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ABSTRACT Frequency tunability marks the ability to change the characteristic frequency of an oscillator.
For MEMS sensors, this is usually achieved by exploiting a sophisticated geometry with a nonlinear
stress-strain relationship. This is known as active frequency tuning. However, MEMS sensors with such
geometries are difficult to manufacture and the characteristic frequency can have a lower limit, which is
constrained by the material constants and geometry of the MEMS sensor. To address this issue, we propose
a different approach to enable active frequency tunability, which is based on designing a feedback loop
with a controllable time delay. We show by analyzing the necessary condition of the Hopf theorem that the
characteristic frequency of this system can be increased indefinitely or decreased to 90% of its original value
by appropriately adjusting the delay and the feedback strengths. These observations can be explained by
combining with the undelayed and delayed feedback loop, which implies that the phase and the amplitude
of the feedback signal can be controlled. In addition, the gain of the sensor becomes tunable, since
the Andronov-Hopf bifurcation can be controlled with this feedback loop. These results are particularly
interesting for mimicking the cochlea functionality, as the cochlear is assumed to exhibit an Andronov-Hopf
bifurcation. Hence, this approach can be, e.g., used for neuromorphic acoustic sensing, while keeping the
geometry of this MEMS sensor as simple as possible.

INDEX TERMS Andronov-Hopf Bifurcation, delayed feedback, envelope model, frequency tunability, gain
tunability, microelectronic-mechanical system (MEMS), MEMS sensor, neuromorphic acoustic sensing,
neuromorphic engineering.

I. INTRODUCTION
An oscillator, whose characteristic frequency can be changed,
is called frequency tunable. For amicroelectronic-mechanical
system (MEMS) sensor, the characteristic frequency is
usually determined once the geometry (or the material
composition) is fixed and adjusting this frequency can be
enabled by employing either passive or active methods. In the
former methods the geometry or the material composition
of the system is adjusted [1], [2]. In the latter methods
the characteristic frequency is continuously tuned with a
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controllable input. For this, the actuator typically exploits
electrothermal [3], [4], [5] or electrostatic effects [6], [7],
[8], [9], [10], which change the deflection of the mechanical
system, so that strain becomes a function of (small) actuation
amplitudes [3], [4], [5], [9], [10]. Due to this geometric
nonlinearity, the characteristic frequency can be either
decreased or increased by assigning the actuator accordingly
[3], [4].
A MEMS sensor with a tunable characteristic frequency

has multiple advantages. On the one hand, this system is
robust against inaccurate manufacturing processes, material
defects, and aging, since the desired characteristic frequency
can be achieved by tuning the MEMS sensor actively [3].
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On the other hand, a frequency tunable MEMS sensor is
sensitive to a wider frequency range while preserving its
bandwidth.

In this paper, a thermally actuated cantilevered MEMS
sensor based on [11], [12], [13], [14], [15] is considered.
By choosing the feedback signal correctly, this MEMS
sensor exhibits an Andronov-Hopf bifurcation [15], [16],
[17], [18]. In particular, this bifurcation can be used to
model the remarkable dynamics of the cochlea [19], [20],
[21] as it implies frequency selectivity and compression,
i.e., small amplitudes are amplified and large amplitudes
are attenuated [19], [20], [22], [23], [24], [25]. However,
when exploiting this bifurcation for neuromorphic acoustic
sensing, many MEMS sensors are needed to cover a broad
frequency interval, so that frequency tunability is important
for the design of neuromorphic acoustic sensors. In addition,
by introducing such a feedback loop in MEMS sensors
with geometric nonlinearities, the measurement is frequency
modulated [4], [5] and the system can become chaotic [5],
[26]. This is a tremendous disadvantage for sensing purposes
as the input signal cannot be reconstructed in both cases.

In contrast, the Andronov-Hopf bifurcation is classically
used to show that a (stable) limit cycle can emerge in an
oscillator. This comes from the fact that an oscillator, which
exhibits an Andronov-Hopf bifurcation, has two different
regimes. The oscillator can change between these regimes
by adjusting the bifurcation parameter. If the oscillator is
in the sub-critical regime, the oscillator will be (locally)
asymptotically stable, i.e., the oscillator will converge to
its equilibrium. If the oscillator is in the super-critical
regime, a (stable) limit cycle will emerge. In addition, the
point separating these regimes is called critical point [27].
For instance, this idea has been used to analyze systems
in biology [28], [29], [30], [31], engineering [32], and
physics [33], [34], [35].
We want to enable frequency tunability of a thermally

