KIT | KIT-Bibliothek | Impressum | Datenschutz

Toward High‐Performance Electrochemical Energy Storage Systems: A Case Study on Predicting Electrochemical Properties and Inverse Material Design of MXene‐Based Electrode Materials with Automated Machine Learning (AutoML)

Alemdag, Berna 1; Saygili, Görkem; Franzreb, Matthias ORCID iD icon 2; Kabay, Gözde 1
1 Karlsruher Institut für Technologie (KIT)
2 Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT)

Abstract:

This study highlights the potential of Automated Machine Learning (AutoML) to improve and accelerate the optimization and synthesis processes and facilitate the discovery of materials. Using a Density Functional Theory (DFT)-simulated dataset of monolayer MXene-based electrodes, AutoML assesses 20 regression models to predict key electrochemical and structural properties, including intercalation voltage, theoretical capacity, and lattice parameters. The CatBoost regressor achieves R$^2$ values of 0.81 for intercalation voltage, 0.995 for theoretical capacity as well as 0.807 and 0.997 for intercalated and non-intercalated in-plane lattice constants, respectively. Feature importance analyses reveal essential structure-property relationships, improving model interpretability. AutoML's classification module also bolsters inverse material design, effectively identifying promising compositions, such as Mg$^{2+}$-intercalated and oxygen-terminated ScC$_2$ MXenes, for high-capacity and high-voltage energy storage applications. This approach diminishes reliance on computational expertise by automating model selection, hyperparameter tuning, and performance evaluation. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000180315
Veröffentlicht am 24.03.2025
Originalveröffentlichung
DOI: 10.1002/aelm.202400818
Scopus
Zitationen: 2
Web of Science
Zitationen: 3
Dimensions
Zitationen: 4
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Funktionelle Grenzflächen (IFG)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 10.2025
Sprache Englisch
Identifikator ISSN: 2199-160X
KITopen-ID: 1000180315
HGF-Programm 43.33.11 (POF IV, LK 01) Adaptive and Bioinstructive Materials Systems
Erschienen in Advanced Electronic Materials
Verlag John Wiley and Sons
Band 11
Heft 17
Seiten Art.-Nr.: 2400818
Vorab online veröffentlicht am 22.02.2025
Nachgewiesen in Web of Science
OpenAlex
Scopus
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page