KIT | KIT-Bibliothek | Impressum | Datenschutz

DustNet++: Deep Learning-Based Visual Regression for Dust Density Estimation

Michel, Andreas ORCID iD icon 1; Weinmann, Martin 1; Kuester, Jannick; AlNasser, Faisal; Gomez, Tomas; Falvey, Mark; Schmitz, Rainer; Middelmann, Wolfgang 1; Hinz, Stefan 1
1 Institut für Photogrammetrie und Fernerkundung (IPF), Karlsruher Institut für Technologie (KIT)

Abstract:

Detecting airborne dust in standard RGB images presents significant challenges. Nevertheless, the monitoring of airborne dust holds substantial potential benefits for climate protection, environmentally sustainable construction, scientific research, and various other fields. To develop an efficient and robust algorithm for airborne dust monitoring, several hurdles have to be addressed. Airborne dust can be opaque or translucent, exhibit considerable variation in density, and possess indistinct boundaries. Moreover, distinguishing dust from other atmospheric phenomena, such as fog or clouds, can be particularly challenging. To meet the demand for a high-performing and reliable method for monitoring airborne dust, we introduce DustNet++, a neural network designed for dust density estimation. DustNet++ leverages feature maps from multiple resolution scales and semantic levels through window and grid attention mechanisms to maintain a sparse, globally effective receptive field with linear complexity. To validate our approach, we benchmark the performance of DustNet++ against existing methods from the domains of crowd counting and monocular depth estimation using the Meteodata airborne dust dataset and the URDE binary dust segmentation dataset. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000180352
Veröffentlicht am 27.03.2025
Originalveröffentlichung
DOI: 10.1007/s11263-025-02376-9
Scopus
Zitationen: 2
Web of Science
Zitationen: 1
Dimensions
Zitationen: 4
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Photogrammetrie und Fernerkundung (IPF)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 07.2025
Sprache Englisch
Identifikator ISSN: 0920-5691, 1573-1405
KITopen-ID: 1000180352
HGF-Programm 12.17.21 (POF IV, LK 01) Membrane materials & processes in water process engineering
Erschienen in International Journal of Computer Vision
Verlag Springer
Band 133
Heft 7
Seiten 4220–4244
Vorab online veröffentlicht am 24.02.2025
Nachgewiesen in Web of Science
Dimensions
OpenAlex
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 12 – Nachhaltiger Konsum und Produktion
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page