actuated cantilevered MEMS sensor by extending the pro-
portional feedback in [13], [14], and [15] with a delayed
feedback loop. For this, the feedback loop consists of the
sum of an feedforward signal, the undelayed measurement,
and the delayed measurement, so that the system has four
controllable parameters, i.e., the feedforward signal, the time
delay, and the feedback strengths of the undelayed and
delayed measurement. The concept of this setup is visualized
in Figure 1 and this idea is based on the frequent observation
that a time delay can change the characteristic frequency of
a system, see, e.g., [36], [37], [38], and [39]. The tunability
analysis is done by investigating the emergence of Andronov-
Hopf bifurcations. If this system is frequency tunable at the
critical point, the same property then follows directly for a
neighborhood around this point [39].
It turns out that four Andronov-Hopf bifurcations emerge

and that characteristic frequency can be tuned close to
their critical critical point. In particular, the increase of
the characteristic frequency is indefinite, while the decrease
allows a reduction down to 90% of the natural frequency of

FIGURE 1. Setup for the thermally actuated, cantilevered MEMS sensor
with a undelayed and delayed feedback.

the MEMS sensor. Additionally, it is shown that the gain of
the MEMS sensor can be controlled by adjusting the distance
to the critical point.

The remainder of the paper is structured as follows: The
preliminaries for this paper are discussed in Section II.
This includes the introduction of the mathematical model
of the cantilevered MEMS sensor and the summary of
the bifurcation analysis of the MEMS sensor with unde-
layed feedback. In Section III, the frequency tunability
of the MEMS sensor with delayed and undelayed feed-
back is investigated by analyzing emergence of Andronov-
Hopf bifurcations in terms of delay and the characteristic
frequency at the critical point. These results are then
evaluated numerically in Section IV by determining the
characteristic frequency at the critical point as a function
of the controllable parameters. Some remarks conclude
this paper.

II. MEMS SENSORS
Subsequently, the preliminary results on the dynamics of the
MEMS sensor and the its frequency tunability is discussed.
This MEMS sensor consists of a three-layered cantilever
with a silicon layer as a fundament, a silicon oxide layer for
isolation, and an aluminum layer for electrothermal actuation.
Moreover, the deflection of this sensor can be measured by
a piezoelectric strain gauge, which is placed at the clamped
end of the sensor [11], [12], [13], [14], [15]. The model of
the MEMS sensor is obtained by considering the dominant
mode. This model describes the evolution of the temperature,
deflection and velocity and is derived by employing modal
reduction on the equations of thermo-elasticity, see [5]
and [12]. A high pass filter is used to estimate the velocity
and thus to remove the offset of the equilibrium of deflection
with the transfer function g(s) = κTs/(1+ Ts) for κ,T > 0.
The setup is visualized in Figure 1. In addition, it is assumed
that the output of the high pass filter is fed into the heater
of the MEMS sensor by an undelayed and delayed feedback.
For this, let •τ (t) = •(t−τ ) with a positive (and controllable)
delay τ ≥ 0. The resulting model reads

ẋ = f (x, xτ ,F, u), t > 0, (1a)

x(ϑ) = x0(ϑ), ϑ ∈ [−τ, 0], (1b)

y = x4, t ≥ 0 (1c)
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with

f (x, xτ ,F, u) =


1

−ω2
0x1 −

ω0

Q0
x2 + αx3 +

1
ρh

F

−βx3 + ζ (k1x4 + k2x4,τ + u)2

−
1
T
x4 + κx2

 , (1d)

the state vector x(t) = [x1(t), x2(t), x3(t), x4(t)] ∈ R4, the
(uncontrollable) external stimuli F(t) ∈ R, the (controllable)
voltage u(t) ∈ R, and the output y(t) ∈ R. The state vector is
composed of the deflection x1, the velocity x2, the ambient
temperature x3, and the estimated velocity x4. Additional
parameters are given by the natural frequency ω0 > 0, the
Q-factor Q0 > 0, the transfer factors α > 0, ζ = γ /R2 > 0,
γ > 0, the density ρ > 0, the height h > 0 of the MEMS
sensor, the time constant β > 0, the resistance R > 0,
the feedback strengths k1 ∈ R, and k2 ∈ R and the initial
conditions x0(ϑ) ∈ R4. In this paper, we will show that
the feedback strengths k1 and k2 and the delay τ can be
used to mimic the cochlear dynamics and enable frequency
tunability.

