
Responsible and Sustainable AI:
Considering Energy Consumption in Automated

Text Classification Evaluation Tasks
Angelika Kaplan

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

angelika.kaplan@kit.edu

Jan Keim
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
jan.keim@kit.edu

Lukas Greiner
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
lukas.greiner@alumni.kit.edu

Ralf Sieger
FZI Research Center f. Information Tech.

Karlsruhe, Germany
sieger@fzi.de

Raffaela Mirandola
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
raffaela.mirandola@kit.edu

Ralf Reussner
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
ralf.reussner@kit.edu

Abstract—Text classification is one of the typical and funda-
mental natural language processing tasks. With the advent of
large language models (LLMs), text classification has evolved
much further. Based on the growing sizes of LLMs and the
increased demands for hardware, and especially energy, questions
about sustainability and environmental impacts and responsibil-
ity also arise. To assess text classification approaches, researchers
usually only use common performance metrics like precision,
recall, and f 1-score. Green AI, i.e., improving environmental
aspects while maintaining performance, is regularly disregarded
and not a standard in the evaluation of automated text classifi-
cation approaches. Yet, minor performance improvements might
not justify, e.g., much higher energy consumption. In this paper,
we aim to raise awareness for this issue and the corresponding
trade-off discussions and decisions. Therefore, we present novel
sustainability metrics and provide guidelines for text classification
approaches that are suitable for Green AI. In a text classification
use case, we showcase the applicability of our proposed metrics
and discuss corresponding trade-off decisions.

Index Terms—Green AI, sustainability metrics, energy con-
sumption, natural language processing, text classification.

I. INTRODUCTION

Text classification is a fundamental task in natural language
processing (NLP) that involves categorizing text into prede-
fined labels or classes based on its content. This task is essen-
tial for many applications, such as spam detection, sentiment
analysis, topic labeling, language identification, and document
organization. As such, text classification drives advancements
in automated information retrieval, content moderation, and
user experience personalization. In software engineering, com-
mon examples include requirements classification [1]–[4], bug
and issue classification [5], [6], and commit message clas-
sification [7]. Moreover, in meta-research, text classification
is used to classify papers that aim to contribute to research
data management and scholarly communication [8]. In indus-
try, this is underlined by the increasing usage, adoption, or
exploration of Artificial Intelligence (AI), in particular, the

adoption of NLP technologies (cf. IBM Global AI Adoption
Index Report 2023 [9]).

Text classification has evolved significantly with the advent
of deep learning and transfer learning. Models like BERT [10],
RoBERTa [11], and the GPT models [12]–[14] have set new
benchmarks by leveraging large-scale pre-training on diverse
corpora followed by fine-tuning on specific tasks. These mod-
els can capture language patterns and context, enabling more
accurate and robust text classification.

What is most of the time omitted in text classification
studies is energy efficiency and carbon footprint [15], [16].
Sometimes, a new approach provides minimal classification
performance increase, but might require much more energy.
For example, an f 1-score increase of 1% might increase
energy consumption by 50%, causing much higher financial
and environmental costs when applying the approach to a
big dataset in large-scale use. An increased carbon emission
(CO2e) of only 10 mg per classification results in 1 kg
CO2e already after 100,000 classifications. Discussion (if
any) about energy efficiency and carbon footprint is regarded
in isolation, and the classification performance trade-off is
usually missing [17], [18]. For a comprehensive assessment
of the environmental impact of AI systems (see also Green
AI [19]), it is vital to document and report these metrics
transparently. By doing so, the research community can work
towards reducing the environmental impact of AI and, thus,
fostering the development of more sustainable technologies
that support core principles in the Karlskrona Manifesto [20].
However, there are no guidelines for suitable metrics that can
be used to support such a discussion.

Consequently, we address the following research question:
What are suitable metrics for (automated) text classification

tasks, especially regarding performance and energy efficiency?
Contribution. In this paper, we provide an overview of eval-

uation metrics for automated text classification approaches.

https://orcid.org/0009-0009-9101-5833
https://orcid.org/0000-0002-8899-7081
https://orcid.org/0009-0004-5236-8226
https://orcid.org/0009-0009-0698-8607
https://orcid.org/0000-0003-3154-2438
https://orcid.org/0000-0002-9308-6290


We consider established performance metrics and propose
novel sustainability metrics regarding performance and energy
efficiency to enable trade-off discussions and decisions. We
apply our proposed metrics in a use case example [21], i.e., by
automating a multi-label classification problem of abstracts in
software architecture research using 13 dedicated classes for
determining the Evaluation Method(s) used. In addition, we
provide our artifacts in an open-access repository [22].

Outline. Next, in Section II, we provide foundations w.r.t.
automated text classification and possibilities of emission
tracking. We look into related work in Section III. We intro-
duce performance metrics and propose sustainability metrics
for the respective classification experiments in Section IV and
discuss the limitations of the proposed metrics. In Section V,
we describe best practices for assessing carbon emissions and
energy consumption. We present our use case example in
Section VI and discuss the results based on our proposed
metrics before we conclude in Section VII.

II. FOUNDATIONS

This section introduces the basic building blocks required
for our metrics specification (cf. Section IV) and the opera-
tional steps for applying them.

A. Classification Approaches

There are various approaches for text classification, with
many approaches based on supervised machine learning (ML)
[23]–[25]. These approaches require labeled training data to
learn from these data. Classic approaches include Support
Vector Machines, Naı̈ve-Bayes, or Linear Regression. Mod-
ern approaches are often based on artificial neural networks
(ANNs), such as Recurrent Neural Networks (RNNs) and
Long-Short-Term Memory (LSTMs). ANN-based approaches
are powerful, but require lots of training samples.

B. Large Language Models

Large Language Models (LLMs) are huge ANNs that have
revolutionized NLP. LLMs typically use the Transformer ar-
chitecture by Vaswani et al. [26] that contains a self-attention
mechanism. This mechanism allows models to capture long-
range dependencies within text efficiently. The Transformer
architecture enables LLMs to handle large-scale textual data
and perform a wide range of language tasks on a high-
performance level, from translation to text generation, includ-
ing text classification, due to their self-supervised training on
huge amounts of data.

