homogeneity, has significantly increased over the past decade
by employing sublimation in (ultrahigh) vacuum rather than
wet-chemistry deposition methods.* > The major difficulty
for preparing films via sublimation has been the synthesis and
identification of robust SCO compounds withstanding the
sublimation temperature and the adsorption on the sub-
strate,>>7>° issues which have to a large extent been
successfully tackled in the last years.”” "
Besides their importance for potential applications, SCO
thin films also exhibit a richness of physical properties. The
detailed local environment of the SCO complexes as well as

intermolecular interactions influence the SCO properties of the
films 2225373
densed phase is of particular interest to induce cooperativity,
which leads to a sharp thermal spin-state transition of the film.
This transition may be thermally shifted and incomplete, i.e.
with a fraction of nonswitched molecules, because of the
different thermodynamic properties of the molecules at the
interfaces and because of steric repulsion between mole-
#4435 Overall the organization of the molecules in thin
films give further prospects in engineering the SCO properties
of a given compound.

X-ray absorption spectroscopy (XAS) at the Fe L edges is
particularly adapted to investigate the spin-state transition of

9,41—43 : : :
Intermolecular interaction in the con-

cules.
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Figure 1. Low- and high-spin configurations in spin-crossover molecules. The calculated geometries of an individual [Fe(pypypyr),]
molecule in the low-spin (S = 0, left) and high-spin (S = 2, right) state. Concomitantly with the low- to high-spin transition, the Fe—N bond
length changes by approximately 10% as indicated by the corresponding average bond lengths inferred from density functional theory
calculations. The corresponding ligand twisting in the high-spin state is indicated on the right by the dashed line and the bended arrow. The
excitation of the molecule by an external stimulus, such as a pump laser pulse at photon energy hv,,,,, can trigger this transition. The
splitting of 3d states of the Fe>" ion into t,; and e, in an octahedral ligand field is represented by the 10 Dq value as indicated at the left and
right side for S = 0 and S = 2, respectively. In the condensed form, the molecules are surrounded by peers, as illustrated with molecules in
light colors in the background, which can further modify the switching properties.

SCO thin films.>>**~** This edge (transition from 2p;, to 3d
states) is sensitive to the electronic population of the Fe d
orbitals, which is changing upon spin crossover. As further
detailed below, the low-spin (LS) and high-spin (HS) states
are characterized by different spectroscopic fine structures,
which allows quantitative determination of the HS fraction.

Despite the recent development in SCO thin films, the
investigation of the switching dynamics upon optical excitation
has remained scarce and mostly limited to slow evolution of
the fraction of high-spin molecules at low temper-
atures,””*"*%* although the ultrafast switching dynamics has
been studied in detail for individual Fe(II) complexes in
solution.”™” Few SCO dynamics studies on powders and
single crystals are also available.””®" Ridier et al. investigated
SCO films with thicknesses on the order of 100 nm using
pump—probe optical methods.”> They observed a subpico-
second spin-state switching followed by a slow dynamics on
the order of 10 ns attributed to the heating of the film. Zhang
et al. studied films of [Fe(phen),;]** of similar thicknesses and
observed an evolution of the Fe M edge spectra with pump—
probe delay, interpreted in terms of a spin-state transition
through a metal-centered triplet intermediate state.”” The
ultrafast switching of much thinner charge-neutral SCO films,
requiring a sensitive method with large spectral changes such
as XAS at the Fe L; edge, has not yet been reported.

Intermolecular interactions in the condensed phase likely
influence the dynamics at different time scales. At very short
time scales (<1 ps) the spin-state switching dynamics
presumably depends on the local surrounding of a given
molecule which in turn is influenced by the spin state of the
neighboring molecules. Such local stress may extend and
propagate in the materials, which would modify the dynamics
over longer time scales. Ultrafast investigations should provide
insights about the impact of the local environment on the
switching dynamics.

Here, we reveal the room-temperature ultrafast switching of
~10 nm ultrathin film of [Fe(pypypyr),] (pypypyr = bipyridyl
pyrrolide) sublimated on Si;N,. The transient evolution of the
absorption fine structure at the Fe L; edge from the LS to HS
state is triggered by optical pumping and analyzed with 80 fs
time resolution. The results showcase the transient population

of an intermediate state in the switching dynamics. By
increasing the density of optically excited molecules in the
material, we identify a limit of £50% of switched molecules,
which is rationalized primarily by the large molecular
distortion that leads to local stress. For switching a large
fraction of molecules, such stress must be relaxed locally,
presumably by unswitched molecules adjacent to switched
ones.

