KIT | KIT-Bibliothek | Impressum | Datenschutz

Error analysis of the Strang splitting for the 3D semilinear wave equation with finite-energy data

Ruff, Maximilian 1
1 Institut für Analysis (IANA), Karlsruher Institut für Technologie (KIT)

Abstract:

We study a variant of the Strang splitting for the time integration of the semilinear wave equation under the finite-energy condition on the torus $\mathbb{T}^3$ . In the case of a cubic nonlinearity, we show almost
second-order convergence in $L^2$ and almost first-order convergence in $H^1$. If the nonlinearity has a quartic form instead, we show an analogous convergence result with an order reduced by 1/2. To our knowledge these are the best convergence results available for the 3D cubic and quartic wave equations under the finite-energy condition. Our approach relies on continuous- and discrete-time Strichartz estimates. We also make use of the integration and summation by parts formulas to exploit cancellations in the error terms. Moreover, error bounds for a full discretization using the Fourier pseudo-spectral method in space are given. Finally, we discuss a numerical example indicating the sharpness of our theoretical results.


Volltext §
DOI: 10.5445/IR/1000179814
Veröffentlicht am 06.03.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 03.2025
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000179814
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 39 S.
Serie CRC 1173 Preprint ; 2025/8
Projektinformation SFB 1173, 258734477 (DFG, DFG KOORD, SFB 1173/3)
Externe Relationen Abstract/Volltext
Schlagwörter semilinear wave equation, Strang splitting, trigonometric integrator, error analysis, discrete Strichartz estimates, summation by parts
Nachgewiesen in OpenAlex
Relationen in KITopen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page