For classification tasks, LLMs can either be fine-tuned or
used via prompt engineering. In fine-tuning, labeled data is
used to continue to train the pre-trained LLM to improve its
capabilities for a given task. Prompt engineering describes
the process of improving prompts for LLMs to improve the
output. Typically, there are zero-shot prompts (no example
provided) and few-shot prompts (some examples provided).
Which method works best is usually based on the amount of
training data [27]. If no labeled data exists, prompt engineering
with zero-shot prompting is recommended. If only a few

labeled data exist, few-shot prompting is preferred. Fine-tuning
is best used if lots of labeled data exist. There are also further
prompting techniques and tricks that can influence an LLM’s
response, like asking the LLM to provide a chain of thought.

C. Experiment Management Tools

Experiment Management Tools in ML support researchers
and practitioners when evaluating and building AI software
systems [28]. These tools are usually available as cloud-
based platforms (e.g., Microsoft Azure ML) or standalone
software tools (e.g., MLflow). In contrast to traditional soft-
ware engineering, where assets can be managed via version
control systems, the management of ML systems is much more
complicated. Such assets in ML systems encompass resource
artifacts (e.g. datasets), software artifacts (e.g., source code
and hyperparameters), and metadata (e.g., experiment and
execution metadata, performance metrics) [28]. Consequently,
these tools have to address issues such as versioning, trace-
ability, auditability, explainability, interpretability, collabora-
tion, and reproducibility, which are critical for assessing and
maintaining the integrity of ML projects. To inspect the results
of the different experiment runs, these tools have to provide
an efficient retrieval option as well [28]. An overview of the
best experiment tracking tools in 2024 is provided by [29].
However, scientific literature indicates that some factors affect
the tools’ maturity, such as lack of interoperability across
different tools (i.e., bridging the gap between development and
production environments) and lack of explicit representation of
domain knowledge [30]. For our research objective, this also
includes the handling and execution of carbon emission and
energy consumption tracking (cf. Section II-D). As a result,
researchers (and practitioners) have to determine a suitable
tool for their purposes carefully.

D. Tracking of Emission and Energy Consumption

Besides measuring energy consumption directly from the
hardware, there are different tools to measure or estimate the
energy consumption and CO2 emissions of text classification
approaches. In the following, we provide an excerpt overview
of the different tools and their license such as Python libraries
and online browser apps while focussing on tools that are
freely available and documented in a scientific publication.

Carbontracker (2020, MIT) is an open-source tool for track-
ing and predicting the energy consumption and carbon foot-
print of training deep learning models. The package provides
an additional proactive approach to reduce carbon emissions
through the utilization of predictions. The library supports
various environments and platforms such as clusters, desktop
computers, and Google Colab notebooks [31].

CodeCarbon (2020, MIT) is a Python package and the
successor of ML CO2 Impact [32] for estimating and tracking
carbon emissions by considering computing infrastructure,
location, hardware, usage, and runtime [33].

Cumulator (2021, MIT) is a Python package that estimates
the energy consumption of computation based on runtime,

https://github.com/lfwa/carbontracker
https://github.com/mlco2/codecarbon
https://github.com/EPFLiGHT/cumulator


GPU load, and carbon intensity, with a fixed value for the con-
sumption of a typical GPU in academia and healthcare [34].

eco2AI (2022, Apache 2.0) is a Python library considering
system processes that are related directly to model training.
This avoids overestimation [35].

Green Algorithms (2021, CC-BY-4.0) is a web tool to
calculate the energy consumption and carbon footprint based
on user-supplied information supplied by the user: runtime,
number and types of cores, memory, type of platform used
(PC, local server, cloud computing), and location [36].

LLMCarbon (2024, NN) is an end-to-end carbon footprint
modeling tool for training, inference, experimentation, and
storage processes to enable design space exploration consider-
ing the trade-off between carbon footprint and test loss [37].

III. RELATED WORK

We present related work from the following research areas
that deal with sustainability, esp. in terms of environmental
impact (i.e., energy consumption and carbon emission):

Proposing Combined Metrics. Hasan et al. [38] introduce
the Robustness Carbon Trade-off Index (RCTI), a novel metric
that quantifies the trade-off between model robustness and
carbon emissions in ML experiments. They demonstrate the
RCTI through an evasion attack experiment and analyze
the ensemble between robustness against attacks and carbon
emissions. The authors later extend this metric by adding
an economic dimension to the carbon-robustness trade-off,
resulting in the so-called Cost Per Unit of Robustness Change
(CRC) [39] and considering the triple interplay. However, we
see problems with implicit, partly domain-specific assumptions
and with potential divisions by 0, making them less applicable.

Positions towards sustainable trade-off discussions. In soft-
ware engineering, sustainability encompasses the following
five key dimensions: environmental, economic, technical, so-
cial, and individual [20], [40]. Each dimension can have
different metrics and values. From a holistic perspective, we
can identify studies that deal with sustainability trade-offs of
AI-based software systems [17], [18]. We contribute to this
holistic view by focusing on and interrelating two dimensions
and proposing concrete guidelines and novel metrics to inves-
tigate and assess automated text classification as one of the
fundamental tasks in NLP.

Investigating sustainability w.r.t. environmental impact. Sev-
eral works regard sustainability aspects for NLP tasks, in
terms of environmental impact and computational aspects. For
example, Luccioni et al. [15] performed a study measuring the
amount of energy and inference cost of various NLP tasks,
including text classification, using representative benchmark
datasets. However, in contrast to our objective, the discussion
just focuses on energy consumption in isolation, disregarding
performance aspects for each task.

IV. METRICS SPECIFICATION

Selecting appropriate metrics for a classification task is
of significant importance. Researchers have to justify the
selection of metrics based on a specific scientific problem or

experimental issue. In the case of supervised methodologies,
a gold standard dataset (annotated by domain experts) is
essential to evaluate the applicability of different classification
approaches in a comparative way. Additionally, we recom-
mend conducting several runs of each experiment to ensure
the statistical significance of the measurements, particularly if
the approach has built-in randomness.

