KIT | KIT-Bibliothek | Impressum | Datenschutz

Consensus statement on the credibility assessment of machine learning predictors

Aldieri, Alessandra; Gamage, Thiranja Prasad Babarenda; Amedeo La Mattina, Antonino; Loewe, Axel ORCID iD icon 1; Pappalardo, Francesco ; Viceconti, Marco
1 Institut für Biomedizinische Technik (IBT), Karlsruher Institut für Technologie (KIT)

Abstract:

The rapid integration of machine learning (ML) predictors into in silico medicine has revolutionized the estimation of quantities of
interest that are otherwise challenging to measure directly. However, the credibility of these predictors is critical, especially when they
inform high-stakes healthcare decisions. This position paper presents a consensus statement developed by experts within the In Silico
World Community of Practice. We outline 12 key statements forming the theoretical foundation for evaluating the credibility of ML
predictors, emphasizing the necessity of causal knowledge, rigorous error quantification, and robustness to biases. By comparing ML
predictors with biophysical models, we highlight unique challenges associated with implicit causal knowledge and propose strategies
to ensure reliability and applicability. Our recommendations aim to guide researchers, developers, and regulators in the rigorous
assessment and deployment of ML predictors in clinical and biomedical contexts.


Verlagsausgabe §
DOI: 10.5445/IR/1000180174
Veröffentlicht am 18.03.2025
Originalveröffentlichung
DOI: 10.1093/bib/bbaf100
Scopus
Zitationen: 1
Web of Science
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Biomedizinische Technik (IBT)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 04.03.2025
Sprache Englisch
Identifikator ISSN: 1467-5463, 1477-4054
KITopen-ID: 1000180174
Erschienen in Briefings in Bioinformatics
Verlag Oxford University Press (OUP)
Band 26
Heft 2
Nachgewiesen in Web of Science
Scopus
Dimensions
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page