KIT | KIT-Bibliothek | Impressum | Datenschutz

MetaMVUC: Active Learning for Sample-Efficient Sim-to-Real Domain Adaptation in Robotic Grasping

Gilles, Maximilian 1; Furmans, Kai ORCID iD icon 1; Rayyes, Rania 2
1 Institut für Fördertechnik und Logistiksysteme (IFL), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)

Abstract:

Learning-based robotic grasping systems typically rely on large-scale datasets for training. However, collecting such datasets in the real-world is both costly and time-consuming. Synthetic data generation data is a cost-effective alternative, but models trained solely on synthetic data often struggle with zero-shot
real-world performance due to the large domain gap between synthetic and real-world data. To address this challenge of dataset costs against model performance, we propose an active learning framework designed for fast and sample-efficient sim-to-real do-main adaptation. Our proposed learning framework uses synthetic data as initial knowledge base and incrementally adapts to the target data domain by selecting the most informative real-world data samples for further model training. For this purpose, we propose a novel, hybrid query strategy, MetaMVUC, which leverages multi-view uncertainty and metadata diversity. MetaMVUC assesses model uncertainty by comparing model predictions across multiple viewpoints, identifying samples with the highest uncertainty. Additionally, since robots in industry or logistics often operate in environments rich in metadata, MetaMVUC leverages this information to ensure diverse and well-distributed sample selection. ... mehr

Zugehörige Institution(en) am KIT Institut für Fördertechnik und Logistiksysteme (IFL)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 04.2025
Sprache Englisch
Identifikator ISSN: 2377-3766, 2377-3774
KITopen-ID: 1000180147
Erschienen in IEEE Robotics and Automation Letters
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Band 10
Heft 4
Seiten 3644–3651
Nachgewiesen in Dimensions
Scopus
Web of Science
OpenAlex

Verlagsausgabe §
DOI: 10.5445/IR/1000180147
Veröffentlicht am 18.03.2025
Seitenaufrufe: 22
seit 18.03.2025
Downloads: 6
seit 20.03.2025
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page