In the following, we first introduce common performance
metrics to evaluate classification approaches in a shared and
comparable way. Second, we provide and define new formulas
w.r.t. performance and energy consumption to enable discus-
sions about trade-off decisions for sustainable and responsible
AI while answering our research question (cf. Section I).

A. Performance Metrics

To assess performance, investigators can use the confusion
matrix [41], which is a 2x2 matrix that contains the classifica-
tion of results, labelled as True Positives (TP), True Negatives
(TN), False Positives (FP), and False Negatives (FN). For
multi-class and multi-label classification, the confusion matrix
has consequently a bigger dimension than 2x2. The matrix
can be interpreted or mathematically reduced to obtain TP,
TN, FP, and FN for a specific class. Further, a multi-label
classification problem can be interpreted as a multi-class
classification problem during evaluation by creating distinct
classes for the label combinations.

Common performance metrics for classification tasks in-
clude accuracy, precision, recall, and specificity, as well as
the fβ-score (usually with β = 1):

Accuracy =
TP+TN

TP+FP+TN+FN
(1)

Precision =
TP

TP+FP
(2)

Recall =
TP

TP+FN
(3)

Specificity =
TN

TN+FP
(4)

fβ =
(
1 + β2

)
× precision × recall

(β2 × precision) + recall
(5)

f1 = 2× precision × recall
precision + recall

(6)

Together, these metrics provide a comprehensive evaluation
of a model’s performance across different aspects.

When evaluating multi-class or multi-label classifiers, met-
rics like f 1-score need to be calculated for each class. To
combine and summarize the results, researchers usually av-
erage the scores. There are various variants for averaging.
Micro averaging aggregates the contributions of all classes to
compute the f 1-score, treating each instance equally, making
it useful for evaluating overall performance in imbalanced
datasets. Macro averaging calculates the f 1-score for each
class independently and then takes the average, giving equal
weight to all classes regardless of frequency. This can be

https://github.com/sb-ai-lab/Eco2AI
https://github.com/GreenAlgorithms/green-algorithms-tool
https://github.com/SotaroKaneda/MLCarbon


useful to highlight performance disparities between classes.
Weighted averaging also computes the f 1-score for each
class independently, but then averages them according to the
class frequencies. This shows the result that reflects the actual
distribution of classes in the dataset. Each method has a
purpose, and it is important to distinguish these purposes and
to conclude accordingly.

Besides measuring the classifier’s performance about its
ability to predict classes correctly, researchers can also track
the runtime. Runtimes are usually measured in (milli-) sec-
onds. We differ between (i) training time, (ii) testing time,
and (iii) execution time. Execution time here is the overall
runtime of each experiment under the same conditions by
adding training time and testing time.

B. Sustainability Metrics

One important aspect of Green AI is to evaluate sustainabil-
ity, specifically the environmental footprint. The training and
inference processes consume significant amounts of electricity,
particularly when using LLMs on GPUs.

Energy consumption can be measured in kilowatt-hours
(kWh) or megajoules (MJ), where 1kWh = 3.6MJ (see
International System of Units (SI)1).

Electricity consumption has an environmental impact, espe-
cially when it is not entirely generated from renewable energy
sources such as gas, oil, or nuclear power. This impact is
referred to as the carbon footprint, encompassing greenhouse
gas (GHG) emissions such as carbon dioxide (CO2), methane
(CH4), nitrous oxide (NO2), and fluorinated gases. Emissions
are typically measured in CO2 equivalents (kg CO2e) [42].

Carbon emissions can be quantified [32]. To quantify carbon
emissions, researchers need to estimate or measure the energy
consumption and convert this into CO2 equivalents, consider-
ing the local energy mix. This location-dependent conversion
relies on the proportion of energy derived from, e.g., solar and
nuclear power or fossil fuel power plants.

Maintaining a stable setup is essential for the accurate mea-
surement of both energy consumption and carbon emissions.
Researchers must use the same machine at the same location
for their experiments to ensure comparable values. Different
machines can vary in energy efficiency, impacting energy
consumption. Similarly, different locations can have varying
energy mixes, affecting the carbon footprint [32].

Documenting and reporting these metrics transparently is
essential for a comprehensive assessment of an AI system’s
environmental impact. By doing so, researchers can work
towards reducing the environmental impact of AI and fostering
the development of more sustainable technologies [20].

Combined Metrics: Following, we define our novel met-
rics. In the first place, researchers can use the total carbon
emission (CE) to evaluate the environmental footprint.

To relate the carbon emissions to their classification perfor-
mance (e.g., the macro averaged f 1-score), Equation 7 defines
the metric for relative carbon emission (CErel). It presents

1https://www.iec.ch/si, Last acc. 2024-11-11

the caused carbon emission per achieved f 1-score, with lower
values being better.

CErel =
CE
f 1

(7)

Researchers can use a delta-based version when comparing
different classifiers, as shown in Equation 8. To calculate the
delta, researchers need to select the worst-performing classifier
based on macro averaged f 1-score as the baseline classifier.
Accordingly, f 1base is the worst f 1-score among the classifiers
and CEbase is its corresponding carbon emission. This metric
combines the difference in f 1-score with the relation of the
baseline’s carbon emission compared to the carbon emission of
the observed approach. When interpreting the resulting values,
bigger values are better because the value increases with better
f 1-score, better carbon emissions, or both.

∆CE = (f 1 − f 1base)×
CEbase

CE
(8)

In addition to the delta-based version, researchers can use
a normalized version for assessing different classifiers to
simplify the comparison. The normalized carbon emission
(n(CE)) in Equation 9 scales the carbon emission between 0
and 1 based on the lowest (CElowest) and highest carbon emis-
sion (CEhighest) in the evaluation setting. The lowest emitting
approach is assigned a 0, the highest emitting approach a 1,
and the other approaches are scaled accordingly.

n(CE) = 1− CE − CElowest

CEhighest − CElowest
(9)

The same calculation can be done with CErel:

n(CErel) = 1− CErel − CErellowest

CErelhighest − CErellowest

(10)

In the same fashion, investigators can easily calculate further
(normalized) comparison metrics, if necessary.

