IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 7 February 2025, accepted 13 February 2025, date of publication 17 February 2025, date of current version 24 February 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3542472

== RESEARCH ARTICLE

ReTMiC: Reliability-Aware Thermal Management
in Multicore Mixed-Criticality Embedded Systems

SEPIDEH SAFARI ', MOHSEN ANSARI“1-2, SHAAHIN HESSABI 2, (Member, IEEE),
AND JORG HENKEL"3, (Fellow, IEEE)

!School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5746, Iran
2Department of Computer Science and Engineering, Sharif University of Technology, Tehran 11365-11155, Iran
3Department of Computer Science, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany

Corresponding author: Mohsen Ansari (ansari @sharif.edu)

This work was supported in part by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Project
146371743-TRR 89 Invasive Computing; and in part by the Sharif University of Technology under Grant G4030811.

ABSTRACT As the number of cores in multicore platforms increases, temperature constraints may
prevent powering all cores simultaneously at maximum voltage and frequency level. Thermal hot spots and
unbalanced temperatures between the processing cores may degrade the reliability. This paper introduces
a reliability-aware thermal management scheduling (ReTMiC) method for mixed-criticality embedded sys-
tems. In this regard, ReTMiC meets Thermal Design Power as the chip-level power constraint at design time.
In order to balance the temperature of the processing cores, our proposed method determines balancing points
on each frame of the scheduling, and at run time, our proposed lightweight online re-mapping technique is
activated at each determined balancing point for balancing the temperature of the processing cores. The
online mechanism exploits the proposed temperature-aware factor to reduce the system’s temperature based
on the current temperature of processing cores and the behavior of their corresponding running tasks. Our
experimental results show that the ReTMiC method achieves up to 12.8°C reduction in the chip temperature
and 3.5°C reduction in spatial thermal variation in comparison to the state-of-the-art techniques while
keeping the system reliability at a required level.

INDEX TERMS Mixed-criticality systems, multicore platforms, task replication, embedded systems,
thermal balancing.

I. INTRODUCTION

Mixed-Criticality Systems (MCSs) integrate a large num-
ber of tasks with different levels of criticality on the
same computing platform, meeting stringent non-functional
requirements relating to cost, space, heat generation, and
power consumption [1], [2]. By aggressively scaling the
feature size, multicore platforms are becoming the domi-
nant trend for developing MCSs [3]. However, by increasing
the number of cores, the power consumption of the chip
increases, hence the on-chip temperature is elevated [4],
[5], [6]. Violating the temperature constraint of a chip or
unbalanced temperature will ineluctably accelerate processor

The associate editor coordinating the review of this manuscript and

approving it for publication was Liang-Bi Chen

wear-out which finally leads to earlier permanent faults
occurrences, and the system lifetime drastically decayed.
Therefore, if the wear-out failures are not taken into consid-
eration during the task assignment to cores and scheduling
process, or urgent countermeasures are not exploited to mit-
igate the temperature effects, some processors might age
faster than others and become the reliability bottleneck for the
whole embedded system, thus significantly reducing the life-
time reliability. Moreover, when the temperature constraint
of a chip is violated, Dynamic Thermal Management (DTM)
techniques such as Dynamic Voltage and Frequency Scal-
ing (DVFEFS) are automatically activated to prevent hardware
failure. However, DTM techniques such as throttling down
the voltage and frequency levels will degrade the application
reliability in terms of increasing the transient fault rate or

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

VOLUME 13, 2025

For more information, see https://creativecommons.org/licenses/by/4.0/ 33157

https://orcid.org/0000-0003-4645-8255
https://orcid.org/0000-0002-4670-8608
https://orcid.org/0000-0003-3193-2567
https://orcid.org/0000-0001-9602-2922
https://orcid.org/0000-0003-3181-4480

IEEE Access

S. Safari et al.: ReTMiC: Reliability-Aware Thermal Management

Core | === Core2 === Core3****=* Core 4

D

AN AN :
T :
BN
et |

0 100 200 300 400 500 600 700 800
Time (ms)

a) An example task graph.

b) Scheduling the tasks according to the
TP3M policy [13] for the worst-case
scenario.

900 1000 1100 1200 1300

60

55

50

45

40
[°C]

¢) Details of processor temperature in the worst point of scheduling in
terms of thermal balance.

FIGURE 1. Motivational example of unbalanced thermal in scheduling policy with considering peak power consumption.

leading to missing timing constraints [5], [7]. In order to
prevent such consequences and due to the Thermal Design
Power (TDP) constraint (as the chip-level power constraint),
it may not be possible to simultaneously power on all pro-
cessing cores at the full performance [8]. Since TDP is
the maximum sustainable power that a multicore chip can
safely consume, violating TDP triggers a performance throt-
tling mechanism through lowering the voltage and frequency
levels or power-gating to prevent possible overheating prob-
lems [7]. However, these techniques may lead to violating the
timing constraints of MCSs [57]. Additionally, due to mobil-
ity, power, reliability, and size limitations, the exploitation of
cooling mechanisms such as fans and conventional heat sinks
is not a common procedure in embedded systems [58]. More-
over, overheating problems such as thermal hot spots and
unbalanced temperatures may lead to performance losses and
jeopardize the processing cores’ reliability through unbal-
anced aging of different cores in multicore platforms [5].
There are two main approaches to temperature balanc-
ing techniques among processing cores. The first approach
is based on task migration at run time to distribute the
power consumption between the processing cores, which will
achieve temperature flattening [9], [16]. The second approach
focuses on reducing the power consumption of the process-
ing cores to perform thermal management by employing
the DVFS and Dynamic Power Management (DPM) tech-
niques [7]. However, task migration and applying frequent
DVFS may have a significant time overheads [10], [37].
Apart from thermal and timing issues, similar to other
electronic systems, MCSs are susceptible to transient faults,
which are considered as one of the severe reliability concerns
that are induced by the technology scaling [59]. To ensure
the reliable operation of MCSs, many fault-tolerant tech-
niques have been employed to satisfy a given reliability
target. However, fault-tolerant techniques (due to exploiting
time, hardware, software, or information redundancies) incur
significant time and power/energy overheads to the multicore
MCSs [59]. The study in [59] provides a comprehensive
survey about applying different fault-tolerant techniques in

33158

real-time systems with considered goals and constraints of
the mapping and scheduling policies. The fault-tolerant tech-
niques, due to simultaneously executing multiple versions of
a task in parallel, may have temperature overhead which may
lead to thermal violation by activating all cores concurrently.
Fault-tolerant techniques can be classified into three broad
categories based on exploited redundancy types including:
1) hardware-based, ii) software-based, and iii) hybrid tech-
niques [60]. Hardware-based techniques add extra hardware
modules which changes the original architecture of the sys-
tem or its components. Therefore, such techniques must be
implemented during the design of the system. Hardware-
based techniques have a high cost, verification and testing
time, and area overhead which leads to higher power con-
sumption as well. Software-based techniques exploit the
concepts of software, time, and information redundancies
to detect faults during the execution of the program [59].
The exploitation of the re-execution fault-tolerant technique
in mixed-criticality systems is presented in [11], [61], [62],
and [64]. The study in [65] supports on-demand redundancy
which exploits dual modular redundancy (DMR), TMR, and
passive replication in MCSs. However, none of these works
have considered power/energy and temperature management.
The study in [37] tolerates permanent faults by applying
the standby-sparing technique with low energy overhead in
independent periodic mixed-criticality systems. The study
in [12] has introduced a parallelism and reduction policy
in every primary-backup pair of the multi-core platform to
increase the quality of service (QoS) of low-criticality tasks
in a mixed-criticality system. The study in [3] proposed
the LETR-MC scheme that employs the task replication
fault-tolerant technique to satisfy reliability constraints while
meeting timing and energy constraints in independent peri-
odic mixed-criticality multi-core systems. Task replication
is a fault-tolerant technique that, if intelligently used, can
result in lower power and time overheads [13], [14]. The
task replication technique considers different copies for each
task based on its reliability target, and as soon as successful
completion of the first copy of each task, the remaining

VOLUME 13, 2025

S. Safari et al.: ReTMiC: Reliability-Aware Thermal Management

IEEE Access

copies will be dropped to reduce the time and power
overheads [3].

