KIT | KIT-Bibliothek | Impressum | Datenschutz

Machine learning operations landscape: platforms and tools

Berberi, Lisana ORCID iD icon 1; Kozlov, Valentin ORCID iD icon 1; Nguyen, Giang; Sáinz-Pardo Díaz, Judith; Calatrava, Amanda; Moltó, Germán; Tran, Viet ORCID iD icon 2; López García, Álvaro
1 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)
2 Institut für Angewandte Geowissenschaften (AGW), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

As the field of machine learning advances, managing and monitoring intelligent models in production, also known as machine learning operations (MLOps), has become essential. Organizations are increasingly adopting artificial intelligence as a strategic tool, thus increasing the need for reliable, and scalable MLOps platforms. Consequently, every aspect of the machine learning life cycle, from workflow orchestration to performance monitoring, presents both challenges and opportunities that require sophisticated, flexible, and scalable technological solutions. This research addresses this demand by providing a comprehensive assessment framework of MLOps platforms highlighting the key features necessary for a robust MLOps solution. The paper examines 16 MLOps tools widely used, which revolve around capabilities within AI infrastructure management, including but not limited to experiment tracking, model deployment, and model inference. Our three-step evaluation framework starts with a feature analysis of the MLOps platforms, then GitHub stars growth assessment for adoption and prominence, and finally, a weighted scoring method to single out the most influential platforms. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000180112
Veröffentlicht am 17.03.2025
Originalveröffentlichung
DOI: 10.1007/s10462-025-11164-3
Scopus
Zitationen: 9
Web of Science
Zitationen: 6
Dimensions
Zitationen: 7
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Geowissenschaften (AGW)
Scientific Computing Center (SCC)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 1573-7462
KITopen-ID: 1000180112
HGF-Programm 46.21.02 (POF IV, LK 01) Cross-Domain ATMLs and Research Groups
Erschienen in Artificial Intelligence Review
Verlag Springer
Band 58
Heft 6
Seiten 167
Projektinformation AI4EOSC (EU, EU 9. RP, 101058593)
Vorab online veröffentlicht am 17.03.2025
Nachgewiesen in Web of Science
Scopus
OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page