A. LINEARIZATION
To address the bifurcation analysis of (1), the system has
to be linearized around an equilibrium xeq ∈ R4, where
the equilibria of (1) are determined by asserting ẋeq = 0,
xτ,eq = xeq, F = 0 and ueq = uDC ∈ R. These assumptions
imply f (xeq, xeq, 0, uDC) = 0, which results in an unique
equilibrium

xeq =

[
αu2DC
βω2

0

0
u2DC
β

0

]T
.

The linearization of (1) is then determined by

1ẋ = A01x+ A11xτ + B1v (2a)

with 1x = x − xeq and 1v = [F, u − uDC]T. Herein, the
system and input matrices are given by

A0 = ∂x f =


0 1 0 0

−ω2
0 −

ω0

Q0
α 0

0 0 −β 2uDCζk1

0 κ 0 −
1
T

 , (3a)

A1 = ∂xτ f =


0 0 0 0
0 0 0 0
0 0 0 2uDCζk2
0 0 0 0

 , (3b)

B =

[
∂F f
∂u f

]
=

0 1
ρh

0 0

0 0 ζ 0

T

. (3c)

The emergence of the Andronov-Hopf bifurcations is inves-
tigated by analyzing the characteristic function

gCF(λ ) = det(A0 + A1e−τλ
− λ I4) (4)

with the identity matrix I4 ∈ R4×4 and the variable λ ∈ C
[40], [41], [42]. Inserting (3a) and (3b) in (4) results in

gCF(λ ) = λ
4
+ a3λ

3
+ a2λ

2

+

[
a1 − b1

(
k1 + k2e−τλ

)]
λ + a0 (5)

with the parameters

a3 =
1
T

+
ω0

Q0
+ β,

a2 = ω2
0 +

β

τ
+

βω0

Q0
+

ω0

Q0T
,

a1 = βω2
0 +

ω2
0

T
+

βω0

Q0T
,

a0 =
βω2

0

T
,

b1 = 2αζκuDC.

B. PROBLEM STATEMENT
The emergence of Andronov-Hopf bifurcations in system (1)
was analyzed in [16] in the delay-free case, i.e., k2 = 0 and
τ = 0. For this, the feedback strength k1 is chosen as the
bifurcation parameter. In this case the system (1) undergoes
two Andronov-Hopf bifurcations, where the critical points
and the frequencies at these points are given by

k±

H

∣∣
τ=0 =

2a1 − a2a3 ± a3
√
a22 − 4a0

2b1
, (6a)

ω±

H

∣∣
τ=0 =

√√√√a2 ±

√
a22 − 4a0

2
. (6b)

However, this approach has a significant drawback, since
the characteristic frequency of this system has a strict lower
limit. This limit is caused by the geometry and the material
constants of the cantilevered MEMS structure, and it can be
approximated by the lowest mode of the MEMS sensors.
In general, the modes of a beam are given by

ωi =
λ 2
i

l2

√
EI
ρS

with the length l > 0, the Young modulus E > 0, the inertia
I > 0, the density ρ, the cross-section surface S > 0, and
a constant λi > 0 [43, Example 6.7]. For a cantilever, the
constant λi satisfies

cos(λi) cosh(λi) = 0

for all i ∈ N. Hence, lower frequencies in this setup
cannot be achieved without increasing the length l and
cross-section surface S of the MEMS structure or changing
the materials. However, both approaches are limited by
physical constraints. In scope of this work, the effects of a
controllable time delay τ on the emergence of the Andronov-
Hopf bifurcations and the characteristic frequency of (1) are
analyzed. Based on [39], this approach is promising, since
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the characteristic frequency can be increased or decreased by
assigning the time delay τ and the feedback strengths k1 and
k2. Frequency tunability will be analyzed subsequently both
analytically and numerically as the characteristic equation (5)
has infinitely many solutions. In the analytic investigation,
the emergence of Andronov-Hopf bifurcations is evaluated.
With this, an analytic relationship between the characteristic
frequency at the critical points and the controllable parameter
k1, k2, uDC and τ is derived and the frequency tunability can
be analyzed. In the numerical investigation, the characteristic
frequency is evaluated in the complete sub-critical and
super-critical regime by computing the imaginary part of
dominant eigenvalue of (5). In general, this transcendental
equation cannot be solved analytically.