In addition to timing, thermal, and reliability issues, con-
sidering the Quality of Service (QoS) of low-criticality (LC)
tasks is another challenge in designing MCSs [3], [12]. Qual-
ity of Service of LC tasks has different definitions in the
literature. Some research work selectively executes some LC
tasks in the overrun mode. Some other research works, reduce
the execution time of the LC tasks whenever it is necessary,
in which each task has a lower execution time in comparison
to its original worst-case execution time which leads to lower
QoS. In the independent periodic/sporadic task model by
increasing the periods of the LC tasks in the overrun mode the
QoS (the ratio of the number of executed jobs to the original
number of jobs for each LC task) will be decreased [22], [23].
Moreover, there exist some research works that drop all LC
tasks in the overrun mode [2], [18], [19]. Employing ther-
mal management and fault-tolerant techniques increases the
probability of dropping more LC tasks in the overrun or fault
occurrence scenario. Dropping all LC tasks in MCSs is not
acceptable [3], [12]. Therefore, in this paper, we guarantee a
minimum required QoS for LC tasks in all operation modes
of the system.

In the following motivational example, the problem of
the unbalanced temperature of the task replication mech-
anism in multicore mixed-criticality embedded systems is
discussed.

A. MOTIVATIONAL EXAMPLE

Let us consider a quad-core processor with 3W of TDP con-
straint [13] that executes a task graph with six tasks {Ty, ...,
Te}. Fig. 1a shows dependencies between the tasks where the
two numbers at each node show the low-level and high-level
worst-case execution times (WCET) of the corresponding
task, i.e., WCE0 and WCH!, respectively. The tasks share
a common deadline of D = 1400ms. Fig. 1b shows the
scheduling of the given task graph with the TP3M method
presented in [13] for the worst-case fault scenario. The TP3M
method considers N-Modular Redundancy (NMR) as the
fault-tolerant technique, where each task has N copies, and
their results are compared to perform a complete majority
voting. In this example, the TP3M method uses TMR (i.e.,
NMR with N = 3) and each task has three copies. The TP3M
method tries to schedule the tasks that meet the chip TDP.
Although this method meets the system’s power constraint,
as shown in Fig. lc, it cannot balance the temperature of the
cores efficiently. In Fig. lc, the differences between cores’
temperatures in TP3M method are shown; the chip tempera-
ture is unbalanced. Therefore, TP3M cannot be an efficient
method in terms of thermal balancing. Since it employs
peak-power-aware real-time scheduling, it cannot balance the
temperature of the processing cores. Hence, it is necessary
to present a method for balancing the system’s temperature
to avoid the negative effects of thermal unbalancing, such as
reliability degradation and unbalanced aging.

VOLUME 13, 2025

1) CONTRIBUTIONS

In this paper, we define the problem of mixed-criticality task
mapping and scheduling on a multicore embedded system
when exploiting the dynamic task replication technique while
meeting timing, reliability, and temperature constraints at
design time. While in the runtime the temperature is balanced
and the QoS is improved.

The main contributions of this paper are:

o Proposing a new dynamic task replication technique for
graph-based mixed-criticality tasks to tolerate transient
fault occurrence.

o Proposing peak-power-aware scheduling to meet the
TDP constraint through extracting Balancing Points
(BP) and Balancing Factors (BF) at the offline phase
to be exploited at run time for flattening temperature in
graph-based mixed-criticality embedded systems.

o Proposing a lightweight online manager to further
reduce the system temperature and evenly distribute the
heat on the surface of the chip through a run-time task
re-mapping technique to increase the lifetime reliability
of the whole system.

o Guaranteeing a minimum acceptable QoS for LC tasks
at the offline phase and improving it at the online
phase while meeting timing, reliability, and temperature
constraints.

2) PAPER ORGANIZATION

The remaining paper is arranged as follows. Section II pro-
vides a literature review on the subject, followed by the
required models and assumptions in Section III. Our proposed
method and algorithms are presented in Section IV. Exper-
imental results are presented in Section V, and Section VI
concludes the paper.

Il. RELATED WORK
The related work can be classified to three different
categories.

A. SCHEDULING ALGORITHMS IN MIXED-CRITICALITY
SYSTEMS WITHOUT CONSIDERING FAULT-TOLERANCE
AND PEAK-POWER/TEMPERATURE MANAGEMENT
Mixed-criticality systems were first introduced by Vestal [17].
Different scheduling algorithms are proposed for peri-
odic/sporadic MCSs, such as Earliest Deadline First with
Virtual Deadline (EDF-VD) [18], [19], [20], and [21] which
mostly discard all LC tasks after entering the overrun mode,
and Early Release-Earliest Deadline First (ER-EDF) [22]
and [23], which increases the period of LC tasks in the
overrun mode for guaranteeing QoS. The previous mentioned
papers consider single core platforms, however, there are
some studies such as [24], [25], and [26] which consider
multicore systems. Moreover, there are some research study
which consider scheduling of DAG-based tasks set on mul-
ticore mixed-criticality systems [27], [28], [38], and [39].
Apart from proposed scheduling algorithms for DAG-based

33159

IEEE Access

S. Safari et al.: ReTMiC: Reliability-Aware Thermal Management

TABLE 1. Overview of the related work.

Reference Application Model Real-time Model Architecture Model Fault-tolerance Technique Temperature / Peak-
Power Management
[L7][18][19][20][21] Sporadic Mixed-Criticality Single-core X X
[22][23] Periodic Mixed-Criticality Single-core X X
[24] Sporadic Mixed-Criticality Multi-core X x
[25][26] Periodic Mixed-Criticality Multi-core X x
[271[28][38][39] Sporadic DAG Mixed-Criticality Multi-core X X
[72] DAG Hard Real-time Heterogeneous Multi-core X X
[11] Sporadic Mixed-Criticality Single-core/multi-core Re-execution X
[29][62][63] Periodic/Sporadic Mixed-Criticality Single-core Re-execution X
[61] Periodic Mixed-Criticality Multi-core Re-execution X
[64] Frame-based Mixed-Criticality Single-core Re-execution X
[65] Sporadic Mixed-Criticality Homogenous Multi-core DMR, TMR, Replication X
[35] Periodic Mixed-Criticality Homogenous Multi-core Reliability-aware X
[36] Periodic Mixed-Criticality Single-core Re-execution X
[3] Sporadic Mixed-Criticality Homogenous Multi-core Replication X
[12] DAG Mixed-Criticality Homogenous Multi-core Standby-Sparing X
[37] Periodic, Sporadic Mixed-Criticality Homogenous Multi-core Standby-Sparing X
[71] Periodic Mixed-Criticality Homogenous Multi-core Checkpointing X
[5] Periodic Hard real-time Heterogeneous Multi-core Primary/backup v
[13] Periodic DAG Hard real-time Homogenous Multi-core NMR v
[15] Periodic Hard real-time Homogenous Multi-core Primary/backup v
[73] DAG Hard real-time Homogenous Multi-core Re-execution v
[66][67]1[68][69][70] Periodic Hard real-time Heterogeneous Multi-core X v
[74] Periodic Mixed-criticality Homogenous Multi-core X v
ReTMiC Periodic DAG Mixed-Criticality Homogenous Multi-core Task Replication v