While the above metrics look at carbon emissions, energy
consumption (in kWh or MJ) can be assessed equally. Sim-
ilarly, these metrics focus on f 1-score, but the classification
performance can also be exchanged to another preferred metric
like f 2-score, precision, recall, or specificity. Moreover, unlike
related work, these metrics are designed to avoid pitfalls that
make comparisons impractical, like accidental division by 0.

Evaluation from different perspectives and across phases is
essential to comprehensively assess these metrics. Specifically,
energy consumption should be captured and evaluated sepa-
rately for both the training and inference phases of classifiers.

Training typically involves intensive computational pro-
cesses, leading to substantial energy consumption The energy
consumption profile shifts as the classifier transitions into the
inference phase. Over time, and with an increasing number
of classifications, inference becomes the dominant factor in
overall energy usage. Distinguishing these phases is needed to
assess the environmental impact more accurately.

Moreover, new data or insights can necessitate updates
to the classifier. This process introduces additional energy

https://www.iec.ch/si


demands, whether through retraining or continual learning.
These demands must be accounted for to comprehensively
evaluate the energy efficiency and environmental footprint.

In summary, a thorough evaluation that differentiates be-
tween training and inference phases and also considers updates
is crucial to accurately assess the environmental impact of text
classification approaches.

C. Limitations

It is important to note that all metrics can only be compared
within the same setting for the selected approaches and their
results. Due to the intricacies of measuring energy consump-
tion and carbon emission (see also Section V), different
setups will likely result in different (absolute) results. These
measurements allow the comparison of results within one
setup to select the most suitable approach but only allow
limited comparisons between, e.g., different researchers that
independently measure with different setups.

V. BEST PRACTICES FOR ASSESSING ENERGY
CONSUMPTION

A certain care is necessary when assessing energy con-
sumption and carbon emission. Just like other performance
measurements, the setting needs to be equal for all approaches;
otherwise the results cannot be compared. In general, the
investigator needs to conduct the same classification task while
keeping most parameters stable. This way, the investigator can
track these metrics in each configuration run while searching
for a suitable automated classification approach considering
performance and carbon emissions. In the following, we have
several best practices to support investigators:

a) Use the same hardware and platform: To achieve
comparable results, it is important to use the exact same
hardware and the same platform (e.g., operating system, etc.).
Other hardware or platforms might have different properties
and perform different energy-wise. More efficient hardware
can reduce energy consumption significantly, but we are
interested in measuring and comparing our software. This
also means that changing programming languages makes the
comparison harder, as different programming languages have
different efficiency, as Pereira et al. showed [43].

b) Resources should focus only on the task: The hard-
ware should not be concerned with other tasks, i.e., it should
be idle except for the classifier that should be investigated and
measured. Otherwise, the noise might influence the measure-
ments, effectively rendering the results worthless.

c) Perform the experiments at roughly the same time:
To avoid changes in the local energy mix or other influenc-
ing factors like platform updates, the experiments should be
performed at roughly the same time.

d) Use the same task and evaluation setting: To be able
to compare two or more approaches, investigators need to
evaluate the same task using the same evaluation setting on
the same dataset. While this sounds obvious, some parts can
be overlooked. This includes using the same splits, e.g., for
training and evaluation data to avoid having a split that requires

slightly more energy due to, e.g., more contained text. If
investigators do k-fold cross-validation, the splits also need to
be the same, preferably in the same order to avoid fluctuations.

e) Use the same tooling: Different tooling might in-
fluence the evaluation due to different margins of error or
the overhead these tools introduce for logging or capturing
energy consumption, etc. Different programming languages
also usually require different tooling, which is another reason
to select only one programming language.

f) Measure and distinguish the different phases: A ma-
chine learning-based classifier usually has at least a training
and an inference phase. The energy consumption for training
might differ a lot compared to the inference. For example,
some approaches might perform better in training but worse
in inference. While training is often a one-time effort (except
in the case of retraining), the inference is constantly needed
when deploying the approach. Measuring and reporting energy
consumption for both phases is advised to facilitate compar-
isons and provide a sound basis for decisions.

g) Repeat experiments: We advise performing several
runs to reduce influences by variance. This also improves the
stability and statistical significance of the measurements.

h) Report the results: Written text (in papers) and ap-
propriate visualization techniques are useful tools, to commu-
nicate and interpret research results obtained out of applied
metrics. We recommend, e.g., tables to list the resulting values
or grid reference systems to better contrast both aspects (i.e,
performance and carbon emission by, e.g., illustrating results
w.r.t. relative carbon emission (CErel)).

VI. USE CASE EXAMPLE

In the following section, we introduce the use case example,
including the automated classification approaches to show and
underline the application of our proposed metrics in Section IV
to enable trade-off discussion and decision w.r.t. performance
and energy consumption.

a) Experimental Setup: Our experiments run on a server
(Debian GNU/Linux 12) equipped with 2x Intel(R) Xeon(R)
Gold 6258R CPU @ 2.70GHz (112 parallel threads), 252 GB
RAM, and a Tesla V100S-32GB. We use CodeCarbon [44]
(version 2.3.4) for emission tracking and Weights & Biases
(W&B) [45] as experiment management tool.

b) Dataset: For our classification task, we used the gold
standard dataset from the literature review of Konersmann et
al. [21] that aimed to provide an overview of the current state
of practice in evaluating software architecture research [46].
In this review, the authors investigated, among other things,
how research objects in 153 papers in software architecture
(i.e., full papers published at ICSA (International Conference
on Software Architecture) and ECSA (European Conference
on Software Architecture) between 2017 and 2021) are in-
vestigated. The dataset contains the abstracts of these 153
papers along with the classification, where each paper can
have multiple labels of each category (i.e., Research Object,
Evaluation Method, and Property).



In our use case, we wanted to classify papers according to
the used Evaluation Methods (e.g., Case Study or Technical
Experiment) in the dataset. The category has 13 disjoint classes
[21], and a paper has a maximum of three Evaluation Methods.
The dataset in this category is highly imbalanced and shows
missing representatives for training, as Figure 1 depicts.