III. ANALYTICAL RESULTS
The bifurcation analysis of (1) is based on the Hopf Theorem
in Rn, see, e.g., [26] and [27]. Hence, this analysis is split
into two steps: First, the critical point is determined by
deriving conditions, such that (5) has two complex conjugated
eigenvalues on the imaginary axis. Second, the crossing
condition is evaluated by showing that the sensitivity, i.e.,
the real part of the derivative of the complex conjugated
eigenvalues on the imaginary axis in terms of the bifurcation
parameter, is not vanishing. It has to be stressed that the
sign of the sensitivity can be used to deduce whether the
bifurcation is super-critical or sub-critical. If the sensitivity is
positive, the bifurcation is super-critical, while the bifurcation
is sub-critical, if the sensitivity is negative. In contrast to the
local properties, the non-local properties, i.e., the stability
of the emerging limit cycle, is not evaluated. There are
two reasons for this: First, the super-critical regime is not
desirable for sensor applications, since the oscillator should
react only to external inputs F . Otherwise the external input
F would be mixed with the limit cycle of the oscillator, so that
the inputs are distorted. Second, it has been discussed in [16]
that the dominant mode model of the MEMS sensor with the
undelayed feedback has an unstable limit cycle. This implies
that system (1) has also an unstable limit cycle and thus (1) is
unstable in the super-critical regime.

A. NECESSARY CONDITION OF THE HOPF THEOREM
Subsequently, the necessary conditions for an Andronov-
Hopf bifurcation are analyzed. For this, the bifurcation
parameter is assumed to be the time delay τ . The critical point
can be derived by inserting λ = iωH and τ = τH into (5) with
the characteristic frequency ωH > 0 and the critical delay
τH > 0. This yields

0 = ω4
H − ia3ω3

H − a2ω2
H

+ i
[
a1 − b1

(
k1 + k2e−iτHωH

)]
ωH + a0. (7)

It has to be noted that the result will not change, if λ = −iωH
is inserted, since (5) has real-valued coefficients. Eq. (7) can
be solved by dividing it into real and imaginary part, which

results in

0 =ω4
H − a2ω2

H − k2b1 sin(τHωH)ωH + a0, (8a)

0 = − a3ω3
H + [a1 − b1 (k1 + k2 cos(τHωH))]ωH. (8b)

Solving (8a) for sin(τHωH), yields

sin(τHωH) =
ω4
H − a2ω2

H + a0
k2b1ωH

. (9)

Eq. (9) only admits real-valued solution for the critical delay

τH, if
∣∣ω4

H−a2ω2
H+a0

k2b1ωH

∣∣ ≤ 1. Inserting (9) into (8b) and noting
that sin2(τHωH) + cos2(τHωH) = 1, results in

0 = (a1 − k1b1) ωH − a3ω3
H

− sign (k2b1)
√
k22b

2
1ω

2
H +

(
ω4
H − a2ω2

H + a0
)2

. (10)

By adding the square root term, taking the square of the result
and sorting the terms, (10) is transformed into

0 = a20 −

[
2a0a2 − (a1 − b1k1)2 + b21k

2
2

]
ω2
H

+

[
a22 + 2a0 − 2a3 (a1 − b1k1)

]
ω4
H

+

(
a23 − 2a2

)
ω6
H + ω8

H. (11)

In particular, (11) and (8) have the same zeros with respect to
ωH, if[

k2b1 > 0 ∧ (a1 − k1b1) − a3ω2
H > 0

]
∨

[
k2b1 < 0 ∧ (a1 − k1b1) − a3ω2

H < 0
]
,

(12)

since the square root term in (10) has to be positive. After
substituting ω2

H = z, a quartic polynomial with respect to z
arises, which is given by

0 = a20 −

[
2a0a2 − (a1 − b1k1)2 + b21k

2
2

]
z

+

[
a22 + 2a0 − 2a3 (a1 − b1k1)

]
z2

+

(
a23 − 2a2

)
z3 + z4, (13)

so that (11) can be solved analytically. Note that the numerical
analysis of these results is discussed in Section IV.

B. SUFFICIENT CONDITION OF THE HOPF THEOREM
The sufficient condition of the Hopf Theorem is satisfied,
if the sensitivity of the real-part of the eigenvalues, which
cross the imaginary axis, with respect to the bifurcation
parameter τ is not vanishing. This condition can be expressed
by

d = num

(
Re

(
dλ

dτ

∣∣∣∣
λ=iωH

))
̸= 0 (14)

with the operator num(n(z)/d(z)) = n(z), which takes
the numerator of a irreducible rational function n(z)/d(z).
In addition, the direction of movement of the eigenvalues is
determined by the sign of d . If sign(d) = 1, the eigenvalues
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FIGURE 2. Sketch of the steepest change of the characteristic frequency.

cross from left half complex plane to right half complex
plane. While, the eigenvalues cross from right to left half
complex plane, if sign(d) = −1.