MCSs, there are some scheduling algorithms for DAG-
based real-time systems. Kumar et al. in [72] have proposed
two low-overhead heuristic algorithms called Global Slack
Aware Quality-level Allocator (G-SLAQA) and Total Slack
Aware Quality-level Allocator (T-SLAQA), which can pro-
duce satisfactorily efficient as well as fast solutions within a
reasonable time. G-SLAQA, the baseline heuristic, is greedier
and quicker than its counterpart T-SLAQA, whose perfor-
mance is at least as efficient as G-SLAQA. The proposed
schemes’ efficiency has been extensively evaluated through
simulation-based experiments using benchmark and ran-
domly generated DTGs on heterogeneous multiprocessor
platforms. The study in [75] focused toward the design of
optimal as well as heuristic static scheduling techniques for
periodic DAGs on heterogeneous multiprocessor platforms
to minimize overall makespan. As it is clear, none of the
mentioned previous work considers thermal management or
fault-tolerant along with guaranteed QoS of LC tasks in the
dependent task model in mixed-criticality systems.

B. FAULT-TOLERANCE SCHEDULING WITHOUT
CONSIDERING PEAK-POWER OR TEMPERATURE
The study in [59] provides a comprehensive survey about
applying different fault-tolerant techniques in real-time sys-
tems (including soft, hard, mixed-criticality systems) with
considered goals and constraints of the mapping and schedul-
ing policies. Some recent works that explore the fault-tolerant
scheduling for MCSs without considering power/thermal
management such as works presented in [11], [29], [30], [61],
[62], [63], [64], and [65].

Few studies have considered power/energy, or tempera-
ture management in fault-tolerant mixed-criticality systems.

33160

The study in [35] has considered energy management in the
mixed-criticality system with three criticality levels while
the reliability of the system is kept at its original value.
The study in [36] has reduced the energy consumption of
a single-core MCS, which exploits re-execution as a fault-
tolerant technique. The work in [3] has proposed a scheme
to satisfy timeliness, energy management, fault tolerance,
and guaranteed service level in multicore MCSs with spo-
radic task models. The approaches in [12], and [37] have
focused on real-time constraints, energy management, reli-
ability requirements, and QoS in dual-criticality MCSs in
addition to exploiting standby-sparing to tolerate permanent
faults. The energy consumption of a mixed-criticality system
with an independent periodic task model is reduced in [71]
when checkpointing is exploited as the fault-tolerant tech-
nique. As it is clear, none of the previous work considers
thermal management in fault-tolerant MCSs in the dependent
task model.

C. PEAK-POWER/TEMPERATURE-AWARE MAPPING AND
SCHEDULING

Peak power reduction and thermal management have
been widely studied from the performance aspect in [7].
Pagani et al. [7] introduced a new power budgeting tech-
nique for multicore systems with no timing constraint. This
technique focuses on increasing performance while keeping
the processor’s temperature under a safe limit. The study
in [5] proposed a power management method for heteroge-
neous multicore systems that reduces power consumption
and tolerates both transient and permanent faults through
primary/backup fault-tolerant techniques while considering

VOLUME 13, 2025

S. Safari et al.: ReTMiC: Reliability-Aware Thermal Management

IEEE Access

core-level power constraint, real-time constraint, and aging
effect. Some works try to reduce thermal and peak power
while meeting the timing constraints [13], [15]. The ref-
erence [13] has proposed a new scheduling algorithm for
hard real-time systems to reduce the chip-level peak power
consumption and meet TDP. Chen et al. [16] proposed an
approximation algorithm for reducing the peak temperature
of multiprocessor systems with no heat transfer between the
processors of real-time tasks without precedence constraints.
The mentioned thermal-aware scheduling algorithms focus
on partitioned scheduling of periodic real-time tasks or a set
of job instances without periodicity.

None of these works have considered peak power and ther-
mal management in mixed-criticality systems with dependent
tasks. Few works, e.g. [31], [32], [33], and [34], cope
with the power/energy management problem in MCSs, with-
out considering reliability requirements. The study in [31]
has minimized the dynamic average power consumption of
single-cores through optimal DVFS in EDF-VD scheduling.
The work in [32] has extended the work in [31] to multicores.
The study in [33] has reduced static power consumption by
applying the DPM technique in single-core MCSs. Volp et al.
[34] have considered an energy budget for multicore MCSs,
which considers the energy utilization of HC tasks and drops
all LC tasks in overrun mode.

The research in [66], [67], [68], [69], and [70] present
the heuristic strategies for energy and temperature-efficient
scheduling of a set of hard real-time periodic tasks on a
DVFS-enabled heterogeneous platform. Devaraj et al. in [73]
have proposed a supervisory control-based fault-tolerant
scheduling synthesis scheme for hard real-time tasks mod-
eled as precedence-constrained task graphs, executing on
homogeneous multicores. Further, the authors devise search
strategies to obtain schedules that maximize reliability and
minimize peak power consumption.

None of the mentioned previous work in this category
considers both thermal management and fault-tolerant along
with guaranteed QoS of LC tasks in the dependent task model
in mixed-criticality systems.

Table 1 shows the summary of related works from the
perspective of application, real-time and architecture models,
following with applied fault tolerance technique and temper-
ature management.

IIl. MODELS AND ASSUMPTIONS

This section presents the task, system, reliability, power con-
sumption, and thermal models to formulate our proposed
method.

A. SYSTEM AND APPLICATION MODEL

We consider a homogeneous multicore embedded system
with M cores {Cy, Cs, ..., Cy} that supports DVFS with
a finite set of available voltage and frequency levels, i.e.
VF={Vfnin> ---» Vmax }- In this paper, we consider directed
acyclic graphs (DAGs) where n dependent tasks {T1, Ta, ...,
T, } are executed and should be completed before the deadline

VOLUME 13, 2025

D of the graph. A task graph is composed of nodes and
edges where each node represents a task while the edges
represent data dependencies between the tasks. Fig. 1a shows
an example task graph with LC and HC nodes. Each task
T; has {¢;, WCFO, WClll| X;, s, ei, O;, SU;, PR;, P;, i}
parameters that will be determined in the offline phase:

o ¢ € {LC, HC}: The criticality level of T;.

. WCILO: The designer-specified WCET for T;.

« WCH!: The CAs-specified WCET for T;.

o X;: The assigned core to T;.

o 5, ¢;: The start time and completion time of T; after

mapping and scheduling.

e O; € {NO, OV}: The operational mode of T;.

e SU;, PR;: List of successors and predecessors of T;.

o P;: Peak power consumption of T;.

o r; : The number of required replicas of T;.