Case
Stud

y

Tec
hn

ica
l Exp

eri
men

t

M
oti

va
tin

g Exa
mple

Int
erv

iew

Que
sti

on
na

ire

Argu
men

tat
ion

Foc
us

Grou
p

Data
Scie

nc
e

Con
tro

lle
d Exp

eri
men

t

Grou
nd

ed
The

ory

Ben
ch

mark

Fiel
d Exp

eri
men

t

Veri
fica

tio
n0

10

20

30

40

50
1

1

1 1

6

13

3

3

6
6 3 3 1 1

1

44

34

11
8

3 1 3
7

3
6

3 2

Evaluation Method

C
ou

nt

1 label
2 labels
3 labels

Fig. 1. Stacked bar plot with distribution of the labels in the category
Evaluation Method in the gold standard dataset [21]. The colors show how
often a paper has 1, 2, or 3 ground truth labels and one belongs to the category.

c) Classification Task: For the multi-label classification
tasks to classify a paper’s abstract according to the used
evaluation methods, we selected two kinds of settings, i.e.,
based on fine-tuning and on zero-shot prompting.

For fine-tuning, we selected five LLMs from the Hugging
Face Transformers library, namely BERT (110M; 10/2018),
DeBERTa (304M; 03/2023), DistilBERT (66M; 10/2019),
SciBERT (110M; 03/2019), and XLNet (92M; 06/2019). To
determine the suitable and optimal hyperparameters for the
classification task, we performed a hyperparameter search
for the seed for network initialization, the learning rate, the
number of training epochs, the training batch size, and the
weight decay for the AdamW Optimizer. For this, we used
Bayesian optimization with the Optuna Framework by defining
a dedicated search space for each parameter and optimized
towards macro f 1-score. For the data sampling, we used a
stratified split. Additionally, we also experiment with different
data augmentation strategies, i.e., text perturbation via Text-
Attack2 and multi-label-oversampling3. In this use case, we
are only interested in measuring the carbon emission for the
inference phase.

In a second experiment, we also used a prompt-based setting
with selected LLMs, applying a zero-shot approach to predict
the labels without model training. We followed common and
general recommendations to construct the prompt. The prompt
first contains basic information, i.e., a description of the labels

2https://textattack.readthedocs.io/en/latest/apidoc/textattack.augmentation.
html, Last acc. 2024-11-11

3https://github.com/phiyodr/multilabel-oversampling, Last acc. 2024-11-11

TABLE I
RESULTS OF OUR EXPERIMENTS (INFERENCE). THE FIRST SECTION
CONTAINS FINE-TUNING SETTING, THE SECOND SECTION CONTAINS

ZERO-SHOT PROMPTING SETTING.

Approach Prec. Rec. f1 CO2 (g) CErel n(CErel) ∆CE

BERT 0.082 0.500 0.125 2.638 21.14 1.00 0.0336
XLNet 0.090 0.136 0.106 4.715 44.48 0.00 base
SciBERT 0.069 0.538 0.112 4.205 37.68 0.29 0.0063
DeBERTa 0.081 0.731 0.134 3.982 29.72 0.63 0.0332
DistilBERT 0.093 0.462 0.138 5.643 41.01 0.15 0.0264

Llama2:7b 0.090 0.556 0.146 13.034 89.03 0.93 0.0031
Llama2:13b 0.089 0.888 0.144 16.765 116.43 0.89 base
Llama2:70b 0.119 0.692 0.187 155.450 831.28 0.00 0.0046
Mistral:7b 0.340 0.487 0.308 8.941 29.00 1.00 0.3081
Mixtral:8x7b 0.284 0.477 0.286 23.715 82.95 0.93 0.1003

(i.e., a definition of the respective evaluation methods) and the
query to predict labels and to return the answer in JSON,
followed by the abstracts’ texts. For this family of exper-
iments, we used Llama2 (7B, 13B, 70B; 08/2023), Mistral
(7B; 10/2023), and Mixtral (8x7B; 12/2023). We deliberately
decided against hosted models like OpenAI’s GPT-4 because
we cannot determine their energy consumption.

A. Results

Table I contains the results for our experiments.
In the first section, the approaches achieve similar f 1-

scores; DistilBERT is slightly ahead. BERT has the lowest
carbon emission and the best CErel. For the delta-based carbon
emission, we take XLNet as the baseline because it has the
worst f 1-score. BERT, SciBERT, and DeBERTA emit less
carbon, but do not perform best according to f 1-score. While
DistilBERT performs best according to f 1-score, it emits more
carbon. With these metrics, a user can decide which classifier
to select, factoring in all these metrics. Looking at the scores
for ∆CE, BERT is likely the best choice if a slightly lower
classification performance is acceptable. Another candidate is
DeBERTa that scores slightly worse than BERT; its better f 1-
score is slightly offset by the increased carbon emissions.
It also has a high recall, which can be good for a semi-
automatic approach. DeBERTa still has the second-lowest
carbon emission and good performance, but without looking
at the carbon emission, the approach could be overshadowed
by the better f 1-score of DistilBERT. Comparing DistilBERT
and DeBERTa shows exemplarily how the metric can be used
to assess the performance regarding ∆CE: Better f 1-score but
worse carbon emission results in a lower score for DistilBERT.

For the second section, Mistral achieves the best f 1-
score due to its comparably balanced performance. While
Llama2:13b has the highest recall, it is among the low-
performing classifiers precision-wise. With no surprise, the
biggest LLM Llama2:70b emits the most carbon by a big
margin. Llama2:70b is by far the worst classifier based on
the relative carbon emission due to its lofty carbon emission
and its comparably wretched f 1-score. The delta-based carbon
emission, confirms this. In this setting, selecting Mistral is the
best choice.

https://textattack.readthedocs.io/en/latest/apidoc/textattack.augmentation.html
https://textattack.readthedocs.io/en/latest/apidoc/textattack.augmentation.html
https://github.com/phiyodr/multilabel-oversampling


TABLE II
COMPARISON OF THE RESULTS OF BERT AND XLNET IN THE BASE

SETTING AND WITH DATA AUGMENTATION, MEASURING ENERGY ONLY
DURING INFERENCE.