With these considerations, the sensitivity of the eigen-
values with respect to the bifurcation parameter τ can be
determined by taking the derivative of (5) with respect to τ

and solving the resulting equation for dλ

dτ . This yields

dλ

dτ
= −

b1k2λ 2

eτλ

(
dgCF
dτ

)−1

. (15)

with
dgCF
dτ

=

[
λ

(
3a3λ + 2a2 + 4λ

2
)

+ a1 − b1k1
]

+ b1k2(τλ − 1).

Inserting (15) into (14) after simplification, results in

d = −b1k2ω2
H

[(
b1k1 − a1 + 3a3ω2

H

)
cos (τHωH)

+

(
2a2ωH − 4ω3

H

)
sin (τHωH) + b1k2

]
. (16)

The further analysis of (16) is rather involved. This can be
seen by exploiting sin2(τHωH) + cos2(τHωH) = 1, and
inserting (9) into (16), so that

d = −ωH

[
2
(
a2 − 2ω2

H

) (
ω4
H − a2ω2

H + a0
)

ωH

+b21k
2
2ωH −

(
a1 − b1k1 − 3a3ω2

H

)
×

√
b21k

2
2ω

2
H −

(
ω4
H − a2ω2

H + a0
)2]

(17)

arises. By asserting d = 0, this equation can be transformed
again into a quartic polynomial. Hence, the analysis of the
sufficient condition is also done numerically.

C. STEEPEST CHANGE OF THE CHARACTERISTIC
FREQUENCY
The controllable time delay influences the characteristic
frequency in a nonlinear fashion, i.e. the characteristic
frequency can be seen as a function of the feedback strengths
k1 and k2, so that ωH = ωH(k1, k2). To showcase the effects
of the controllable time delay on the characteristic frequency
we are looking for a specific relation between the feedback
strengths leading to the steepest change of the characteristic

frequency. A sketch of this approach is given in Figure 2.
To enable a more stable computation, the normalized gradient
is used, so that the feedback ko = [k1,o, k2,o]T is determined
by

ko[j+ 1] = ko[j] + (−1)l
ϵ∇ωH(ko[j])
∥∇ωH(ko[j])∥

, ko[0] = k0

with the gradient ∇ωH(ko[j]) ∈ R2, the step size ϵ > 0,
and the initial conditions k0 ∈ R for all l = 1, 2. Note that
the direction of the steepest change is determined by l. The
direction of the feedback ko will follow the steepest decent,
if l = 1. In contrast, if l = 2, the direction of the feedback ko
will follow the steepest ascend. The gradient is given by

∇ωH =

−
b1ωH

C

√
b21k

2
2ω

2
H −

(
ω4
H − a2ω2

H + a0
)2

−sign(b1k2)
b21k2ω

2
H

C


with

C = 2
(
a2 − 2ω2

H

) (
ω4
H − a2ω2

H + a0
)

ωH + b21k
2
2ωH

+

[
b1k1 + 3a3ω2

H − a1
]

×

√
b21k

2
2ω

2
H −

(
ω4
H − a2ω2

H + a0
)2

.

In addition, the conditions (12) and |k1 + k2| < |k±

H | can
be asserted, so that the system (1) is in the sub-critical
regime. The numerical results on the steepest change and
the implications of this assumption are further discussed in
Section IV.

D. SYSTEM RESPONSE AND TUNABILITY
Finally, the reaction of system (1) to a harmonic excitation
with respect to F is evaluated to demonstrate its frequency
tunability. This is done by determining the equilibrium of the
so-called envelope model [44], [45], [46]. In particular, the
envelope model is derived by employing the time-dependent
Fourier series

xτ̃ = q0,τ̃ +

n∑
j=1

[
q2j−1,τ̃ cos(jωex(t − τ̃ ))

+q2j,τ̃ sin(jωex(t − τ̃ ))
]
, (18a)

F = w0 +

n∑
j=1

[
w2j−1 cos(jωext)

+w2j sin(jωext)
]
, (18b)

u = v0 +

n∑
j=1

[
v2j−1 cos(jωext) + v2j sin(jωext)