In the dual-criticality systems, HC tasks have two WCETs,
one that is estimated by the system designer, which is called
low-level WCET (WCL?), and one that is more pessimistic
and estimated by the certification authority (CA), which
is called high-level WCET (WCH!). LC tasks have only
low-level WCETs. Therefore, if ¢; =LC, WCH =wcCLO,
otherwise WCiLO < WCf” [11], [38]. The system starts its
operation in the normal mode (NO). Whenever an HC task
exceeds its WCLO without signaling completion, the system
switches to the overrun mode (OV) where HC tasks will be
executed based on WCH! . Fig. 3 and Table 4 in Section IV-C
show an example of a mixed-criticality DAG with its parame-
ters. We will exploit this example to introduce our illustrative
example in Section IV-C. Indeed, the illustrative example (see
Section IV-C) will also reflect all mentioned parameters in
detail.

B. POWER CONSUMPTION MODEL

The power model consists of static and dynamic compo-
nents [3], [40], and [41]. The total power consumption of a
core is:

P; = Pgatic + denamic = Cejj‘-viz'fi + Vidieak + Pina (1)

where, C,p, vi, and f; are the effective switching capacitance,
operating voltage, and frequency of the core during the exe-
cution of task T;, respectively. Intuitively, down-scaling the
v-f levels will reduce power consumption. When DVES is
exploited, the task T; is executed with a lower v-f level than
Vfmax Which is selected from available v-f levels of the core.
However, it will decrease the reliability of the tasks [42]. Note
that in this paper, we apply the DVFS technique such that the
reliability of each task with its corresponding replicas is not
degraded and is kept at an acceptable level.

C. FAULT AND RELIABILITY MODEL

Since safety-critical applications are often controlled by
mixed-criticality embedded systems, tolerating fault occur-
rence and reaching high reliability are important goals; i.e.,

33161

IEEE Access

S. Safari et al.: ReTMiC: Reliability-Aware Thermal Management

TABLE 2. DO178B safety requierement.

¢ A B C D E

PFH <10° | <107 | <10° <103 -

faults must be detected, and appropriate recovery tasks must
be successfully completed before the deadlines. In MCSs,
each criticality level has an important property, which is
known as the Probability of Failure per Hour (PFH). PFH
represents the maximum probability of failure to which each
task of that level must adapt. The avionics DO-178B standard
defines five criticality levels from A with the highest, to E
with the lowest criticality levels. Safety requirements of each
criticality level are shown in Table 2 [59].

Faults can be categorized into transient and permanent
faults. In this paper, we focus on tolerating transient faults
because they occur more frequently than permanent faults
with a ratio of 100:1 or higher [42]. Exponential distribution
with an arrival rate A is exploited to model transient faults [8].
Note that the average fault rate at the maximum voltage and
frequency is denoted by Ag. The fault rate at a scaled voltage
Vi = PiVmax(Pmin < Pi < Pmax = 1) can be expressed as [8]
and [42]:

d(-p;)

A(pi) = Ao10 ' Pmin @

where, d is a constant value in the range of 2 to 6 [43].
We assume that Ao equals 107 at the maximum available
frequency [41]. Reliability is defined as the probability of the
correct operation of the system according to its specifications
in the time interval [0, 7], with the assumption that it was
functioning correctly at time 0 [43]. Assuming f; = 0ifax (0
is the scaling factor of frequency (opin < 0; < Opax = 1))
and v; = p;jViax, the reliability of the task T; executing at
voltage v; and frequency f; in the worst-case scenario, when
all HC tasks and corresponding replicas are executed with
WCH! | can be expressed as:

wclll
—Ap) 5

R (pi,o1) = e 3)

Therefore, the Probability of Failure (PoF) of the task Tj; is:

PoF{"(pi, 01) =1 = R{" (pi, 07) @

In the task replication fault-tolerant technique, multiple
copies of each task are executed on multiple cores, which
significantly increases the likelihood of completing at least
one of them successfully (i.e., without encountering transient
faults). Note that each replica task has the same successors
and predecessors as the original task. The minimum number
of required copies for each HC task is achieved as follows [3]:

PoF (i, 67)" < PoF 4r4e1 Q)

33162

ZOg(POFtarget))
Llog(PoFf”(pi, m-))J = ©

where, PoF is the probability of failure of a task. The
PoFgrge; is the target PoF that should be met based on
safety standards. In the task replication technique, an accep-
tance test is applied at the end of each task’s execution
time. We consider that each core employs a low-cost, low-
power, and high-accuracy fault detection hardware checker
like Argus [44]. Therefore, as soon as the original task is com-
pleted successfully, the remaining parts of its corresponding
replica(s) will be dropped to avoid further power consump-
tion and heat generation. It should be noted that the space
shuttle [45], X-38 Crew return vehicle [46], and Boeing 777
[47] are examples of real applications that use more than two
replicas to satisfy the given reliability target based on safety
standards.

D. THERMAL MODEL

We exploit the RC thermal network [48] to model the thermal
behavior of the system with electrical circuit components.
Our thermal model consists of N nodes, where N < Z.
We assume our system consists of M cores, and Z blocks
in the floorplan, such that Z-M is the number of blocks that
correspond to other types of components, e.g., L2 caches and
memory controllers. Transient temperature is modeled with a
thermal capacitance for each node in the RC thermal network,
and thermal nodes are interconnected by using thermal con-
ductance. We denote the ambient temperature by 64" and
consider it to be constant. Therefore, no capacitance will be
associated with 4™ In this model, heat sources indicate the
power consumption of the cores and other blocks on the chip.
We model each thermal node’s temperature as a function of
its power consumption, the temperature of the neighboring
nodes, and the ambient temperature. We build a system of
N differential equations for an RC thermal network with N
thermal nodes, which can be described as [7]:

A0’ +BO =P + 6°"G (7

The matrices A=[a;;lvxy and B=[b;;lyxn represent
thermal capacitance and conductance values, respectively.
In matrix B, values are in [watt/kelvin] unit and include
the thermal conductance values between vertical and lateral
neighboring nodes. The column vector 6 = [0;]yx1 contains
the temperature value of each node, and the column vector
07 = [6/;]nx1 accounts for the first-order derivative of the
temperature on each node with recording to time. The power
consumption measurement of each node is contained in the
column vector P = [p;]n «1. We represent the thermal conduc-
tance between each node and the ambient by using the column
vector G = [g;]n x 1. For each node i, we set the corresponding
value in the column vector G to zero if the node is not related
to the ambient temperature, e.g., the temperature of a core
or an internal node. For calculating steady-state temperature,
we set A to zero then we have [7]:

VOLUME 13, 2025

S. Safari et al.: ReTMiC: Reliability-Aware Thermal Management

IEEE Access

TABLE 3. Notations.

Symbol Description
M Set of homogenous cores in the system
VE Set of voltage and frequency levels in the system,
where VE={Vfyin, ... Vfmar}
n Set of dependent tasks {T, To, ..., T,}
D Deadline of the whole graph
G The criticality level of T;, where {; € {LC, HC}
wCko The designer-specified WCET for T;
wcCH! The CAs-specified WCET for T;
X; The assigned core to T;
Si The start time of T; after mapping and scheduling
The completion time of T, after mapping and
é scheduling
The operational mode of T;, where O; € {NO,
O;
oV}
SU; List of successors of T;
PR; List of predecessors of T;
P; Peak power consumption of T;
T The number of required replicas of T;
A(p;) The fault rate at a scaled voltage
i The scaling factor of voltage
o; The scaling factor of frequency
The reliability of the task T, executing at voltage v;
Rf(p;,0;) | and frequency f;, when all HC tasks and
corresponding replicas are executed with WC
PoF!!'(p;,0;) | The probability of Failure (PoF) of the task T;
ot Ambient temperature
% steady-state temperature
0 pC. The maximum and minimum chip temperatures at a
Max: PMin— | gpecific time

0 =B 1(P +6""G))

Table 3 shows all exploited notations throughout the paper.

