KIT | KIT-Bibliothek | Impressum | Datenschutz

Addressing Low-Quality Domain Knowledge in Knowledge-Guided Machine Learning

Bielski, Pawel ORCID iD icon 1
1 Institut für Programmstrukturen und Datenorganisation (IPD), Karlsruher Institut für Technologie (KIT)

Abstract:

Many industries collect vast amounts of data, applying machine learning techniques to derive actionable insights and improve decision-making.
However, deploying machine learning models in scientific and engineering contexts presents unique challenges.
This is because the available data often may not sufficiently represent the true nature of the underlying phenomena.
In consequence, models may not generalize well beyond the training data and are may be prone to learning spurious relationships.
It is crucial to ensure patterns discovered from data are consistent with relevant domain expertise.
\emph{Knowledge-guided Machine Learning} (KGML, also known as Theory-Guided Data Science, Physics-Guided Machine Learning or Informed Machine Learning)
is a subfield of Machine Learning that focuses on systematically integrating domain knowledge into machine learning.
Recent studies have shown that even little information integrated in this way can substantially enhance the accuracy, consistency, and generalizability of machine learning models.


However, domain knowledge can sometimes degrade model performance, a phenomenon we refer to as low-quality domain knowledge.
... mehr

Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Institut für Programmstrukturen und Datenorganisation (IPD)
Publikationstyp Hochschulschrift
Publikationsdatum 25.03.2025
Sprache Englisch
Identifikator KITopen-ID: 1000180298
Verlag Karlsruher Institut für Technologie (KIT)
Umfang xiii, 95 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Informatik (INFORMATIK)
Institut Institut für Programmstrukturen und Datenorganisation (IPD)
Prüfungsdatum 11.02.2025
Projektinformation GRK 2153/2 (DFG, DFG KOORD, GRK 2153/2)
Schlagwörter knowledge-guided machine learning, theory-guided data science, energy informatics
Referent/Betreuer Hagenmeyer, Veit
Garcke, Jochen
Mikut, Ralf
Böhm, Klemens

Volltext §
DOI: 10.5445/IR/1000180298
Veröffentlicht am 25.03.2025
Seitenaufrufe: 10
seit 26.03.2025
Downloads: 6
seit 26.03.2025
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page