]
(18c)

with the Fourier coefficients qj(t) ∈ R4, vj(t) ∈ R andwj(t) ∈

R, the sampling frequency ωex > 0, the delay τ̃ ∈ {0, τ }, and
the order of the envelopemodel n ∈ N for all j = 0, 1, . . . , 2n.
Taking the derivative of (18b) with respect to time for τ̃ = 0,
inserting the result and (18c) into (1) and comparing the sine-
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and cosine-terms, yields

dq
dt

= Aqq+ Bqw+ fq(q, qτ , v) (19)

with the state vector q = [qT0 , qT1 , . . . , qT2n]
T

∈ R8n+4,
the input vectors w = [w0,w1, . . . ,w2n]T ∈ R2n+1 and
v = [v0, v1, . . . , v2n]T ∈ R2n+1, and the nonlinearity
fq(q, qτ , v) ∈ R8n+4. Herein, the system matrix and the input
matrix are given by

Aq =



A 0 0 · · · 0 0
0 A −ωexI4 · · · 0 0
0 ωexI4 A · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · A −nωexI4
0 0 0 · · · nωexI4 A


,

Bq =



b 0 0 · · · 0 0
0 b 0 · · · 0 0
0 0 b · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · b 0
0 0 0 · · · 0 b


with the matrix A = A0|uDC=0 with A0 from (3a), the
vector b = [0, 1/(ρh), 0, 0]T ∈ R4, and the identity matrix
I4 ∈ R4×4. The dimensions of the matrices are given by
Aq ∈ R(8n+4)×(8n+4) and Bq ∈ R(8n+4)×(2n+1). In addition,
the nonlinearity fq(q, qτ , v2) represents the coupling between
the modes and it can be derived by truncating higher modes.
The amplitude of the envelope is given by

ri = qi,0 +

n∑
j=1

√
q2i,2j−1 + q2i,2j

for all i = 1, 2, 3, 4 [16].

IV. NUMERICAL RESULTS
Subsequently, the results of the bifurcation analysis in
Section III are validated numerically. To this end, the
numerical parameters from Table 1 are used. In particular,
the critical points with theses parameters in the delay-free
case are given by k+

H = 0.4067 and k−

H = −1.9990. The
analysis is done as follows: First, the locations of (11) are
analyzed, so that different regimes with different number of
critical points can be identified. Second, the conditions for the
emergence of the Andronov-Hopf bifurcations of system (1)
are analyzed numerically in terms of the feedback strengths
k1 and k2. Third, the steepest change of the characteristic
frequency ωH is analyzed and finally the reaction of (1) at
the critical point τH is evaluated.

Following [47], the locations of the zeros z0 of (11) are
characterized by computing the discriminant of (11) and its
corresponding auxiliary variables. The results are visualized
in Figure 3. Here, the discriminant is shown in Figure 3(a),
while the real zeros and positive zeros are localized in
Figures 3(b) and 3(c). In particular, the positive zeros are

FIGURE 3. Color map of the discriminant, the number of real zeros, and
the number of positive zeros of polynomial (13).

determined by computing the real-valued zeros and asserting
condition (12). As expected, the number of possible zeros
of (13) varies between 0 and 4. However, the regions for
these solutions have a rather complex shape and additional
constraints have to be applied. First of all, the characteristic
frequency ωH is computed by taking the square root of zeros
of (13), so that these zeros have to be positive. In addition,
(12) has to be satisfied, since (11) and (10) are otherwise not
equivalent.

After applying these constraints and solving (11) numeri-
cally, the critical delay τH,i and the characteristic frequency
at the critical point ωH,i for all i = 1, 2, 3, 4 are obtained.
In particular, the critical delays are computed by

τH,m[l] =

arcsin
(

ω4
H,m−a2ω2

H,m+a0
k2b1ωH,m

)
+ 2π l

ωH,m
(20)
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FIGURE 4. Critical delays τH,m[0], critical feedback strengths k±

H , and characteristic frequencies fH,m at the critical point for all m = 1, 2, 3, 4 as a
function of the feedback strengths k1 and k2. Here, the critical delays τH,m[0] for all m = 1, 2, 3, 4 are separated based on their emergence from
the critical points k±

H of the MEMS sensor with undelayed feedback. Note that the characteristic frequency is given by as the normalized frequency,
i.e., fH = ωH/(2π). In addition, the critical delay and characteristic frequency in terms of the steepest change ko are visualized by the solid and
dashed line. (a), (c), (e) The complete dynamics of system (1). (b), (d), (f) The sub-critical regime of (1).

for the solution indices l ∈ Z and m = 1, 2, 3, 4, so that
there infinitely many solutions. Here, the solution index is
assumed to be given by l = 0. The results are visualized
in Figure 4. The dynamic regimes are divided into the

complete dynamics and the sub-critical regime, which is
determined by the condition |k1 + k2| ≤ |k±

H | with the critical
feedback strength k±

H . The complete dynamics is depicted
in Figures 4(a), 4(c), and 4(e), while the sub-critical regime
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is shown in Figures 4(b), 4(d), and 4(f). This separation has
been done since both regimes can be interesting for different
applications. For instance, the MEMS sensor has to be driven
to the sub-critical regime, if it is used as an acoustic sensor.
Otherwise, the emerging limit cycle,1 will distort the external
stimuli.

