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Abstract

Background: Wearable technology is used by consumers worldwide for continuous activity monitoring in daily life but more
recently also for classifying or predicting mental health parameters like stress or depression levels. Previous studies identified,
based on traditional approaches, that physical activity is a relevant factor in the prevention or management of mental health.
However, upcoming artificial intelligence methods have not yet been fully established in the research field of physical activity
and mental health.

Objective: This systematic review aims to provide a comprehensive overview of studies that integrated passive monitoring of
physical activity data measured via wearable technology in machine learning algorithms for the detection, prediction, or classification
of mental health states and traits.

Methods: We conducted a review of studies processing wearable data to gain insights into mental health parameters. Eligibility
criteria were (1) the study uses wearables or smartphones to acquire physical behavior and optionally other sensor measurement
data, (2) the study must use machine learning to process the acquired data, and (3) the study had to be published in a peer-reviewed
English language journal. Studies were identified via a systematic search in 5 electronic databases.

Results: Of 11,057 unique search results, 49 published papers between 2016 and 2023 were included. Most studies examined
the connection between wearable sensor data and stress (n=15, 31%) or depression (n=14, 29%). In total, 71% (n=35) of the
studies had less than 100 participants, and 47% (n=23) had less than 14 days of data recording. More than half of the studies
(n=27, 55%) used step count as movement measurement, and 44% (n=21) used raw accelerometer values. The quality of the
studies was assessed, scoring between 0 and 18 points in 9 categories (maximum 2 points per category). On average, studies were
rated 6.47 (SD 3.1) points.

Conclusions: The use of wearable technology for the detection, prediction, or classification of mental health states and traits
is promising and offers a variety of applications across different settings and target groups. However, based on the current state
of literature, the application of artificial intelligence cannot realize its full potential mostly due to a lack of methodological
shortcomings and data availability. Future research endeavors may focus on the following suggestions to improve the quality of
new applications in this context: first, by using raw data instead of already preprocessed data. Second, by using only relevant
data based on empirical evidence. In particular, crafting optimal feature sets rather than using many individual detached features
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and consultation with in-field professionals. Third, by validating and replicating the existing approaches (ie, applying the model
to unseen data). Fourth, depending on the research aim (ie, generalization vs personalization) maximizing the sample size or the
duration over which data are collected.

(JMIR Mhealth Uhealth 2025;13:e59660) doi: 10.2196/59660
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Introduction

Background
Mental disorders such as depression, anxiety, or bipolar disorder
remain among the top 10 leading causes of burden worldwide
[1], with an estimated number of 970 million people in the world
living with a mental disorder and a steady prevalence rate of
around 13% [2]. The economic burden is estimated at US $5
trillion [3]. Moreover, global changes such as the COVID-19
pandemic may further boost the prevalence rate of mental health
disorders [4]. Thus, the prevention and management of mental
health are urgent topics. Researchers identified that social
determinants of health represent the most modifiable set of
targets for nonpharmacological intervention to prevent the onset
of mental health disorders. One of these modifiable lifestyle
behaviors that can play an evident role in the prevention and
management of mental health is being physically active and
performing regular exercise in daily life [5]. Earlier
meta-analysis indicated that regular aerobic exercise results in
moderate increases in self-reported affect [5,6]. A further review
showed that the association between physical activity and mental
health in young people is evident with small to moderate effects
[7].

Previous studies applied traditional assessment methods (eg,
self-reports and questionnaires) and analytical approaches (eg,
regression analyses and 1-tailed t tests) and were able to unveil
associations between physical activity and mental health
outcomes retrospectively. A methodological aspect of earlier
studies that display weaker research designs is the application
of self-reports for the assessment of physical activity. Prince et
al [8] compared self-reports and direct measures of physical
activity across 148 studies and concluded that the measurement
method may have a significant impact on the observed levels
of physical activity. In particular, for example, due to
retrospective biases, self-report measures of physical activity
were both higher and lower than directly measured levels of
physical activity. In line with technological developments,
previous studies intensively used accelerometers as a passive
monitoring device for capturing physical activity. The purpose
of their application is variable, such as an observational tool in
surveillance studies [9]; a motivational tool in interventions
[10]; a way to better understand the underlying mechanisms of
health, treatment, and recovery (ie, understanding the role of
physical behavior in it); or as a diagnostic tool in clinical settings
[11]. Using a device-based assessment of physical activity,
researchers replicated the positive impact of physical activity
on various mental health outcomes. For example, a
meta-analysis found that higher levels of physical activity may
offer prevention against the onset of depression [12],

stress-related disorders [13], and psychotic disorders [14].
Furthermore, studies also indicated preliminary results that
being physically inactive in terms of spending higher time in
sedentary behavior is associated with an increased risk of various
mental disorders [15-17]. In addition, not only observational
studies but also results of randomized controlled trials have
shown that physical activity interventions may reduce mental
health symptoms among individuals affected by depression,
stress-related disorders, and schizophrenia [18]. Most of those
studies applied traditional statistical approaches, for example,
analyzing the association between sedentary behavior and mood
dimensions via multilevel modeling [19]. However, those
approaches are limited in predicting, classifying, or detecting
future conditions.

