KIT | KIT-Bibliothek | Impressum | Datenschutz

Local wellposedness of Maxwell systems with retarded material laws in low regularity

Bresch, Christopher 1; Schnaubelt, Roland 1
1 Institut für Analysis (IANA), Karlsruher Institut für Technologie (KIT)

Abstract:

We develop a complete local wellposedness theory for a Maxwell system on $\mathbb{R}^3$ and a large class of nonlinear material laws which are nonlocal in time. Such constitutive relations are typical for nonlinear optics. The problem was treated before in the Sobolev space $H^s$ for $s > 3/2$ by means of energy methods. Using a recently shown Strichartz estimate, we can lower this level of regularity to $s > 1$. In this context ’charge-type’ terms would spoil the analysis. We avoid them by the Helmholtz projection for the divergence operator with coeffients, which requires mapping properties of the projection also in $H^{\alpha,q}$ with $q\ne2$.


Volltext §
DOI: 10.5445/IR/1000179813
Veröffentlicht am 06.03.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 02.2025
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000179813
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 29 S.
Serie CRC 1173 Preprint ; 2025/8
Projektinformation SFB 1173, 258734477 (DFG, DFG KOORD, SFB 1173/3)
Externe Relationen Abstract/Volltext
Schlagwörter nonlinear Maxwell system, nonlocal constitutive relations, Strichartz estimates, Helmholtz decomposition, nonlinear optics
Nachgewiesen in OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page