Approach Prec. Rec. f1 CO2 (g) CErel ∆CE

BERT 0.082 0.500 0.125 2.638 21.14 0.0336
BERTaugmented 0.092 0.808 0.162 7.080 43.64 0.0375
XLNet 0.090 0.136 0.106 4.715 44.48 base
XLNetaugmented 0.128 0.160 0.139 14.205 102.05 0.0110

Table II compares BERT and XLNet for the base setting and
with data augmentation. For BERT, the recall increased a lot,
and precision remained stable, resulting in only minor changes
for f 1-score. Due to the augmentation, carbon emissions
increased more than 2.6x, resulting in a much worse CErel.
Still, ∆CE shows that the increased f 1-score balances out the
increased emissions, resulting in slightly better results com-
pared to the non-augmented version. In comparison, the f 1-
score of XLNet increased similarly, but the carbon emissions
amplified threefold. As a result, the combined metrics identify
XLNet as less favorable.

B. Threats to Validity

In the following, we discuss threats to validity based on the
categories presented and surveyed in [46]:

Construct Validity. Construct validity refers to the experi-
mental setup to address the research objective. We used com-
mon practices (e.g., recommendations for prompt construction)
and techniques (e.g., stratified split, hyperparameter optimiza-
tion via Optuna) for the experimental design. In addition, we
used common performance evaluation metrics as well as our
novel proposed sustainability metrics (cf. Section IV-B) to
assess the derived models, enabling trade-off decisions.

Internal Validity. The dataset used for the experiments is
a representative of a gold standard in the considered research
domain and publicly available [21]. However, there might be a
threat that the abstract for text classification is not sufficient for
the information provided. Full-text information could provide
different results.

External Validity. External validity refers to the generaliz-
ability of our approach and a representative selection of the
experimental dataset for our purpose. The labels for Evaluation
Method are mainly based on the classification and description
of the ACM Empirical Standards [47] and are, thus, suitable
for software engineering in general.

Repeatability. For reproducibility, we used fixed seeds for
the fine-tuning approaches and a low temperature (temp = 0)
for the zero-shot approach in each experiment. The dataset
and source code are publicly available. Our experimental
setup’s prerequisites must be fulfilled and aligned with the
best practices discussed in Section V.

VII. CONCLUSION

In this paper, we focused on why we should consider sus-
tainability aspects in addition to performance measurements

to assess the suitability of different automated text classifica-
tion approaches and support trade-off decisions. While deep
learning techniques, especially those based on transformer
architecture, have gained popularity in the last few years,
the benefits of these approaches need to be investigated and
assessed in terms of their computational costs. As these
models should be applied in a large-scale context, a slight
performance improvement might not justify the increased
power consumption or similar costs, as also stated by Fu et
al. [48]. Therefore, we proposed novel sustainability metrics
to assess and support trade-off decisions between performance
and carbon emission. As new approaches for the same classifi-
cation task should be baselined against some simpler and faster
alternatives [48], we differentiate between metrics that express
the total carbon emission (unit), the relative carbon emission
w.r.t. the corresponding f-score, the delta-based version w.r.t.
the corresponding f-score in relation to the baseline (i.e.,
worst performing classification approach) and, finally, the
normalized versions. Besides these metrics, we provided best
practices for the assessment. We showcased our approach via a
use case example by classifying papers in software architecture
research according to the evaluation methods used. In future
research, we aim to review and evaluate our proposed metrics
in further case studies. Furthermore, based on these insights,
we plan to expand the metrics’ concepts to, e.g., additional
sustainability dimensions, infrastructure settings, or trade-off
index for comprehensive and sustainable comparisons.

ACKNOWLEDGEMENTS

This work is funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under the Na-
tional Research Data Infrastructure – NFDI 52/1 – project
number 501930651, NFDIxCS and supported by funding from
the pilot program Core Informatics at KIT (KiKIT) of the
Helmholtz Association (HGF).

REFERENCES

[1] Z. Kurtanović and W. Maalej, “Automatically classifying functional
and non-functional requirements using supervised machine learning,”
in 2017 IEEE 25th International Requirements Engineering Conference
(RE), 2017, pp. 490–495.

[2] F. Dalpiaz, D. Dell’Anna, F. B. Aydemir et al., “Requirements classi-
fication with interpretable machine learning and dependency parsing,”
in 2019 IEEE 27th International Requirements Engineering Conference
(RE), 2019, pp. 142–152.

[3] T. Hey, J. Keim, A. Koziolek et al., “Norbert: Transfer learning for
requirements classification,” in 2020 IEEE 28th International Require-
ments Engineering Conference (RE), 2020, pp. 169–179.

[4] T. Hey, J. Keim, and S. Corallo, “Requirements classification for trace-
ability link recovery,” in 2024 IEEE 32nd International Requirements
Engineering Conference (RE’24). Institute of Electrical and Electronics
Engineers (IEEE), 2024.

[5] W. Maalej and H. Nabil, “Bug report, feature request, or simply
praise? on automatically classifying app reviews,” in 2015 IEEE 23rd
International RE Conference, 2015, pp. 116–125.

[6] R. Kallis, A. Di Sorbo, G. Canfora et al., “Predicting issue types on
github,” Science of Computer Programming, vol. 205, p. 102598, 2021.

[7] O. Meqdadi, N. Alhindawi, J. Alsakran et al., “Mining software
repositories for adaptive change commits using machine learning
techniques,” Information and Software Technology, vol. 109, pp. 80–
91, 2019. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0950584919300084

https://www.sciencedirect.com/science/article/pii/S0950584919300084
https://www.sciencedirect.com/science/article/pii/S0950584919300084


[8] A. Kaplan, J. Keim, M. Schneider et al., “Combining knowledge
graphs and large language models to ease knowledge access in software
architecture research,” in SemTech4STLD 2024, co-located with the
ESWC 2024, ser. CEUR Workshop Proceedings, vol. 3697. CEUR-
WS, 2024, pp. 76–82.