Nowadays, the ability to collect raw accelerometer data without
great effort (eg, via passive continuous longitudinal
measurements from wearables) and in large quantities allows
the application of sophisticated artificial intelligence algorithms
for the detection, classification, or prediction of mental health
states and traits. In this context, the widely used term “machine
learning” refers to a range of mathematical techniques that
leverage the computational power to identify meaningful
patterns within a large dataset [20]. The application of machine
learning algorithms comprises a series of iterative processes
and phases from learning and training within a single original
dataset over testing in a new dataset. The use of artificial
intelligence can be seen as a new methodological area with
increasing awareness in health science but not yet established
in clinical research and practice. Contrary to traditional
approaches, which account for patterns in an original dataset,
machine learning algorithms evaluate how accurately they can
predict patterns and relationships in new datasets [20].
Furthermore, machine learning algorithms emphasize
multidimensionality by capturing the complex interactions
between multiple potential predictors and the outcome of
interest. The application of machine learning can serve different
purposes—some models are trained on groups to provide general
predictions, classifications, or detections applicable to all
individuals (ie, generalizability), while others are personalized,
trained on an individual’s data to generate tailored predictions
specific to that person [21].

Comparing traditional retrospective and modern analytical
methods (eg, machine learning), we see a gap in both the
possibilities and the performance. Passive measurement methods
in the use of wearables have become established in research
studies and make it possible to record enormous high-resolution
datasets in everyday life. However, it is still unclear how the
potential can be optimally used on the basis of new evaluation
approaches. Machine learning enables new strategies to analyze
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huge amounts of data compared to traditional methods (eg,
retrospective vs real-time analysis of data, analysis of new
datasets with already existing models without new training in
less time, and possible forecasting of future trends and events).
To get an overview of the status quo, we summarized studies
that integrated passive monitoring of physical activity data
measured via wearable technology in machine learning
algorithms for the detection, prediction, or classification of
mental health states and traits.

Objective
Although the application of machine learning approaches in
health science increased over the last years [22], we are not
aware of a previous work that integrated passive monitoring of
physical activity data measured via wearable technology in
machine learning algorithms for the detection, prediction, or
classification of mental health states and traits. Thus, the aim
of the review is (1) to provide a comprehensive overview of
studies that combined machine learning approaches based on
accelerometer measures with mental health outcomes; (2) to
summarize the results of the selected studies, the applied
machine learning methods, and the used wearable technologies;
and (3) to rank and discuss quality aspects of the studies.

Methods

Overview
This study followed the PRISMA (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses) reporting guidelines
[23] and was registered in the PROSPERO international
prospective register of systematic reviews (CRD42023436926).
The PRISMA checklist can be found in Multimedia Appendix
1.

Search Strategy and Study Selection
To identify relevant publications, we used a search string that
included terms for (1) machine learning, (2) physical activity,
and (3) wearables (Multimedia Appendix 2). Publications were
searched from 1970 to March 2023 using the following
databases: EBSCOhost, IEEE Xplore, PubMed, Scopus, and
Web of Science.

All papers were imported to a reference manager, Citavi library
(Citavi, version 6.14; Swiss Academic Software GmbH). After
merging all duplicates first electronically and afterward
manually, the study selection process included 3 screening
phases for eligibility. In the first phase, a minimum of 2
reviewers (SW, MG, and RN) independently screened the titles
of the publications. Papers were only excluded if all reviewers
categorized a paper as not eligible for review purposes. In the
second phase, a minimum of 2 reviewers independently screened
the publications’ abstracts (SW, MG, and RN) to determine
whether a full-text review was warranted. Only those papers
moved to the next phase if a minimum of 1 reviewer (SW, MG,
or RN) categorized it as eligible. In the third phase, the full texts
of the remaining papers were assessed for eligibility by 4
reviewers (SW, MG, RN, and LL). Each paper was screened
independently by at least 2 reviewers (SW, MG, RN, or LL).
Discrepancies in screening were resolved by a third review and
if unanimously a fourth review. If there was still no agreement,

the papers were discussed until a consensus was reached. There
was direct agreement (after 2 ratings) in 52% (73/140) of the
studies, a third rating was necessary in 29% (41/140) of the
studies, and a fourth rating was needed in 19% (26/140) of the
studies. After the fourth rating, 3 studies needed further
discussion to decide whether to consider the papers in the
review. Reviewers were not blinded to author or journal
information.