IV. PROPOSED METHOD

Fig. 2 shows the overall operational flow of the proposed ReT-
MiC (Reliability-Aware Thermal Management in Multicore
Mixed- Criticality Embedded Systems) method. First, the
scheduler receives software and hardware level parameters,
as explained in Section III. As shown in IV-A, the proposed
method consists of two offline and online phases. In the
offline phase, first, the minimum number of the required
replica(s) for each task in the maximum v-f level to satisfy the
reliability target is computed, and the task graph is extended
to include replica(s). Then, Algorithm 1 is called to determine
the minimum v-f levels for each task such that the reliability
target is satisfied. In the next step, all the normal and overrun
parts of each HC task and corresponding replicas are mapped
to the cores and scheduled in a way that meets timing and
TDP constraints. Next, LC tasks are mapped and scheduled
in a way that satisfies the QoS and TPD constraints. In the
final extracted schedule at the offline phase, all LC, HC,
and corresponding replica tasks are scheduled in a way that

VOLUME 13, 2025

Software-Level Parameters

Timing constraint ‘

Min. required QoS @
Reliability requirements @ @ @
Task dependencies .

v

Hardware-Level Parameters

‘ Chip TDP H v-f levels ‘

Processing elements

Y

Offline Scheduling

Task graph ‘i\\,\?phcm‘m Find min. acceptable v-f level for each task and

replicas
v

Mapping and scheduling normal part and then
the overrun part of each HC task with
considering TDP

Mapping and scheduling min. Determining balancing points
required LC tasks with considering 3 (BPs) and balancing factors (BFs)
TDP in normal blocks for each block

v
Online Scheduling

« Thermal balancing in the BPs using BFs
« Maximizing QoS of LC tasks by exploiting slack times
. Handling fault and overrun occurrence

FIGURE 2. The operational flow of our proposed ReTMiC scheme.

meets the deadline, reliability, TPD, and QoS constraints
even in the worst-case fault or overrun occurrence scenarios.
However, since the actual temperatures of tasks are deter-
mined at run-time, the temperature should be balanced at
runtime. Hence, at design time, the scheduler should deter-
mine the temperature balancing points and balancing factors
that will be exploited at run-time. To this end, according to the
scheduling, the proposed method specifies Balancing Points
(BPs) and Balancing Factors (BFs) (explained in detail in
subsection IV-B1) to balance the overall temperature of the
chip at run-time.

BPs are time points before starting each execution block,
and at each BP the online algorithm checks the temperature
of tasks inside each execution block for re-mapping. It should
be noted that at each execution block, only one task will be
executed on each core. Therefore, in this paper, not only the
peak temperature is satisfied thorough considering the TDP
threshold, but also the overall temperature will be balanced
to avoid aging effects and increasing permanent fault rate.
Indeed, by re-mapping the tasks at the beginning of each
execution block (at each balancing point) before starting the
execution of the task, the overall temperature will be balanced
without violating the peak temperature constraint. The bal-
ancing points, the eligible tasks for execution in each block,
and balancing factors are determined through our proposed
methods in Section I'V-B.

In the online phase, the scheduler balances the system
temperature in different BPs by exploiting balance factors and
task migration. Moreover, dynamic released slack times at
runtime (due to replica cancellation, cancellation of overrun
sections, or early completion of tasks) will be exploited to
schedule more LC tasks to further improve the overall QoS
(explained in subsection IV-B2).

33163

IEEE Access

S. Safari et al.: ReTMiC: Reliability-Aware Thermal Management

A. PROBLEM DEFINITION
In the following, we define the problem of mixed-criticality
task mapping and scheduling on a multicore embedded sys-
tem when exploiting the task replication technique while
meeting temperature constraints at design time and balancing
the temperature at runtime.

1) OPTIMIZATION GOAL
In this paper, we have two optimization goals as follows:

o Minimize the A6 (spatial thermal variation) of running
tasks in the system chip:

Minimize : AQ = 915” - Hfﬁn &)

where, 6, . and 0, .aFe t'he max1murp and minimum chip
temperatures at a specific time, respectively.

o Maximize the total QoS of LC tasks:

o # Scheduled LC tasks
Maximize Q0 ora1 = total # LC tasks (10)

2) RELIABILITY CONSTRAINT

The number of replicas (j) and v-f levels of each task (T;)
should be chosen to satisfy the task-level reliability target as
follows:

ri
Rtargel <VTi,1-— H(l - Rreplicaj) (1)
Jj=1
3) TIMING CONSTRAINT

The completion time of each preemptive task should not
exceed the task graph timing constraint:

VT; e; <D (12)

4) CHIP POWER CONSTRAINT
The total power consumption of all underlying cores should
be less than the chip TDP constraint at each time slot:

VT;intimeslotk : »_ Piy < TDP (13)

5) QoS CONSTRAINT
The QoS of the system in the offline phase should be bigger
than or equal to Q0S4rger, Which is the input of the system:

Scheduled LC tasks

N < 14
QoS arger = total # LC tasks (14)

6) TASK GRAPH DEPENDENCY CONSTRAINTS
The completion time of the predecessor task (PR;) should be
smaller than the start time of its dependent task.

VT;, Tj,e; <sj, ifl; € PR; (15)

33164

B. ALGORITHM DISCUSSION
Our proposed method consists of offline and online phases,
which are explained in detail as follows.

1) OFFLINE PHASE

The offline phase consists of the following steps. First, the
minimum number of required replicas and corresponding v-f
level for each task is determined in Algorithm 1. Then HC
tasks and their corresponding replicas and then LC tasks
are assigned to cores and scheduled through the proposed
method (Algorithm 2 describes the steps of scheduling in
detail). Finally, the proposed method for selecting the set of
eligible tasks that can be executed in each execution block is
described in Algorithm 3. Finally, the balancing points (BP)
and balancing factors (BF) that will be exploited at run-time
will be determined at design time.

It is worth mentioning that the mixed-criticality systems
should guarantee that all the constraints are met in the
worst-case scenario in the design time because they are used
in critical applications. Therefore, in mixed-criticality appli-
cations, all timing requirements should be guaranteed offline,
before putting the system in operation [56]. If even one HC
task cannot be completed within its timing constraints, the
system must notify this fact in advance. Therefore, the task
set should be known a priori which is one of the most impor-
tant characteristics of real-time systems (that is known as
predictability) [58]. Hence, in the offline phase, we have con-
sidered the worst-case scenario of running tasks on the cores.
Therefore, we have pushed most of the computation over-
heads to the offline phase. Hence, in our proposed method,
in the final extracted schedule at the offline phase, all LC, HC,
and corresponding replica tasks are scheduled in a way that
meets the deadline, reliability, TPD, and QoS constraints even
in the worst-case fault or overrun occurrence scenarios. How-
ever, since the actual temperatures of tasks are determined at
run-time, the temperature can be balanced at runtime. Hence,
at design time, the scheduler should determine the tempera-
ture balancing points (BP) and balancing factors (BF) which
will be exploited at run-time. To this end, according to the
offline scheduling, the proposed method specifies Balancing
Points (BPs) and Balancing Factors (BFs) (explained in detail
in subsection IV-B1) to balance the overall temperature of the
chip at run-time.

