KIT | KIT-Bibliothek | Impressum | Datenschutz

DustNet++: Deep Learning-Based Visual Regression for Dust Density Estimation

Michel, Andreas ORCID iD icon 1; Weinmann, Martin 1; Kuester, Jannick; AlNasser, Faisal; Gomez, Tomas; Falvey, Mark; Schmitz, Rainer; Middelmann, Wolfgang 1; Hinz, Stefan 1
1 Institut für Photogrammetrie und Fernerkundung (IPF), Karlsruher Institut für Technologie (KIT)

Abstract:

Detecting airborne dust in standard RGB images presents significant challenges. Nevertheless, the monitoring of airborne dust holds substantial potential benefits for climate protection, environmentally sustainable construction, scientific research, and various other fields. To develop an efficient and robust algorithm for airborne dust monitoring, several hurdles have to be addressed. Airborne dust can be opaque or translucent, exhibit considerable variation in density, and possess indistinct boundaries. Moreover, distinguishing dust from other atmospheric phenomena, such as fog or clouds, can be particularly challenging. To meet the demand for a high-performing and reliable method for monitoring airborne dust, we introduce DustNet++, a neural network designed for dust density estimation. DustNet++ leverages feature maps from multiple resolution scales and semantic levels through window and grid attention mechanisms to maintain a sparse, globally effective receptive field with linear complexity. To validate our approach, we benchmark the performance of DustNet++ against existing methods from the domains of crowd counting and monocular depth estimation using the Meteodata airborne dust dataset and the URDE binary dust segmentation dataset. ... mehr

Zugehörige Institution(en) am KIT Institut für Photogrammetrie und Fernerkundung (IPF)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 0920-5691, 1573-1405
KITopen-ID: 1000180352
Erschienen in International Journal of Computer Vision
Verlag Springer
Vorab online veröffentlicht am 24.02.2025
Nachgewiesen in Scopus
Web of Science
OpenAlex
Dimensions

Verlagsausgabe §
DOI: 10.5445/IR/1000180352
Veröffentlicht am 27.03.2025
Seitenaufrufe: 4
seit 28.03.2025
Downloads: 1
seit 30.03.2025
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page