Inclusion and Exclusion Criteria
We included peer-reviewed, English-language publications that
met the following criteria: first, studies were conducted under
real-life scenarios. Second, raw accelerometer measures were
collected with wearables or smartphones. Third, machine
learning methods were used to process the data. Fourth, input
for the machine learning algorithm must include physical
activity measurements. Fifth, the outcome must be mental
health–related. All other papers were excluded, for example,
technical descriptions and protocols, studies with synthetically
generated data, studies with animals, or not mental
health–related such as pure human activity recognition.

Data Extraction
In total, 3 authors (SW, RN, and LL) independently extracted
data. For every study, one author (SW, RN, or LL) extracted
data from the paper, and another author (SW, RN, or LL)
complemented the extracted data with additional information.
Occurring discrepancies were discussed until a consensus was
reached. The following study details were extracted: author,
year, location, population information (sample size, mean age
of participants, percentage of male population, ethnicity, and
special population group), study protocol (measurement period,
type, and environment), study purpose (mental health outcome),
used data (wearable, wearing position, physical activity
recording, and additional sensors used), machine learning
(algorithms, software, feature description, and classifier
performance), study conclusion, funding, and conflict of interest
information.

Quality Assessment and Feasibility
Since no quality assessment tool was found that covered all
quality aspects of interest, we modified a previously used
version [24] based on a combination of the appraisal tool for
cross-sectional studies and the Newcastle-Ottawa Scale for
longitudinal studies. We adopted the mentioned quality
assessment tools and modified them to fit our specific purposes
by complementing them with our own categories and items. A
total of 9 categories were selected, and each category scored
between 0 and 2 points, resulting in a maximum achievable
score of 18 points. In particular, we defined scoring rules to get
points (Multimedia Appendix 3). For example, in the category
“missing data management and dataset balancing” studies
received 0 points if no information was provided, 1 point if the
handling of missing data is described, and a further point if an
imbalanced dataset problem is addressed. Finally, we split the
points into 3 classes: low (0-6 points), moderate (7-12 points),
and high (13-18 points).
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Results

Overview
Out of 11,057 records, we removed 5523 duplicates. The
remaining 5534 papers were screened by title, and a further
3886 papers were excluded. We included another 240 papers
from different sources (eg, citation screening). After screening

all abstracts, 140 papers remained. After reading all full texts,
49 publications were eligible for the current systematic review.
The process can be seen in Figure 1.

All 49 selected studies with corresponding extracted data points
are listed in Multimedia Appendix 4 [25-73]. A brief overview
of the studies can be found in Table 1. Numbers reported must
not always add up to 49, as some studies belong to more than
1 subcategory.

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart.
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Table 1. Overview over all included studies and extracted data.

Values (N=49), n (%)Category and subcategory

Publication year

16 (33)2016-2019

33 (66)2020-2023

Study location

0 (0)Africa

20 (41)Asia

12 (24)Europe

16 (33)North America

0 (0)Australia or Oceania

1 (0)South America

Sample size

12 (24)≤20

11 (22)21-50

12 (24)51-100

12 (24)101-1000

2 (0)>1000

Study duration (days)

8 (16)≤1

10 (20)2-7

9 (18)8-14

6 (12)15-31

8 (16)32-90

5 (10)>90

3 (1)NRa

Study setting

34 (69)Free living

7 (14)Laboratory

5 (10)Clinical setting

Mental health outcome

14 (29)Depression

5 (10)Emotions

2 (0)Fatigue

5 (10)Mood

2 (0)State of mind

15 (31)Stress

9 (18)Other

Sensor class

22 (45)Commercial wearable

18 (37)Scientific sensor carrier

13 (27)Smartphone

Sensor position

33 (67)Wrist
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Values (N=49), n (%)Category and subcategory

3 (1)Chest

5 (10)Other

10 (20)NR

Machine learning used

8 (16)Decision tree

8 (16)K-nearest neighbor

15 (31)Linear regression

8 (16)Long short-term memory

6 (12)Multilayer perceptron

17 (35)Neural network

28 (57)Random forest

18 (37)Support vector machine

18 (37)Extreme gradient boosting

15 (31)Other algorithms

1 (0)NR

aNR: not reported.

Participant and Study Characteristics
The paper’s publication dates ranged from 2016 to 2023, with
nearly half of them being published after 2020 (n=22, 45%).
The studies are from a total of 21 different countries, leading
in the list is the United States with a total of 15 studies followed
by the Republic of Korea with 5 studies. The number of
participants ranged from 2 to 4612, with a mean number of
232.68 (SD 310.86). Almost half of the studies (n=23, 47%)
recruited less or equal to 50 participants. Only 14 studies had
more than 100 participants. Only 29 studies reported information
about the age and sex of the study participants. Almost all of
these studies (n=26) focused on adults aged between 20 and 50
years, whereas 2 studies examined older people with a mean
age of 70 (SD 10) years, and 1 study examined teenagers
between the age of 12 and 20 years. In 21% (n=6) of these
studies, less than one-third were male participants. In total, 17
studies had a sex distribution between one-third and two-thirds
of male participants. In 6 studies, more than two-thirds of the
participants were male. Convenient samples such as college or
university students were recruited in 13 studies, and 8 studies
recruited patients with a specific illness or condition and a
distinct control group. Almost all studies were observational
studies (n=45, 92%), and the remaining studies were
experiments. The duration of the studies varied from less than
1 day to 365 days, with a mean of 48.04 (SD 54.10) days. A
total of 27 studies had a duration of 14 or fewer days, with 6
studies having less than 1 day. Only 6 studies had 3 months or
more of data recording. Most studies (n=34, 69%) were carried
out in free-living conditions, while 11 reported a clinical or
laboratory environment.