[9] IBM (International Business Machines Corporation), “IBM
Global AI Adoption Index – Enterprise Report,” Novem-
ber 2023, last accessed on 2024-11-11. [Online].
Available: https://filecache.mediaroom.com/mr5mr ibmspgi/179414/
download/IBMGlobalAIAdoptionIndexReportDec.2023.pdf

[10] J. Devlin, M.-W. Chang, K. Lee et al., “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in
Proceedings of the 2019 NACL. Minneapolis, Minnesota: Association
for Computational Linguistics, Jun. 2019, pp. 4171–4186. [Online].
Available: https://aclanthology.org/N19-1423

[11] Y. Liu, M. Ott, N. Goyal et al., “Roberta: A robustly optimized BERT
pretraining approach,” CoRR, vol. abs/1907.11692, 2019. [Online].
Available: http://arxiv.org/abs/1907.11692

[12] A. Radford, K. Narasimhan, T. Salimans et al., “Improving language
understanding with unsupervised learning,” 2018.

[13] ——, “Improving language understanding by generative pre-training,”
2018.

[14] T. Brown, B. Mann, N. Ryder et al., “Language models are few-shot
learners,” Advances in neural information processing systems, vol. 33,
pp. 1877–1901, 2020.

[15] S. Luccioni, Y. Jernite, and E. Strubell, “Power hungry processing: Watts
driving the cost of AI deployment?” in ACM Conference on Fairness,
Accountability, and Transparency 2024, (FAccT). ACM, 2024, pp.
85–99. [Online]. Available: https://doi.org/10.1145/3630106.3658542

[16] J. Castaño, S. Martı́nez-Fernández, X. Franch et al., “Exploring the
carbon footprint of hugging face’s ML models: A repository mining
study,” in ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, 2023. IEEE, 2023, pp. 1–12. [Online].
Available: https://doi.org/10.1109/ESEM56168.2023.10304801

[17] P. Lago, S. A. Koçak, I. Crnkovic et al., “Framing sustainability as
a property of software quality,” Commun. ACM, vol. 58, no. 10, pp.
70–78, 2015. [Online]. Available: https://doi.org/10.1145/2714560

[18] A. N. P. Kumar, J. Bogner, M. Funke et al., “Balancing progress
and responsibility: A synthesis of sustainability trade-offs of ai-
based systems,” in 21st IEEE International Conference on Software
Architecture, ICSA 2024 - Companion, Hyderabad, India, June
4-8, 2024. IEEE, 2024, pp. 207–214. [Online]. Available: https:
//doi.org/10.1109/ICSA-C63560.2024.00045

[19] R. Verdecchia, J. Sallou, and L. Cruz, “A systematic review of Green
AI,” WIREs Data Mining and Knowledge Discovery, vol. 13, no. 4, p.
e1507, 2023. [Online]. Available: https://wires.onlinelibrary.wiley.com/
doi/abs/10.1002/widm.1507

[20] C. Becker, R. Chitchyan, L. Duboc et al., “Sustainability design and
software: The karlskrona manifesto,” in 37th IEEE/ACM International
Conference on Software Engineering, ICSE 2015. IEEE, 2015, pp.
467–476. [Online]. Available: https://doi.org/10.1109/ICSE.2015.179

[21] M. Konersmann, A. Kaplan, T. Kühn et al., “Replication package
of ”evaluation methods and replicability of software architecture
research objects”,” in IEEE 19th International Conference on Software
Architecture Companion, ICSA Companion 2022, Honolulu, HI,
USA, March 12-15, 2022. IEEE, 2022, p. 58. [Online]. Available:
https://doi.org/10.1109/ICSA-C54293.2022.00021

[22] ResearchClassificationFramework, “Research classifica-
tion framework-dev,” 2023. [Online]. Available:
https://gitlab.com/software-engineering-meta-research/karagen/
research-classification-framework/classificationframework-dev

[23] Q. Li, H. Peng, J. Li et al., “A survey on text classification:
From traditional to deep learning,” ACM Trans. Intell. Syst.
Technol., vol. 13, no. 2, pp. 31:1–31:41, 2022. [Online]. Available:
https://doi.org/10.1145/3495162

[24] T. M. Mitchell, Machine learning. McGraw-Hill Education, 1997.
[25] Z.-H. Zhou, Machine learning. Springer nature, 2021.
[26] A. Vaswani, N. Shazeer, N. Parmar et al., “Attention is all you need,”

in NeurIPS 2017, I. Guyon, U. von Luxburg, S. Bengio et al., Eds.,
2017, pp. 5998–6008. [Online]. Available: https://proceedings.neurips.
cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

[27] L. Tunstall, L. von Werra, T. Wolf et al., Natural Language Processing
with Transformers: Building Language Applications with Hugging Face.
Sebastopol: O’Reilly, 2022.

[28] S. Idowu, D. Strüber, and T. Berger, “Asset management in machine
learning: State-of-research and state-of-practice,” ACM Computing
Surveys, vol. 55, no. 7, pp. 144:1–144:35, 2023. [Online]. Available:
https://doi.org/10.1145/3543847

[29] K. Kluge and P. Jenkner, “13 Best Tools for ML
Experiment Tracking and Management in 2024,” September
2024, last accessed on 2024-11-11. [Online]. Available:
https://neptune.ai/blog/best-ml-experiment-tracking-tools

[30] M. M. Cantallops, S. Sánchez-Alonso, E. Garcı́a-Barriocanal et al.,
“Traceability for trustworthy AI: A review of models and tools,” Big
Data Cogn. Comput., vol. 5, no. 2, p. 20, 2021. [Online]. Available:
https://doi.org/10.3390/bdcc5020020

[31] L. F. Wolff Anthony, B. Kanding, and R. Selvan, “Carbontracker:
tracking and predicting the carbon footprint of training deep learning
models,” arXiv e-prints, pp. arXiv–2007, 2020.

[32] A. Lacoste, A. Luccioni, V. Schmidt et al., “Quantifying the Carbon
Emissions of Machine Learning,” Oct. 2019.