Results and Discussion. Figure 1 shows a sketch of the
[Fe(pypypyr),] complex in the LS and in the HS
configurations. In the LS state, the t,, orbitals are fully filled,
forming a singlet LS state with S = 0. In the HS state, the
ligand field strength is reduced due to the increased average
Fe—N distance. The t,, and e, orbitals are partially occupied
forming a quintet (S = 2). The characterization of [Fe-
(pypypyr),] films upon sublimation as well as the possibility to
optically switch to a quintet HS state are discussed in ref 31.
The thin film of [Fe(pypypyr),] complex is in the LS state at
room temperature, with presumably a fast HS to LS relaxation
time. These properties make such films, a priori, suitable for
stroboscopic investigations. Such films are deposited on Si;N,
membranes, allowing measurements in a transmission mode.

We used the Spectroscopy and Coherent Scattering
instrument (SCS) at the European XFEL to probe the ultrafast
dynamics of an ultrathin film of [Fe(pypypyr),] deposited on
Si;N, by sublimation (see Supporting Information). The
instrument provides a shot-to-shot normalization scheme with
high signal-to-noise ratio in the X-ray absorption spectra
(Figure 2a).°*”% The SASE3 undulator system generates X-
ray pulses, which are monochromatized by a variable line-
spacing grating in combination with an exit slit. The X-rays
then pass through beam-splitting off-axis zone plate optics
which split the X-ray beam into three beams of equal intensity.
These beams are transmitted through the sample structure
consisting of one bare Si;Ni, membrane and two molecular
films on such membranes, one of them is optically excited by
the pump laser. The three beams are detected on an imaging
detector™ to distinguish the three signals. This setup allows for
shot-to-shot normalization, which is essential for a fluctuating
light source as used here, see ref 64 for details.
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Figure 2. Time-resolved X-ray absorption spectroscopy at the Fe L, edge. (a) Schematic of the experimental setup of the Spectroscopy and
Coherent Scattering Instrument at the European XFEL. (b) Schematic X-ray absorption process for the measured fine structure at the Fe L,
absorption edge. (c) An X-ray absorption spectrum of the molecular film measured at room temperature at the unpumped window (open
circles, blue) is depicted together with a pumped spectrum (filled circles, red) at time delay At = 3 ps, which was recorded at a laser pumped
membrane window. Both spectra are corrected with the simultaneously measured I, on a reference Si;N, window (Supporting Information).
The difference of the pumped and the unpumped spectrum represents the pump-induced change (bottom panel). The right axis is given
relative to the white line maximum of the unpumped spectrum. The two features in the spectrum at photon energies of 707.1 and 708.9 eV,
see vertical lines, show changes in intensities that are highlighted by arrows. This spectral modification is represented by the pump-induced
change and corresponds to the spin-state switching from S = 0 to S = 2, induced by the pump laser at an incident fluence of 10 mJ/cm’.

The X-ray absorption spectra were measured in transmission
geometry in a pump—probe configuration by sweeping the
photon energy of ultrashort X-ray pulses [full width at half-
maximum (fwhm) of 30—60 fs] synchronized with an
ultrashort pump pulse at 3.1 eV photon energy and a fwhm
pulse duration of 50 fs. For further technical details, see
Supporting Information and ref 64. The chosen photon energy
of the optical pump pulse induces a resonant excitation from
the low-spin ground state to a metal-to-ligand charge transfer
(MLCT) state, in turn relaxing to the high-spin state.®”® The
X-ray pulse probes the transient state after a pump—probe time
delay At, see Figure 2a. Resonant absorption at the Fe L;
absorption edge probes the unoccupied electronic states of the
tyg and e, orbitals (Figure 2b). In the absence of pumping, the
X-ray absorption spectrum exhibits a main peak at 708.9 eV
indicating a low-spin state of the molecules at room
temperature. A pumped spectrum at At = 3 ps exhibits an
increase and decrease in X-ray absorption at 707.1 and 708.9
eV, respectively, which is shown in Figure 2c in comparison to
a spectrum obtained without pumping. The difference of the
pumped and unpumped spectra is shown in the lower panel of
Figure 2c as the pump-induced change which is clearly
identified and reaches 30%. This value represents a change of
population from the low to the high-spin state.”” We note that
the spectrum acquired 44 s after the pump pulse, which is
possible via a shot-to-shot analysis of the absorption, is