It can be observed in Figures 4(a)-(d) that the solutions
of the critical delay τH,i for all i = 1, 2, 3, 4 are closely
related to the critical feedback strengths k±

H , since the critical
delays τH,1 and τH,2 or τH,3 and τH,4 vanish by choosing
k1 + k2 = k+

H or k1 + k2 = k−

H . Moreover, it follows from
Figures 4(e) and 4(f) that the characteristic frequency can be
either increased or decreased by assigning the delay τ and the
feedback strengths k1 and k2 accordingly. Hence, by exploit-
ing the controllable delay, the characteristic frequency can
move below the lower limit of the characteristic frequency,
which is determined by the geometry and material of the
MEMS sensor. These frequencies can be reached even though
the critical delays τH,2 and τH,4 are negative since (20) has
infinitely many solutions for τH,m for all m = 1, 2, 3, 4.
In addition, note that the solid black lines and dashed

black lines in Figures 4(b) and 4(f) depict the time delay
τH,1 and τH,2 and characteristic frequency fH,1 fH,2 in the
sub-critical regime in terms of the steepest change ko. These
have been computed for the weight ϵ = 3.45 × 10−3

and the initial conditions k1,0 = 1.001 × k+

H and k1,0 =

−0.001 × k+

H . It turns out that the steepest change of the
feedback strengths k1 and k2 in the sub-critical regime can
be split into two regimes. On the one hand, the steepest
change follows the conditions (12). On the other hand, the
feedback strengths are constrained by |k1 + k2| < |k±

H |.
Finally, the crossing condition is evaluated by determining
the sign of the sensitivity d for the four possible critical
points in terms of the feedback strengths k1 and k2. The
results are visualized in Figure 5. Here, the sensitivity of
the critical delay τH,1 and τH,2 are shown in Figure 5(a) and
the sensitivity of the critical delay τH,2 and τH,3 are shown
in Figure 5(b). The sign for each sensitivity stays constant
for all feedback strengths k1 and k2. Thus, a pair of complex
conjugated eigenvalues will cross from the complex left half-
plane to the right half-plane, if the critical delays τH,1 and
τH3 are surpassed. In contrast, a pair of complex conjugated
eigenvalues will cross from the complex right half-plane to
the left half-plane, if the critical delays τH,2 and τH4 are
surpassed. This implies that the characteristic frequency can
be decreased, if

(τ > τH,2[l] ∧ τH,2[l] < τH,2[l])

∨ (τ > τH,4[l] ∧ τH,4[l] < τH,3[l]).

for the solution indices l ∈ Z. To simplify the bifurcation
analysis, the frequency tunability of the characteristic fre-
quencies ωH,1 and ωH,2 and positive critical delays τH,1 and

1It has to be stressed that this limit cycle can be only observed
in experiments, see, e.g. [15], since the physical system is passive.
In comparison, the mathematical model of this system does not capture this
because the cantilever is assumed to satisfy the Bernoulli assumption.

FIGURE 5. Sign of the sensitivities d1, d2, d3, and d4 at their respective
critical points.

τH,2 as a function of k1 for the steepest change are depicted
in Figures 6(a) and 6(b). As mentioned, the characteristic
frequency of the system (1) can be both increased and
decreased. However, its characteristic frequency has a
lower limit in the sub-critical regime, since a Hopf-Hopf
bifurcation2 emerges at the critical delay τHH = 272 µs
and the critical feedback strength k1,HH = 10.37, so that
the characteristic frequency in the sub-threshold regime can
be decreased down to 400 Hz while following the steepest
change.