2) DETERMINING THE MINIMUM NUMBER OF REPLICAS

Algorithm 1 demonstrates the pseudo-code for finding the
minimum number of the replica(s) and v-f levels for each
task and its corresponding replicas. At first, the algorithm
uses Eq. 5 to find the minimum number of replicas for each
task at the maximum v-f level (line 1). In lines 2-4, the
algorithm initializes the maximum available v-f levels for
all generated replicas by the VF.getMax function. In lines
5-14, the algorithm finds the minimum acceptable v-f level
for each task with its corresponding replicas (each task has
Jj replicas) that still meet the reliability target with the same

VOLUME 13, 2025

S. Safari et al.: ReTMiC: Reliability-Aware Thermal Management

IEEE Access

number of replicas. Indeed, each task and its corresponding
replicas are selected consecutively through the For loop, and
in each iteration, only the v-f level of one of the versions
of the task is reduced (line 7). Then, again through Eq. 11,
the algorithm calculates the reliability of the selected task
(through calculateReliability function). If the calculated reli-
ability is greater than or equal to the reliability target of the
task (Tg.reliability), and the temporary variable j is smaller
than the number of task replicas (Tp.R()), the algorithm
increases j and continues the loop to check another replica for
v-f level reduction (lines 8-10). Otherwise, if the temporary
variable j is not smaller than the number of task replicas, the
algorithm sets j to one, to start the process of decreasing the
v-f level of the replica(s) by starting the first version (lines
11-12). In opposite to line 8, if the calculated reliability with
a new v-f level does not satisfy the task reliability target,
it shows that the algorithm cannot reduce the v-f level any-
more. In this case, the previous computed v-f level, which
satisfies the reliability target, is selected in line 15 through
the increaseVF() function. In line 16, the set of tasks and
their corresponding replicas with their computed v-f levels
are returned. In another scenario, when the algorithm reaches
the lowest v-f level of the system for all replicas, the loop
is finished and the algorithm returns the computed v-f levels
in line 19. The time complexity of Algorithm 1 is O(VxT),
where V and T are the numbers of v-f levels and tasks,
respectively. TiQTiQTiQ

3) TASKS' MAPPING AND SCHEDULING

Algorithm 2 shows the pseudo-code of the task mapping and
scheduling mechanisms for HC and LC tasks in the offline
phase. It is worth mentioning that our proposed method can
work based on any mapping policies in the offline phase such
as Worst-Fit Decreasing (WFD), First-Fit Decreasing (FFD),
and Best-Fit Decreasing (BFD) bin packing. Moreover, in the
online phase, tasks will be re-mapped based on tasks’ thermal
behavior. In this algorithm, we use the first-fit (FF) mapping
policy. In the First-Fit Decreasing bin packing, cores are
sorted in decreasing order by utilization, then the selected task
is allocated into the core with the lowest capacity available
(largest utilization), in which it can be feasibly allocated. In
Algorithm 2, at first, all HC tasks and their corresponding
replicas in the graph are assigned to t in line 1. Then,
in line 2, all tasks in T are sorted based on their WCL0 in
decreasing order. In line 3, the balancing point (BP) array is
initialized to keep the balancing points time in the scheduling.
In lines 4-17, all HC tasks and their corresponding replicas
are scheduled such that timing, reliability, and power con-
straints are met. In the While loop, first, Algorithm 3 is called
every time to return the tasks that can be scheduled in the
present block through the SelectTask(G, t,C,TDP) function.
The maximum number of eligible tasks in each block (S7.Size
in Algorithm 3) is equal to the number of cores (C.Size),
and each task is assigned to a separate core. In our proposed
method, there are two kinds of blocks, known as normal-
Blocks and overrunBlocks, where normalBlocks include all

VOLUME 13, 2025

Algorithm 1 Voltage and Frequency Calculation for Tasks
and Replicas

Inputs: Tp: Task and corresponding replicas with v-f level,
VF':Available processor v-f levels.
Output: The number of task’s replicas, and v-f level for each replica.

Function TaskReplica(Tg, VF)
1. Tg.R< Calculate #replicas for the task in max. v-f level using
Eq. 5;

2. fori = 0to Tp.R() do

3. T[Q.setVF<—VF.getMaX(); //Set Max. v-f level for each
replica

4. end for

5.j «<1; // Number of replicas for each task

6. for i = 0 to Tp.R()x(VF.Size()-1) do

7. T. .decreaseVF();

8. if Tg.calculateReliability() > Ty .reliability then
Eq. 11

9. if j < Tp.R() then

/Iw.r.t.

10. j < Jj+1
11. else

12. j<1;

13. end if

14. else

15. T’Q .increase VF();
16. return Tg;

17. endif

18. end for

19. return Typ;

End function

tasks based on their WCLO, while overrunBlocks consider the
overrun parts of HC tasks (WCH_w L) In line 6, the com-
pletion time of the last task (including its overrun part) that
is scheduled until the current time, among all cores, is deter-
mined and assigned to the SchedulingFinishTime parameter.
The start time of each new block (newBlockStartTime param-
eter) will be equal to schedulingFinishTime. Next, in lines
7-10, the algorithm schedules normal parts of all HC tasks one
by one in the current block such that all tasks are shifted to
the end of the block, i.e., newBlockStartTime-+blockLength-
blockTasks[i].WCLO (line 8). In line 9, after scheduling each
replica of each task, the counter of replicas is increased
(ScheduledReplica()). After this step, in lines 11-13, the over-
run parts of the selected tasks are scheduled at the end of their
normal parts on the same core.

It should be noted that tasks in the overrun blocks will be
scheduled from the beginning of the block to the end time
while tasks in the normal blocks are shifted to the end of
the block. In lines 14-16, the deadline violation is checked.
In line 14, the number of BPs is multiplied by the worst-case
time overhead of the online mechanism (OH5) and its over-
head is subtracted from the deadline (D). If the deadline
(considering the online overhead) is violated, the algorithm
returns infeasible. Otherwise, it continues the procedure by
adding the schedulingFinishTime as a new balancing point to
the BP array. After scheduling all HC tasks and correspond-
ing replicas, in lines 18-49, the algorithm tries to add as many
LC tasks as possible into the scheduling. For this purpose,

33165

IEEE Access

S. Safari et al.: ReTMiC: Reliability-Aware Thermal Management

Algorithm 2 The Task Scheduling Mechanism in the Offline
Phase

Inputs: G: Task graph, D: Deadline, C: Set of cores, TDP: Chip TDP, OHTB: Time
overhead of online thermal balancing mechanism.

Output: S : The task scheduling, BPs: Balancing points, BFs: balancing factors for
each core of blocks.