essentially identical to the spectrum prior to excitation (Figure
S6). The relaxation from the high- to the low-spin state
therefore occurs in less than 44 us at room temperature. In
addition, the full reversibility of the switching is evidence for a
negligible radiation-induced fragmentation of the molecules.
Figure 3a shows the evolution of the X-ray absorption at
707.1 and 708.9 eV as a function of pump—probe time delay.
While the absorption changes by 225% for both delay sweeps,
the saturation is reached faster within 0.3 ps at 708.9 eV than
at 707.1 eV, where reaching saturation takes 0.5 ps. The
difference between the two transients is significant for 0 < At <
0.5 ps as depicted in the bottom panel of Figure 3a, which
indicates the transient population of an intermediate state. We
emphasize that the transition from the low- to the high-spin
configuration involves an electronically excited state in
combination with a change of nuclear coordinates. We
acquired transient X-ray absorption spectra at the early instants
of the dynamics on subpicosecond time scales shown in Figure
3b and in the Supporting Information along with spectra at
time delays At < 0 and At = 3 ps. The spectrum at At = 3 ps
has an increased intensity at 707.1 eV and a lower intensity at
708.9 eV compared to the one prior to the pumping (At < 0).
The transient spectrum at At & 256 + 80 fs is similar to the
one acquired at later time delays, indicating that a large
fraction of the molecules already has switched to the HS state
(in addition to approximately half of the molecules not
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Figure 3. Intermediate state analysis of the spin-crossover process. (a) Top panel: Normalized pump-induced change at 707.1 eV (black
symbols) and 708.9 eV (pink symbols) photon energy as a function of pump—probe delay At. The lines guide the eye. The gray dashed line
is the absolute value of the guide to the eye of the negative transient for 708.9 eV. The right ordinate indicates the ratio to the maximum in
the unpumped spectrum, see Figure 2c. Inset: The data of the main panel are presented for a reduced time delay range. Bottom panel: The
difference of the two transient absorption traces shown in the top panel are depicted. The data are reconstructed out of 26 time-delay
sweeps, for which the time zero reference is adjusted as discussed in the SI. The timing of the two transients on the time delay has been
defined to a separate reference measurement and does not take drifts into account. (b) X-ray absorption spectra at three different time delays
At: before pumping (blue), at 256 fs (black), and at 3 ps (red). In the region of the gray bar the spectrum at 256 fs exhibits larger absorption
than the one at 3 ps. The spectrum At = 256 + 80 fs is an average of three transient (At = 191, 238, and 338 fs). The concomitantly
measured spectra on unpumped windows (in the LS state) were normalized to their peak intensity at a photon energy of 708.9 eV. The same
normalization factors were used to scale the corresponding pumped spectra. The lower panel shows the difference between the At = 256 fs

and the At = 3 ps spectra (filtered with a 5-point moving average).

participating in the switching and remaining in the LS state).
There are, however, additional features compared to spectra
recorded before pumping and at At = 3 ps. A small increase in
X-ray absorption is observed pre-edge at 706.3 eV and,
although weaker, postedge at 710 eV. These small absorption
increases are systematic and larger than the respective
uncertainty bars (see Supporting Information).

Simulations of X-ray absorption spectra using atomic
multiplet and ligand-field theory are provided in the
Supporting Information, Figure S3. Comparisons of these
simulated spectra with the 256 fs transient spectrum suggest
that the resolved intermediate state is a metal-centered T,
triplet state, in line with previous reports.”>**~"" It should be
noted that the involvement of a ligand-centered SMLCT state,
prior to the *T, population, cannot be excluded. The absence
of other structure in our data indicate that the lifetime of the
SMLCT state, if populated, is even shorter than that of the T,
state. The different time evolution of the two X-ray absorption
features shown in Figure 3a can be well reproduced using a
rate equation model assuming a single intermediate state with a
finite relaxation time, see Supporting Information.