Mental Health
The focus of the studies had to be connected to a mental health
state or trait. In total, we identified 14 different outcomes. A
total of 31% (n=15) of the studies had stress as their main focus,

while 29% (n=14) examined depression. Further, we identified
5 studies each on mood and emotion outcomes. The other studies
investigated topics like the state of mind, posttraumatic stress
disorder, fatigue, or different anxiety disorders. Almost all
studies used an initial onboarding phase with different
questionnaires or ecological momentary assessment procedures.
Across all studies, 14 studies were concerned with classification
into different groups (eg, classifying a serious mental illness
participant group from a control group or classifying participants
into different severe depression levels), while 16 studies focused
on detecting individual characteristics (eg, different emotions).
The remaining 19 studies focused on predicting future conditions
(eg, predicting the presence and severity of a depressive state
or predicting a future stress rating).

Physical Activity Assessment Via Wearables
All of the included studies collected sensor information from
either a wearable or a smartphone or in 4 cases both. Of all
studies, 22 used commercial-grade wearables (eg, Fitbit fitness
tracker), 18 studies used scientific sensors (eg, ActiGraph) to
record sensor measurements, and 13 studies used smartphones.
The most used wearing position was the wrist (n=33, 67%),
followed by 8 studies that used other wearing positions such as
chest, hip, thigh, or finger-worn sensors. In total, 10 studies had
no specific wearing position because they used smartphone
recordings as used in everyday life. Physical activity was always
measured with triaxial accelerometer sensor measurements.
Only 5 studies used exclusively accelerometer sensor values as
input, whereas all other studies used a minimum of 1 additional
sensor. In particular, 17 studies used heart rate recordings, 4
studies used electrocardiography and 2 studies used heart rate
variability recordings. Furthermore, 12 studies used location
recordings, primarily acquired via GPS, and 10 studies used
electrodermal activity, also mentioned as galvanic skin response
or electrodermal response measurement recordings. Gyroscope
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as an additional body movement sensor was included in 9
studies.

According to the selection of raw measurements or preprocessed
features, 27 of the studies used steps as physical activity
features, 21 used raw accelerometer values, and 13 studies did
not specify how they measured activity or used activity
classification. Further, 7 studies used energy expenditure (eg,
metabolic equivalent of task or calories) as a measure of physical
activity.

Machine Learning
The features extracted from the recorded sensor measurements
and used by the evaluated machine learning algorithms were
reported by 63% (n=31) of all studies. Only 27 studies reported
a feature evaluation. The top 10 features were widely spread,
and the consensus regarding what are the best 10 features for a
specific use case was very low. Most studies explored more
than 1 machine learning algorithm and compared the monitored
performance. More than half of all studies (n=28, 57%) analyzed
the use of random forest, followed by support vector machines
(n=18, 37%), different neural networks (eg, deep neural network,
convolutional neural network, and recurrent neural network;
n=17, 35%), linear regression (n=15, 31%), and extreme gradient
boosting (XGB; n=13, 27%). Overall, 39 studies reported their
best-performing classifier led by XGB (n=10, 26%), followed
by random forest (n=9, 23%) and support vector machine (n=5,
13%). When it comes to performance values, 39 studies reported
the performance achieved by their used machine learning
algorithm. The top reported performance value was accuracy
(n=35, 90%), followed by sensitivity (n=25, 64%), precision
(n=20, 51%), and F value (n=18, 46%).

In total, 22 studies reported the used programming language or
used packages. In particular, 12 studies used Python (Python

Software Foundation) as a programming language, followed by
7 studies that used R (R Foundation for Statistical Computing).
Only 39 studies reported some performance values, and 15 of
them reported only 1 or 2 performance values (mostly only
accuracy or area under the receiver operating characteristic
curve values). The most mentioned limitations were a small
sample size (n=20, 41%), lack of diversity in the sample (n=14,
29%), or a low number of data points (n=10, 20%).