Moreover, the eigenvalue, which is closest to the imaginary
axis has been computed. In particular, the characteristic
frequency is determined by the imaginary part of this
eigenvalue. This is shown in Figure 6(c). The characteristic
frequency can also be tuned by the feedback k1 and k2, if the
bifurcation parameter is not at the critical point. In addition,
the real part is visualized in Figure 6(d). This can be used
to tune the gain of the MEMS sensor, so that it follows that

2A Hopf-Hopf bifurcation emerges, if two complex-conjugated pairs
of eigenvalues are on the imaginary axis [26]. For this, two bifurcation
parameters are needed.
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FIGURE 6. Dynamics of system (1) for the steepest change of the characteristic frequency. Note that the characteristic frequency is given
by as the normalized frequency, i.e., fH = ωH/(2π). (a), (b) 2 dimensional representation of the necessary condition of the Hopf
Theorem. The feedback strengths k1 and k2 follow the steepest change of the characteristic frequency fH,1 and fH,2 (c), (d) Eigen value,
which are closest to the imaginary axis. In particular, the imaginary part of this eigenvalues can be used to predict the characteristic
frequency. While the real part of this eigen value determines the gain and the Q-factor of the MEMS sensor.

FIGURE 7. Reaction of the MEMS sensor with a delayed feedback. (a) Comparison between the evolution of the amplitude r4 of the
envelope model (19) and the voltage x4 of the dominant system (1). (b) Amplitude r4,eq of envelope model as a function of the
excitation frequency fex = ωex/(2π) of an harmonic stimuli. The parameters for the different responses are given by the markers in
Figure 6.

gain and frequency can be tuned by assigning the controllable
parameters accordingly.

Finally, the envelope of the harmonically excited MEMS
sensor is evaluated in Figure 7. On the one hand, the evolution
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TABLE 1. Parameters of the MEMS sensor.

of the envelope model for n = 2 and the evolution of
the MEMS sensor is compared in Figure 7(a). For this,
the parameters k1, k2, τ , and ωex follow from the steepest
change of the characteristic frequency, as they are depicted
in Figures 6(c) and 6(d). In addition, the external excitation
is given by

fex,1 =


f̂ex,1, if t < t1,
f̂ex,2, if t ∈ [t1, t2),
f̂ex,3, if t ∈ [t2, t3),

fex,j = 0 Pa,

with the amplitudes f̂ex,1 = 15 × 10−4 Pa, f̂ex,2 = 10 ×

10−4 Pa, and f̂ex,3 = 5 × 10−4 Pa and the time instances
tk = 500k ms for all j ̸= 1 and k ∈ {1, 2, 3}. It turns
out that it is sufficient to approximate the envelope of the
MEMS sensor with n = 2, since the MEMS sensor acts like
a band pass filter, so that higher oscillation are suppressed.
On the other hand, the frequency tunability of the MEMS
sensor is evaluated by visualizing the frequency response of
the amplitude r4,eq for different parameter configurations.
This is depicted in Figures 7(b). Herein, the parameters k1, k2,
and τ follow from the steepest change, as they are depicted
in Figure 6(a) and 6(b). The external excitation is given by

fex,1 = 2 × 10−3 Pa, fex,j = 0 Pa,

for all j ̸= 1. The results of the bifurcation analysis indeed
suggest that the characteristic frequency of the system (1)
can be tuned flexibly by a delayed feedback loop and an
undelayed feedback loop. In addition, local maxima for the
amplitudes r4,eq with a feedback strength k1 can observed.
This comes from the fact that (1) is close to the Hopf-Hopf
bifurcation, such that the effects of the Hopf-Hopf bifurcation
become visible.

V. CONCLUSION
A new control approach has been proposed to tune the
characteristic frequency of a cantilevered MEMS sensor. The
designed control strategy relies on two active feedback loops,
with and without time delay, whose interplay leads to the
emergence of an Andronov-Hopf bifurcations in the system.
With this, the characteristic frequency of the cantilevered
MEMS sensor can be flexibly tuned by assigning the
feedback strengths and delay accordingly. Remarkably, along
with the increase of the characteristic frequency, the proposed
approach allows to decrease the frequency down to 90% of
its original value. The latter is known to be a challenging task
in theMEMS sensors community, previously achievable only
by severely constrained and resource consumingmethods [3],
[4].

Finally, as the considered setup is realized on a field
programmable gate array, the controllable delayed feedback
can be implemented by saving the output and retrieving
the data after the desired delay is reached. Hence, due to
a relatively short time delay within a range of hundreds of
microseconds, the proposed control approach has a great
promise for the hardware implementation and particularly
feasible for neuromorphic acoustic sensing applications.

APPENDIX
PARAMETERS OF THE MEMS SENSOR
The numerical parameters of the MEMS sensor are given in
Table 1. These parameters were determined in experiments
and thus describe an actual MEMS sensor.
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