Function OfflineScheduling(G, D,C,0HE)

7 <« G.getAllHCTasks; //HC tasks and their replicas
7.sort(); // sort tasks in decreasing order w.r.t wcLo
BP < null; //initialize an array for saving the time of BPs
while all tasks in 7 are not scheduled do

blockTasks < SelectTask(G, t,C,TDP); //Call
Algorithm 3
6 newBlockStartTime <— S.schedulingFinishTime();
7. for i = 1 to blockTasks. Size() do
8 S. Schedule (blockTasksli],
(newBlockStartTime+blockLength- blockTasks[i].WCL0), C[i]);

DR

9. blockTasks [i].ScheduledReplica()++;

10. end for

11. foreach rask in blockTasks do

12. S. ScheduleOverrunPart(task);

13. end for

14. if S.SchedulingFinishTime() > D- #BPsx OH! Bthen
15. return infeasible;

16. BP. Add(S.schedulingFinishTime());
17. end while
18. foreach normalBlock in S do

19. if normalBlock does not have a free core then

20. continue;

21. end if

22. foreach unscheduled LC task in G do

23. k < FinishTimeOfPredecessors(LC);

24. if block.startTime > k and blockLength>LC.WC Othen
25. if blockTasksPeakPower+LC.peakPower()<TDP then
26. S.Schedule(LC, (blockStartTime—+blockLength-
LC. WCLO), firstFreeCore);

27. LC.Scheduled()++;

28. if the block does not have a free core then

29. break;

30. end if

31. end if

32. end if

33. end for

34. end for

35. v« G.getAllUnscheduledLCTasks;

36 t.sort(); // sort tasks in decreasing order w.r.t wcLo
37. while all tasks in t are not scheduled do

38. blockTasks < SelectTask(G, t,TDP); //Call Algorithm 3
39. newBlockStartTime < S.schedulingFinishTime();

40. for i = 1 to blockTasks. Size() do

41. S. Schedule(blockTasks(i],

(newBlockStartTime-+blockLength- blockTasks[i1. WCL0), Clil;
42. blockTasks [i].Scheduled()++;

43. end for

44 if S.schedulingFinishTime() > D- #BPsx OH! Bthen

45. S.removeAlILCTasks(D-(#BPsx OHTB));

46. Break;

47. end if

48. BP. Add(S.schedulingFinishTime());

49. end while

50. if $.QoS < QoStarget then

51. return infeasible;

52. end if

53. foreach raskof each blocks in S do

54. BFs.Add(compute BFs for task from Eq. 16);
55. end for

56. return (S, BPs, BFs),

End function

first, it tries to add LC tasks to existing normal blocks.
In line 19, it checks whether the selected block has a free core.

33166

If there is a free core, it checks the unscheduled LC tasks for
adding to the selected block (lines 22-33). If the conditions
of adding a task to a block (dependency (k is equal to the
finishing time of all predecessors of LC tasks), task length
(WCL9), and TDP constraints) are met in lines 24-25, the
algorithm schedules the selected LC task in the block through
S.Schedule(LC, (blockStartTime+blockLength- LC.WC0),
firstFreeCore) function (line 26). Otherwise, the next LC task
will be checked for scheduling. If, after adding an LC task
to a block, there is a remaining free core in the selected
block, the algorithm tries to add another LC task. Otherwise,
it breaks the loop and continues the procedure with the next
normal block (lines 28-29). After checking all present normal
blocks, the algorithm should use the remaining time to the
deadline to make new normal blocks and schedule more
LC tasks. For this purpose, the algorithm uses the same
mechanism that has been presented for scheduling HC tasks
(lines 35-49). In line 44, it checks the deadline violation for
LC tasks. If any task violates the deadline, the algorithm in
line 45 removes all LC tasks with a completion time bigger
than the deadline considering the online overhead through
the S.removeAlILCTasks(D-(#BPsx OH'?)) function. Then,
the QoS of the scheduling is compared to the target QoS. If the
Q0Sarger 1s not satisfied, the algorithm returns infeasible,
because the QoS is the constraint of the system and at design
time a minimum acceptable level of QoS should be guaran-
teed. Finally, the algorithm starts to calculate the balancing
factors (BFs). At runtime, the online manager will exploit BF's
for balancing the temperature of the processing cores (lines
53-55). In the end, it returns the scheduling (S), BPs, and BF’s.
The purpose of determining BPs is to exploit the re-mapping
technique instead of task migration during the execution of
any task. Because in task migration a task will be preempted
in the middle of its execution on a core and continue its execu-
tion on another core, which has unpredictable time overhead.
However, in the re-mapping technique, the mapping of tasks
may be changed at the beginning of each block before the task
is started to execute. The time complexity of Algorithm 2 is
O(T x C), where T and C are the number of tasks and cores.

4) DETERMINING ELIGIBLE TASKS FOR EXECUTION IN A
BLOCK

Algorithm 3 shows the pseudo-code of selecting tasks that can
be executed in one block. In the beginning, the ST array (The
set of selected tasks that can run in one block) is initialized
to null (line 1). This array is used to save the selected tasks
on each block. Then, the variable TPP is set to zero. TPP
keeps the sum of the peak power consumption of selected
tasks at each block. In line 3, the maximum number of tasks in
each block (S7.Size) is equal to the number of cores (C.Size).
In line 4, the temporary variable (i.e., flag) is initialized to
false, which is used to identify the situation when there are no
tasks for selection. In lines 5-13, the algorithm iterates among
tasks to find a proper task that can be added to ST. In this loop
there are two conditions: 1) the longer tasks are selected as
soon as possible, and 2) the replicas of each task are executed

VOLUME 13, 2025

S. Safari et al.: ReTMiC: Reliability-Aware Thermal Management

IEEE Access

Algorithm 3 Selecting Tasks That Can be Run in Each Block

Algorithm 4 Online Thermal Balancing

Inputs: G: Task graph (including all information related to each
task), 7: Selected tasks from Algorithm 2, C: Set of cores, TDP:
Chip TDP.

Output: ST: Selected tasks that can run in one block.

Inputs: S : The task scheduling, C: Set of processor cores, BP: Bal-
ancing points, BFs: Balancing factors of the blocks, 0(c;): Current
core’s temperature

Output: Tasks re-mapping.

Function SelectTask(G,t,C,TDP)

ST <« null;

TPP < 0; // Sum of selected tasks’ peak power

while ST.Size() # C.Size() do

flag < false;
for i = 1 to 7.Size() do

if 7[i] predecessors are not scheduled then continue;
if 7[i].ScheduledReplica()+ST.NumberOf(z[i])+1
> t[i].R()

- then continue;

8. if 7[i].peakPower()+TPP >TDP then continue;

9. ST.Add(z[i]);

10. TPP < TPP+t[i].peakPower();

11. flag < true;

12. if ST.Size() = C.Size() Break;

13. end for

14. if flag = false then Break;

15. end while

16. return ST;

End function

Nounkwb -

in a different block as much as possible. By exploiting these
conditions, replicas can be immediately dropped after the suc-
cessful completion of the original task. Next, the algorithm
checks whether predecessors of the current task are scheduled
in the past blocks. In line 7, if the number of replicas for the
selected task is equal to the required number of replicas for
the corresponding task, the algorithm goes on with the next
task (z[i].R() shows the number of replicas for each task).
In line 8, the new peak power consumption of tasks with
adding a new task to this block is checked. If the summation
of this task’s peak power with variable TPP violates the chip
TDP, it means that this task cannot be scheduled in the current
block. Therefore, the algorithm goes on with the next task.
If the algorithm passes lines 6-8, it shows that the selected
task can be executed in the block. In line 9, the selected task
is added to the ST array, and in line 10, the algorithm updates
the TPP array. In line 11, the temporary variable becomes
true to show that the algorithm selects at least one task in
one complete iteration of the For loop. After ending one
complete iteration of the For loop, the temporary variable in
line 14 is checked. If it was false, it means that there is no
other task that can be executed in the current block, and the
algorithm breaks the While loop, and in line 16, it returns the
variable ST that keeps the selected tasks. The time complexity
of Algorithms 3 is O(T x C), where T and C are the number
of tasks and cores. >