Figure 2 presents a summary of the input, machine learning
approaches, and performance differentiated by the study aims,
namely, detection, prediction, or classification of mental health
states or traits. The most significant visual aspects are described
in the following. Obviously, only 5 studies used accelerometer
measures as input signals, whereas most studies combined
accelerometer measures with additional sensor signals such as
gyroscope or heart rate. Nearly half of the studies that focused
on the prediction of mental health outcomes applied XGB as a
machine learning algorithm. In contrast, studies that focused
on detection reported a variety of 11 different approaches.
Nearly half of the studies that focused on the prediction of
mental health outcomes and used XGB as a machine learning
model did not report the accuracy. Nearly two-thirds of all
studies that focused on the classification reported overall high
accuracy (≥80%). A more specific view on the different mental
health outcomes revealed, for example, that raw data were more
frequently used for the classification of depression, and the
classification accuracy is quite promising. In comparison, when
it comes to stress, the distribution of input data, machine
learning, and accuracy performance is more balanced. For more
details on the distribution of outcomes and specific details about
the 2 most studied mental health outcomes, depression and
stress, see Multimedia Appendix 5.

Figure 2. Overview of the input, machine learning approaches, and performance differentiated by the study aims. Notably, some studies appear multiple
times due to different input configuration. CB: cat boost; DT: decision tree; LR: linear regression; LSTM: long short-term memory; MLP: multilayer
perceptron; NB: naïve Bayes; NN: neural network; RF: random forest; SVM: support vector machine; XGB: extreme gradient boosting.
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Study Quality
We rated all 49 studies in the 9 categories and classified them
into the specified quality class. We classified 21 studies as low
quality, 27 studies with moderate quality, and only 1 study with
high quality. From another perspective, only 10 studies reached
half of the points or more. On the positive side, almost all studies
defined the outcome to achieve, but 4 studies did lack even a
description of what they wanted to achieve. In the
“representativeness” category, no study got 2 points mostly
because they did not provide their implementation or data or

did not have an independent validation (eg, testing the
implemented model with another independent dataset). In the
category “justification of sample size,” only a total of 9 points
(of possible 98 points) was scored. Reporting the sample size
is important, as small sample sizes could lead to inaccurate
results and therefore to drawing false conclusions [74]. On
average, the papers were rated with 6.47 (SD 3.1) points;
therefore, the overall quality of the reviewed studies can be
rated moderate to low. Figure 3 shows the distribution of points
in the individual categories.

Figure 3. Quality of the papers sorted by categories.

Discussion

Principal Findings
In our review, we included a total of 49 studies that applied
machine learning methods based on accelerometer measures
via wearable technology to predict, detect, or classify mental
health states or traits. According to the aims of our review, we
can summarize the following main results: first, studies focused
on different mental health objectives (prediction, classification,
or detection of affect or mood, anxiety, depression, anorexia
nervosa, emotions, fatigue, posttraumatic stress disorder, state
of mind, and stress). The 2 most frequently studied outcomes
were stress with 15 studies and depression with 14 studies.
Second, we identified heterogeneity in the used machine learning
methods. In particular, across all studies, 30 different machine
learning algorithms were used and integrated human acceleration
data either from smartphones or wearables. Third, the top 10
studies with the highest accuracy and 8 of the top 10 studies
with the highest precision used raw accelerometer measurements
instead of already preprocessed data. Fourth, the quality of the
studies can be judged as low to moderate. Although the studies
pursued different purposes and followed different

methodological approaches, obvious limitations become
apparent that merit further consideration.

Raw Measurements and Features
As an inclusion criterion for the selection of studies, we set the
requirement that either raw accelerometer measurements or at
least preprocessed parameters from raw accelerometer
measurements were included as an input signal to the machine
learning algorithm. In total, 22 studies used raw accelerometer
measurements, whereas 27 studies used preprocessed data such
as steps or dimensions of energy consumption. According to
Fedor et al [22], raw measurement describes the data recorded
by wearables or smartphones (eg, accelerometer, gyroscope,
location, and heart rate) and can provide direct insights about
general mental well-being. For example, an approximation of
stress detection can be associated with heart rate or heart rate
variability [75].

When focusing on those studies that reported machine learning
performance values, the top 10 studies that reported high
accuracy used raw accelerometer measurements as input.
Moreover, focusing on the performance classifier precision, 8
of the top 10 studies also used raw accelerometer measurements.
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When looking at sensitivity and F value, 6 of the top 10 studies
used again raw accelerometer measurements. This suggests the
assumption that using raw accelerometer measurements instead
of preprocessed data provides better overall performance. Thus,
whenever possible, to ensure the objectivity of the input data,
we encourage future research efforts to develop machine
learning algorithms based on raw accelerometer measurements
rather than preprocessed data. In other words, if algorithms are
based on preprocessed data, decisions have already been made
that may influence the results [76]. There is no consensus about
how the raw data should be processed optimally and
harmoniously. In particular, different possibilities for processing
raw accelerometer data into metrics or parameters are presented
in the literature, for example, counts [77], movement
acceleration intensity [78], Euclidian norm minus one [79], or
mean amplitude deviation [80]. Furthermore, 20 of all included
studies integrated data from commercial-grade wearables such
as Fitbit or Garmin. This brings up further challenges, as
researchers often do not have access to raw accelerometer
measurements of consumer wearables, and they do not have
access to the “black-boxed” algorithms either [76]. Optimally,
researchers should have access to raw accelerometer
measurements or high-resolution feature data that are derived
from the raw data. Furthermore, at the very least, comprehensive
details of algorithms as well as the version of the device and
software should be made transparent. In this context,
transparency is a requirement for reproducibility, comparability,
stacking of datasets, or creating norms. In line with the
mentioned challenges, a significant number of wearables are
not validated through high-quality protocols [81,82].