The photoinduced dynamics of complexes in solutions have
been studied using pump-—probe exg_eriments employing
optical,”*~>* hard,**” and soft X-ray’”** probes along with
ab initio calculations’>”” over the last decades. These works
lead to the broadly accepted microscopic mechanism upon
optical excitation, which proceeds on femtosecond time scales.
It involves the population of a metal-to-ligand-charge-transfer
(MLCT) singlet state starting from the low-spin ground state,
followed by an ultrafast relaxation along the multidimensional
Fe—N nuclear coordinate to the quintet (S = 2) via intersystem
crossing.”””* Two types of triplet intermediate states, "MLCT

and metal-centered triplet °T,, have been observed exper-
imentally on [Fe(bipy);]** (bipy = 2,2'-bipyridine). Ultrafast
optical fluorescence measurements evidenced a *MLCT state,
while time-resolved spectroscopic measurements at the Fe K
edge identified a metal-centered intermediate state.”>”’ Time-
resolved X-ray absorption of [Fe(phen);]** (phen = 1,10-
phenanthroline) at the Fe M edge identified a metal-centered
triplet °T, state as intermediate state.”’ Alias-Rodriguez et al.
performed quantum wavepacket dynamics calculations on
[Fe(bipy);]**, and suggest that the metal-centered triplet state
is catalyzing the transfer to the high-spin state but also
highlight the importance of bipyridine stretching vibrations to
the photochemical pathway.”" It therefore appears necessary to
expand such investigation to complexes with other classes of
ligands (to assess a possible influence of molecular vibrations
on the relaxation pathway).

Quantum chemistry’ >’ and time-dependent density func-
tional theory (DFT)”* calculations have been successfully
employed in the past to describe spin-crossover complexes.
Here, we use both static and time-dependent DFT, see
Supporting Information, since this allows us to calculate
potential energy surfaces of different electronic states including
the ligand orbitals. The atomic configuration in the
intermediate S = 1 state is obtained by performing geometry
optimization in a spin-restricted DFT calculation. Subsequent
linear-response time-dependent DFT calculations allow us to
address electronic excitations not only in the Fe ion, but in the
whole molecule. The determined energies include all electrons
with their interactions. Figure 4 shows the obtained potential
energy surfaces of the ground state S = 0 (blue), the singlet
'MLCT (turquoise area), SMLCT (gray area), as well as the
metal-centered triplet S = 1 (brown) and quintet S = 2 (red) as
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Figure 4. Calculated potential energy surfaces. Total energies of
the metal-centered S = 0, S = 1, and S = 2 (thick lines) states, as
well as 'MLCT singlet (turquoise area), and SMLCT (gray area) as
a function of the average change in Fe—N bond length as inferred
from time-dependent DFT. As a starting point, we consider a
photoexcitation from the S = 0 to the manifold of "MLCT states.
The arrows illustrate hypothetical relaxation pathways. The Fe—N
distance change varies along two coordinates to represent the low-,
intermediate-, and high-spin states.

a function of the nuclear coordinate. The latter is represented
as the Fe—N distance change of one bond measured from the
intermediate S = 1 state toward the S = O initial state
(negative) and toward the S = 2 final state (positive values).

Based on these calculated potential energy surfaces we
discuss possible reaction paths sketched by the arrows
indicated in Figure 4 to guide the reader. The optical pump
at 3.1 eV photon energy induces a resonant transition from the
low-spin configuration to the '"MLCT manifold following the
dipole selection rule, as determined experimentally on related
systems.”>’® The transition to the final quintet state
necessitates the evolution over an intermediate triplet state,
which is provided by the ligand-based triplets and/or the
metal-centered S = 1 state. Both scenarios lead to different
possible relaxation pathways illustrated in Figure 4. (i)
Transfer from '"MLCT to ligand-based triplets, followed by
transfer to the quintet potential energy surface (uppermost
black curved arrow) and relaxation to the high-spin
configuration. (ii) Decay of the single 'MLCT state into
multiple electronic excitations involving S = 1 (vertical solid
black arrow) followed by N-displacement to S = 2 (horizontal
arrow). (iii) Relaxation at the low (or intermediate) spin
nuclear configuration by subsequent steps (curved arrows) to
vibrationally excited S = 1 and N displacement to reach the
high-spin state (horizontal arrow). We note that for (ii) and
(iii), the MLCT state may be populated prior to the metal-
centered § = 1 state.

With the likely contribution of the Fe-based triplet state,
based on previous investigations®**~”" and supported by the
X-ray spectroscopy data, we propose that the population of the
optically excited intermediate state, see Figure 3a (bottom),
represents a nuclear wave packet evolving on the § =1
potential energy surface. Pathways (ii—iii) agree with this
proposal. Our experimental data does not allow to distinguish
between (ii) and (iii). In addition, theoretical investigations’~
have shown the strong mixing of electronic, nuclear, and spin

degrees of freedom suggesting more complex relaxation paths
and both could contribute. Furthermore, we cannot discard the
possibility of having excited metal-centered triplet states at
higher energies.