[33] B. Courty, V. Schmidt, S. Luccioni et al., “mlco2/codecarbon:
v2.4.1,” May 2024. [Online]. Available: https://doi.org/10.5281/zenodo.
11171501

[34] T. Trébaol, “Cumulator—a tool to quantify and report the carbon foot-
print of machine learning computations and communication in academia
and healthcare,” 2020.

[35] S. A. Budennyy, V. D. Lazarev, N. Zakharenko et al., “Eco2ai:
carbon emissions tracking of machine learning models as the first
step towards sustainable AI,” Doklady Mathematics, vol. 106, 2022.
[Online]. Available: https://doi.org/10.1134/S1064562422060230

[36] L. Lannelongue, J. Grealey, and M. Inouye, “Green algorithms: quan-
tifying the carbon footprint of computation,” Advanced science, vol. 8,
no. 12, p. 2100707, 2021.

[37] A. Faiz, S. Kaneda, R. Wang et al., “LLMcarbon: Modeling the
end-to-end carbon footprint of large language models,” CoRR, 2023.
[Online]. Available: https://doi.org/10.48550/arXiv.2309.14393

[38] S. M. Hasan, A. R. Shahid, and A. Imteaj, “Towards sustainable
secureml: Quantifying carbon footprint of adversarial machine
learning,” in IEEE International Conference on Communications
Workshops, ICC 2024 Workshops, Denver, CO, USA, June 9-13,
2024. IEEE, 2024, pp. 1359–1364. [Online]. Available: https:
//doi.org/10.1109/ICCWorkshops59551.2024.10615723

[39] ——, “Evaluating sustainability and social costs of adversarial training
in machine learning,” IEEE Consumer Electronics Magazine, pp. 1–6,
2024. [Online]. Available: https://doi.org/10.1109/MCE.2024.3458350

[40] B. Penzenstadler and H. Femmer, “A generic model for sustainability
with process- and product-specific instances,” in Proceedings of the 2013
GIBSE, S. Malakuti, C. Bockisch, U. Assmann et al., Eds. ACM, 2013,
pp. 3–8. [Online]. Available: https://doi.org/10.1145/2451605.2451609

[41] D. Powers, “Evaluation: From precision, recall and f-measure to roc,
informedness, markedness & correlation,” Journal of Machine Learning
Technologies, vol. 2, no. 1, pp. 37–63, 2011.

[42] A. S. Luccioni and A. Hernández-Garcı́a, “Counting carbon: A survey
of factors influencing the emissions of machine learning,” CoRR, vol.
abs/2302.08476, 2023. [Online]. Available: https://doi.org/10.48550/
arXiv.2302.08476

[43] R. Pereira, M. Couto, F. Ribeiro et al., “Ranking programming languages
by energy efficiency,” Science of Computer Programming, vol. 205,
p. 102609, 2021. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167642321000022

[44] “CodeCarbon project,” last accessed on 2024-11-11. [Online]. Available:
https://mlco2.github.io/codecarbon/

[45] “Weights & Biases Documentation,” last accessed on 2024-11-11.
[Online]. Available: https://docs.wandb.ai/

[46] M. Konersmann, A. Kaplan, T. Kühn et al., “Evaluation methods
and replicability of software architecture research objects,” in 19th
IEEE International Conference on Software Architecture, ICSA 2022,
Honolulu, HI, USA, March 12-15, 2022. IEEE, 2022, pp. 157–168.
[Online]. Available: https://doi.org/10.1109/ICSA53651.2022.00023

[47] P. Ralph, S. Baltes, D. Bianculli et al., “ACM SIGSOFT Empirical
Standards,” CoRR, vol. abs/2010.03525, 2020.

[48] W. Fu and T. Menzies, “Easy over hard: a case study on
deep learning,” in 11th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2017, E. Bodden, W. Schäfer, A. van
Deursen et al., Eds. ACM, 2017, pp. 49–60. [Online]. Available:
https://doi.org/10.1145/3106237.3106256

https://filecache.mediaroom.com/mr5mr_ibmspgi/179414/download/IBM Global AI Adoption Index Report Dec. 2023.pdf
https://filecache.mediaroom.com/mr5mr_ibmspgi/179414/download/IBM Global AI Adoption Index Report Dec. 2023.pdf
https://aclanthology.org/N19-1423
http://arxiv.org/abs/1907.11692
https://doi.org/10.1145/3630106.3658542
https://doi.org/10.1109/ESEM56168.2023.10304801
https://doi.org/10.1145/2714560
https://doi.org/10.1109/ICSA-C63560.2024.00045
https://doi.org/10.1109/ICSA-C63560.2024.00045
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/widm.1507
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/widm.1507
https://doi.org/10.1109/ICSE.2015.179
https://doi.org/10.1109/ICSA-C54293.2022.00021
https://gitlab.com/software-engineering-meta-research/karagen/research-classification-framework/classificationframework-dev
https://gitlab.com/software-engineering-meta-research/karagen/research-classification-framework/classificationframework-dev
https://doi.org/10.1145/3495162
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1145/3543847
https://neptune.ai/blog/best-ml-experiment-tracking-tools
https://doi.org/10.3390/bdcc5020020
https://doi.org/10.5281/zenodo.11171501
https://doi.org/10.5281/zenodo.11171501
https://doi.org/10.1134/S1064562422060230
https://doi.org/10.48550/arXiv.2309.14393
https://doi.org/10.1109/ICCWorkshops59551.2024.10615723
https://doi.org/10.1109/ICCWorkshops59551.2024.10615723
https://doi.org/10.1109/MCE.2024.3458350
https://doi.org/10.1145/2451605.2451609
https://doi.org/10.48550/arXiv.2302.08476
https://doi.org/10.48550/arXiv.2302.08476
https://www.sciencedirect.com/science/article/pii/S0167642321000022
https://www.sciencedirect.com/science/article/pii/S0167642321000022
https://mlco2.github.io/codecarbon/
https://docs.wandb.ai/
https://doi.org/10.1109/ICSA53651.2022.00023
https://doi.org/10.1145/3106237.3106256