Nearly all studies (n=39) integrated additional measurements
next to accelerometer measurements such as heart rate, location,
electrodermal activity, or ambient light for the application of
the machine learning algorithm. The idea behind this approach
might be to add supplementary information to increase the
chance to identify patterns. However, we suggest adding only
meaningful data to the algorithm based on empirical evidence
[22]. Besides the aim to maximize the most accurate prediction,
detection, or classification of mental health states or traits based
on several raw measurements, it might also be interesting to
identify the isolated impact of, for example, raw accelerometer
or heart rate measurements on mental health outcomes. We
expect an increase in studies applying a machine learning
approach in the future and thus the opportunity to tackle these
issues.

Although we prefer raw measurements of sensors, these are
mostly not expressive enough to gain insights into specific
behavior. To gain meaningful information from raw
measurements, extracting the so-called low-level features is
necessary. For example, wearables worn on the wrist collect
linear acceleration via an accelerometer sensor. Through
applying feature extraction algorithms to the raw acceleration
measurements, they can be transformed into, for example, step
count [83] or movement intensity [80].

In total, 18 studies did not report the used features, which
hinders the possibility of replicating the application of the
described machine learning model. Of the 31 studies that
reported the used features, only 23 mentioned their feature

selection process, which includes feature evaluation as well as
describing the importance of and influence of a feature on the
outcome. Feature evaluation is essential to gain insights into
which features impact the outcome and what may be correlated
to the studied mental health condition [84]. We strongly
recommend reporting the used feature selection process and the
final feature subset used in the model, especially to transparently
explain how the results are achieved.

Additionally, not the most influential features should be selected
but the ones highly correlated with the studied outcome.
Therefore, consultation with domain experts is highly
recommended to ensure that the calculated features contain the
necessary information for the identification, classification, or
prediction of the targeted mental health condition. Experts in
the field recommend that when performing machine learning
analyses, 2 assumptions are made, namely, first, the desired
outputs of the data can be generated, given the input data; and
second, the available data contain the necessary information to
learn the desired output [22,84].

In general, the use of low-level features is essential for the
application of machine learning, as it joins raw measurements
into more meaningful values. A further step is the aggregation
of calculated feature values into the so-called high-level features
or high-level information [22]. This high-level information can
combine multiple low-level features to reflect different
behavioral patterns (eg, physical activity or sleep) [22,85]. We
found that none of the reviewed studies integrated high-level
information, which can be crucial to explain certain behaviors.
For example, some studies used features like “hours of sleep”
for depression detection or severity classification, but looking
at only hours of sleep could not be enough. In particular,
Riemann et al [86] provided an overview of the complex
relationship between sleep and depression, indicating that
several sleep parameters such as sleep stages or sleep efficiency
are also related to depression. Therefore, combining multiple
features into high-level features might be necessary to get a
clearer picture. Another example is the correlation between
stress and physical activity. Stress might be associated with
reduced physical activity [87]. However, reduced physical
activity can have various reasons besides stress (eg, illness or
injury or bad weather conditions). In contrast, Smets et al [88]
showed that a combination of different physiological signals
(eg, electrodermal activity or pulse rate variability) and
contextual information (eg, temperature and location) can also
be used to predict stress. Therefore, combining both approaches
might improve stress detection.

We recommend using different combinations of features
depending on the targeted objective. Future studies should focus
on crafting optimal feature sets for distinct detection,
classification, or prediction of the various mental health states
and traits rather than using many individual detached features.

Machine Learning
While classic programming transforms input data via previously
defined rules into information-enriched output data, machine
learning tries to find these rules (model) that describe the
correlation or connection between input data and given output
[89]. The more data we have to train our rule set, the better and
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more precise the machine learning model can predict, classify,
or detect the outcome of unknown input data. Furthermore, an
additional effect of a larger dataset for training is a higher
generalizability of the model. Our included studies varied widely
in terms of aim and rationale. However, some methodological
and machine learning–specific issues affect all studies and have
an impact on the quality that merits further consideration.

First, when collecting data in studies, 2 main dimensions can
increase the size of the dataset: the sample size and the duration
over which data are collected. A longer duration helps collect
more data points per person and increase the potential to
personalize results (ie, within-subject approach), and larger
sample sizes help build a more diverse dataset (ie,
between-subject approach) [90]. Nevertheless, both dimensions
are important to obtain meaningful output when using machine
learning. Depending on the use case, however, 1 dimension
might be crucial.