An essential difference between molecular films and
individual molecules in solution is the presence of
molecule—molecule interactions in the condensed phase.
These interactions have an impact on the switching of the
films, which may in turn be useful for applications.”® Since the
pump absorption determines the number of optically excited
molecules, analysis of the switching yield as a function of pump
fluence may provide insight into the interaction of excited
molecules among each other in the molecular film. Figure 5
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Figure 5. Pump fluence dependence of the pump-induced change.
The normalized pump-induced change at 3 ps time delay is plotted
as a function of incident pump fluence in the X-ray absorption at
the two features in the fine structure as indicated by the given
photon energy. For clarity, the absolute value of the negative
pump-induced change at 708.9 eV photon energy is depicted. The
considerable fluctuations of the pump-induced changes are
assigned to modifications in spatial overlap of pump and probe
pulse upon varying the fluence. Within the available data quality,
we identify an increase in the pump-induced change to about §
mJ/cm® and a saturation of these signals for larger pump fluence.

shows the normalized pump-induced change as a function of
incident pump fluence upto 15 mJ/cm? at a fixed pump—probe
delay of 3 ps. The absolute values of the pump-induced
changes of the corresponding fine structure X-ray energies,
which were introduced in Figure 2c, increase linearly with the
fluence up to approximately 5 mJ/cm?”. This behavior suggests
that the excited molecules in this regime are too dilute for
interaction among them to play a role. For fluences of 3 to 6
mJ/cm?® the changes saturate for both X-ray energies. As
detailed in the Supporting Information, a fluence of 13 mJ/cm?
corresponds, in the investigated films, to approximately one
absorbed pump photon per spin crossover molecule. We
estimate from the fluence at which the saturation is reached in
Figure S that 30 to 50% of the molecules in the film are
transiently excited to the high-spin state.

Light-induced back switching to the low-spin state is
expected to be negligible for 400 nm light.67 This implies
that although sufficient pump photons reach the film, a large
fraction of the molecules does not participate in the switching
process. Such a behavior was reported earlier for static
measurements at low temperatures for the present molecule’’
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as well as other complexes,”””” and rationalized by steric-

repulsion considerations. In other words, the space around
some of the molecules is too small to accommodate a high-spin
state. For a fraction of the molecules, the high-spin state is
unstable due to the interaction with neighboring molecules.
Such intermolecular interactions, modeled as elastic inter-
actions between the molecules, were shown to cause
incomplete spin transition in films* a nd one-dimensional
chains.”””®" The HS fraction reached in the transient
measurements is ~10% lower than that of static ones at low
temperatures. The main cause of the incomplete switching in
the static and ultrafast measurements is most likely the same,
i. e. steric repulsion. The 10% difference m ay b e a scribed to
stimulated emission under high fluence excitation.

Conclusions. We investigated the photoinduced ultrafast
spin-state switching dynamics of an ultrathin film o f Fe(II)
complexes using transient X-ray absorption spectroscopy at the
Fe L; edge. Those measurements at the Fe L; edge, directly
sensitive to the electronic occupation of the Fe d orbitals
evolving with the switching, were made possible by recent
developments at modern light sources like X-ray free-electron
lasers along with the increased quality and robustness of the
molecular thin films. T he s witching from the low-spin to the
high-spin state is completed within 500 fs. The transient
evolution of the Fe L; fine structure evidence the implication
of an intermediate state attributed to a metal-centered triplet
state with the geometry, and thus with the ligand field, of the
low-spin state. We thereby confirm the recent observations in
the photoinduced spin-state switching of solvated molecules>®
and thick films.®> Our results show, in addition, a saturation of
the fraction of switched molecules to &50% with increasing
optical-excitation fluence, which is likely caused by molecule—
molecule interactions. We highlight the sensitivity of this
spectroscopy to the spin character of the electronically excited
state correlated with the nuclear coordinate. Considering
different c omplexes, t he r elative i mportance o ft he * T, and
*MLCT states is expected to degend on the actual strength of
the ligand field.” In the future, the opportunities arising from
our work to exploit the connection between intramolecular
parameters, such as the ligand field, and structural parameters
of intermolecular arrangement in condensed films will
contribute to identifying microscopic interaction principles in
these films. H ence, c ombining s tructure-specific interactions
resulting from the molecular arrangement in thin films with
intramolecular, chemically controlled characteristics, such as
the ligand field strength, may open up further opportunities for
material design.

Methods. Details on sample preparation and character-
ization, data acquisition, and calculations are provided in the
Supporting Information.
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