For detection or classification purposes, a broad and diverse
sample is important for generalization [91]. However, only 2
of 13 studies addressing detection and only 4 of 14 studies
focusing on classification had a sample size greater than 100.
Overall, almost half of all studies (n=23, 47%) recruited less or
equal to 50 participants. Only 14 studies recruited more than
100 participants. A further problem occurring in 11 of 27 studies
is the acquisition of participants from a particular group of
people (eg, students), which also does not play in favor of
generalization.

The duration of data acquisition can play a role as well in
detection or classification. Fedor et al [22] show that a recording
of 16 days of physical activity and depression level might not
be enough to detect an association between physical activity
and depression, whereas a duration of 6 weeks may show an
association. When predicting trends or forecasting events ideally,
a long duration for data collection is envisaged. As seen in the
aforementioned example of Fedor et al [22], trends or
correlations might not be visible in short-duration datasets. In
total, 9 of 19 studies examining prediction or forecasting
reported a study duration of 30 days or longer, and 7 of 19
studies only reported 14 or fewer days down to even 1 day. This
can mean that correlations did not lie within the analyzed period
and dampened the overall performance results reported.

All included studies implemented a minimum of 1 supervised
machine learning algorithm for their application. When
implementing machine learning models with supervised
learning, splitting your primary dataset into different partitions
for training and testing is common [84]. The performance
measure of the developed model is thus only valid for that
particular primary dataset. For use in the clinical area, further
testing is needed to ensure that the measured accuracy holds
when applying the model to unseen data. Therefore, large and
precisely labeled datasets from diverse populations are required
[22]. None of the reviewed studies used external supplementary
datasets to validate their implemented models and presented
performance values. Additionally, none of the studies used
different wearables—particularly studies using commercial
wearables—that generate the same sensor measurements and
features to validate their results. We recommend not only

replicating and validating the developed models with
independent datasets but also incorporating other wearables that
produce the same measurements and features as the original
device.

As seen in the analyzed studies, machine learning enables the
detection, classification, and prediction of mental health
conditions from either raw acceleration measurement or
preprocessed physical activity data (eg, steps). In most studies,
additional supplementary sensors are used to find possible
patterns in the measured data typical for various mental health
conditions. Analyzing the influence of the different sensor
measurements on the outcome can help strengthen the developed
models. However, only a few of the studies compared the
capabilities of their machine learning models with different
subsets of the recorded measurements. As a future task, not only
implementing machine learning models from already collected
data but also testing them in real-time and real-world scenarios
optimally with live sensor measurements can help collect more
insights on how to improve and reinforce the models and how
to interpret the outcome [85,92].

The Future: Clinical State
The use of machine learning is becoming increasingly popular
when it comes to analyzing large datasets. Machine learning is
also being used more and more frequently in sensitive areas,
for example, when analyzing health-related data (eg, physical
activity and sleep) [93,94]. Considerable progress has been
made in some areas of application, leading to high-level
information that already enables more valuable insights.
Nevertheless, the advancements made are not sophisticated
enough to be considered clinically relevant [22,95,96]. For
validation and evaluation of developed algorithms, large datasets
are needed, which are not available yet. Additionally, large
studies are necessary to validate the developed applications and
their reported outcomes.

Another factor influencing the outcome of the developed
machine learning model is the respective context. For example,
a drop-off in physical activity of a person can be a symptom of
depressive disorder but can also be the result of a physical injury
or bad weather conditions. Only a few studies included
contextual information in the form of features in their
implementation and training of their model. Here, next to passive
monitoring of biosignals or geolocation, the collection of
self-reported information via ecological momentary assessment
is a valuable addition for deeper insights into contextual and
latent factors [97,98].

For some mental health conditions, we identified only one study,
such as, for posttraumatic stress disorder [25], social anxiety
disorder [26], or anorexia nervosa [27]. To finally conclude,
whether the mentioned conditions can be meaningfully
recognized with machine learning models via physical activity
and optional supplementary sensor measurements is doubtful.
Therefore, consultation with in-field professionals is inevitable
to assess the feasibility and to evaluate the results. Further, there
are not enough studies of some of the investigated mental health
conditions to be able to make a reliable statement about the
significance of the results.
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It should also be considered whether the mental health condition
under investigation can be studied with a generalized model at
all or if a personalized model needs to be developed for each
individual [99]. Measuring the same value for 2 different people
could mean different things. Even within 1 person, the meaning
of the measurement can change over time. Therefore, huge
datasets with diverse populations are necessary for development
before these models are included in clinical practice.

As we get closer and closer to implementing new machine
learning applications in clinical practice, studies should also
focus on the cost-effectiveness of their developed solutions
compared to traditional approaches. The initial costs of
implementing machine learning applications are high due to the
enormous amount of high-quality data needed to train and test
meaningful models. After initial training, the costs decrease, as
base models need less data for fine-tuning for, for example,
personally tailored treatment. First studies have shown that the
implementation of machine learning algorithms might be
cost-effective not only when it comes to predictive analytics
for early disease detection or prediction but also in the areas of
remote health care and monitoring or in the management of
personalized treatment (eg, maintaining medication plans)
[100,101].

In conclusion, the developments in the field of mental health
that use machine learning for detection, classification, or
prediction are not sophisticated enough for use in the clinical
area. In the near future, first applications will assist diagnosis
and treatment of selected mental health conditions, but
automatically estimating the full clinical state of a patient will
take more time and studies [22,102]. All assessed studies explore
small parts of the complex field of mental health care and can
be considered the first steps toward more digital and intelligent
health care systems. These studies can be seen as the first
“proof-of-concept” applications in the area of digital health care
applications. Despite all this, there are already initial endeavors
to use machine learning applications in clinical practice. One
example is analyzing electronic health records with the help of
machine learning for improving disease phenotyping for
differential diagnosis of major depression or predictive modeling
of depression and anxiety [103-105]. In another example,
machine learning is used to track the clinical state via speech
analysis [106]. However, there also remain not only technical
challenges but also questions about health equity, data privacy,
and security and a new role of health care professionals [107].

Even though the full potential of artificial intelligence has not
been reached so far, some examples demonstrate what can be
achieved in the foreseeable future. Masud et al [28] developed
a system to monitor daily live activities for estimating the
depression score (16-item Quick Inventory of Depressive
Symptomatology) as well as the depression severity level. The
system has the potential to identify depression and classify the
severity by assessing day-to-day activities. This enables passive
monitoring and can help provide immediate health care when
depression is detected. Another study by Rozet et al [29]
developed models for predicting individual stress ratings.
Different approaches were analyzed, more generalized
nomothetic approaches and more individualized ideographic
approaches. It was demonstrated that, initially, the ideographic

model performed better, but with ongoing data collection, the
nomothetic model surpasses it, highlighting the importance of
more personalized models because of the heterogeneity of the
importance of the predictors on stress. We are expecting an
increase of studies that apply machine learning techniques in
the area of lifestyle factors (eg, physical activity) and mental
health in the future. With the increase in studies and, above all,
the development of homogeneous study protocols and methods
for reporting machine learning performance, meaningful
meta-analyses can be conducted. Ultimately, individual
participant data meta-analyses can be carried out in the future.

Strengths and Limitations
The main strength of this study is that it focuses on several
mental health conditions examined with machine learning and
the possibility to detect, classify, or predict aspects of it based
on wearable signals. This provides a broad overview of the
possibilities of generating valuable information with the
measurements of wearables in the field of mental health. Of
course, there are several limitations. First, some relevant studies
may have been missed because they did not appear in our search
due to missing key terms in the specified search criteria.
Additionally, only English-language search results were
considered. Additionally, due to the fast development of
machine learning applications in research, new studies might
have been published after the initial search. Second, study
quality was assessed using a combination of the appraisal tool
for cross-sectional studies and the Newcastle-Ottawa Scale for
longitudinal studies already used by De Angel et al [24] but
further complemented with own categories in line with core
principles, recommendations, and expert statements
[24,84,108,109]. Third, due to the large heterogeneity of
included studies (eg, different outcomes, different study designs,
and different reported performance values), our systematic
review provides no quantitative synthesis of the results in the
form of a meta-analysis, as this would not allow any meaningful
interpretation.

Future Directions and Conclusions
Our review indicated that the application of machine learning
in the context of the association between physical activity and
mental health arose over the last couple of years, thus showing
the relevance in research. The detection, classification, and
prediction of mental health states and traits using machine
learning based on wearable signals have shown to be a
promising approach. Not only are wearables widely used and
easy to operate in today’s society, but also they can provide
valuable insights about nontrivial aspects like physical activity
or sleep. Using machine learning models is a promising next
step to gain even more high-level information. Although there
are serious pitfalls, which need to be mastered before, these
applications can be included in clinical practice. First,
researchers should use huge amounts of diverse datasets to
improve and enhance the capabilities of their machine learning
models. Second, independent evaluation and validation are
inevitable to ensure maximum stability and to strengthen the
meaningfulness. Third, researchers should consult a domain
professional for the development as well as evaluation of the
application. Fourth, the research community should agree on
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well-formulated guidelines for reporting the analysis of the
developed application to guarantee a maximum of transparency.
Fifth, researchers should train the machine learning models
whenever possible with data that are preprocessed as little as
possible.

This review of state-of-the-art applications for assessing mental
health states shows that the use of wearable data with the help
of machine learning can indeed provide valuable information,
but various aspects of the development and reporting process
need to improve especially in such a sensitive field as mental
health.
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