5) ONLINE PHASE

At runtime, we exploit a re-mapping technique based on
the value of BFs that are calculated in the offline phase
(Algorithm 2) and the temperature of the BPs to balance
the temperature of the processing cores. Indeed, BF is an

VOLUME 13, 2025

Function ThermalBalancing(S, C,BP,BFs,0)
1. if S. Time = BP then // checking for reaching the balancing
point

2. fori=1to C. Size do

3 Selected < Select core in the block with biggest BF in
BFss;

4 c€o0l Select core with smallest 6(c;) in C;

5 S Map(Selected in cCooly,

6. C Remove(cC0%);

7. BFs.Remove(Selected);

8. end for

End function

auxiliary criterion for approximating temperature behavior
on each core. The following proposed equation computes the
BF for each core (C;):

ioo + eAmb

slack time
BF;=({1— ——
block length

In the above equation, slack time is the available slack
time in the normal block, 91.00 is the steady-state tem-
perature of the corresponding task, and 64™ indicates
the ambient temperature. In this equation, the coefficient
(1 — (slack time [block length)) is used to indicate the effect
of slack times (that may exist in scheduling before executing
the tasks of each block on the cores) on the final temperature
of each task of the block. It is worth mentioning that to extract
the Gf’o for each task, similar to [49], all tasks are executed,
one at a time at the selected frequency on a single core of the
processor in the offline phase.

Algorithm 4 shows the pseudo-code of the online thermal
balancing and task re-mapping mechanism. First, in line 1,
the current time of scheduling is checked. If the schedul-
ing reaches a balancing point, the online manager in each
iteration selects the core in the block with the biggest BF
(line 3) and maps its corresponding task to the core with the
lowest current temperature (C<°°!). In lines 4-5, the mapping
is updated based on the mentioned changes. Our proposed
algorithm decides about re-mapping at the beginning of each
block; i.e., before the start of execution of the tasks in the
block. Therefore, there are no currently running tasks and
no task will be terminated in the middle of its execution.
Moreover, the overhead of re-mapping is considered a part
of the worst-case execution time (WCET) of the task with the
longest execution time in each partition.

The time complexity of Algorithm 4 is O(C x logC), where
C is the number of cores. It is worth mentioning that based
on our observation in the worst-case scenario on a 36-core
system the time overhead of the online thermal balancing
mechanism is 43us for each BP.

33167

IEEE Access

S. Safari et al.: ReTMiC: Reliability-Aware Thermal Management

Low-Criticality
Tasks

High-Criticality
Tasks

——————————————— D=120ms

FIGURE 3. An lllustrative Example.

TABLE 4. The illustrative example task set details.

Task I v-f level WwWC | wct!
Ty HC [1,153v, 1.7GHz] 18 25
T, | HC [1,153v, 1.7GHz] 18 25
T, | HC [1,318v, 2.0GHz] 15 21
Ty, HC [1,153v, 1.7GHz] 19 23
T,, | HC [1,153v, 1.7GHz] 19 23
Ths HC [1,318v, 2.0GHz] 16 19
T,, | HC [1,318v, 2.0GHz] 11 18
T;, HC [1,318v, 2.0GHz] 11 18
Tay HC [1,153v, 1.7GHz] 7 9
Tap HC [1,318v, 2.0GHZ] 6 8
Tss HC [1,318v, 2.0GHz] 6 8
Ts | LC [0,973v, 1.0GHz] 10 -
Te HC [1,048v, 1.3GHz] 10 16
Te, | HC [1,048v, 1.3GHz] 10 16
T, | LC [0,973v, 1.0GHz] 10 -
Ts, HC [1,318v, 2.0GHz] 3 6
Te, | HC [1,318v, 2.0GHz] 3 6
Ty LC [0,973v, 1.0GHz] 12 -

In the online phase, dynamic slack times that are released
due to replica or overrun cancelation, or early completion of
tasks are used to improve the QoS. In runtime, the scheduler
finds the longest LC task (whose predecessors have been
completely executed) that can fit in the released slack times.
Then, TDP constraint of the system including the execution
of the selected LC task is checked. If all system constraints
are met, the selected LC task will be scheduled. Otherwise,
the online scheduler tries to find another LC task that can fit
in the released slack time.

It is worth mentioning that since the mapping of tasks to
cores and extracting balancing points and balancing factors
are done in the offline phase, the proposed method can be
scalable to a higher number of DAGs or heavy DAGs with
the higher number of tasks, and higher number of cores.

C. AN ILLUSTRATIVE EXAMPLE

In this subsection, we use an example to illustrate how our
ReTMiC method works. In this example, we consider a task
graph with six HC and three LC tasks, as presented in Fig. 3,
whose detailed parameters are listed in Table 4. These tasks
share a common deadline, D = 120ms. We consider a
quad-core processor with a TDP of 3W. The red number
above each node of the task graph shows the required number

33168

of replicas for each task (For example, task T; has three
replicas which are represented with Ty 1, Ty 2, and Ty 3,
respectively). According to Algorithm 1, the v-f levels for the
original task and all replicas are determined. The difference in
the height of boxes, that show the tasks, reflects their different
v-f levels. After selecting the appropriate v-f level, based on
Algorithm 2 and Algorithm 3, the scheduler starts selecting
eligible tasks that can be executed in one block. For simplicity
of presentation of task selection for executing in one block
in Algorithm 3, we have extracted the tasks queue in each
iteration of Algorithm 3, as shown in Fig. 4. The tasks in each
iteration are sorted based on WC? and the scheduler tries not
to schedule more than one replica of each task in one block.
Selected tasks in each iteration of Algorithm 3 are shown
with a green box in Fig. 4. In this example, T; and T; can
be selected first because they do not have any predecessors
and are not dependent on each other. Based on the Longest
Task First (LTF) policy and tasks peak power, two replicas of
T, and one replica of T are selected (Fig. 4a) and the other
tasks in this queue cannot be selected for scheduling because
of TDP violation. It should be noted that the second number
in the subscript of each task’s name shows the replica number.
In each iteration of making a normal block, ReTMiC makes
a block w.r.t the length of the longest task in that block and
all remaining tasks in the block are shifted to the end of the
block. In the first block, Ty 1 is selected since it is the largest
task, and the length of the block is chosen to be equal to its
WCLO(19ms). T,,1 is scheduled between O to 19ms on Cl1,
and T ; is scheduled between 1ms to 19ms on C2 (because
it must be shifted to the end of the block) and the second
replica of T2 (T2,2) is scheduled between 0 to 19ms on C3
(Fig. 5a). It should be noted that our proposed method can
work based on any mapping algorithm, i.e., it is regardless
of a specific mapping algorithm. Therefore, in this example,
tasks are mapped with the First Fit bin-packing policy in
each block. Next, the overrun parts of the tasks which are
scheduled in the first normal block are scheduled in the time
slots between 19ms and 26ms. The overrun part of each task
starts from the beginning of each overrun block on the same
core of the normal part in order to avoid context switching
between the normal and overrun parts of each task. We should
mention that the length of each overrun block is equal to the
biggest overrun part (WCH! — WCLO) of tasks in that block.
Now, the end time of the current block (including the normal
and overrun parts of the tasks), which is equal to 26ms,
is added to the Balancing Points (BPs) of the system (Fig. 5b).
In the next step, between the remaining replicas of T and
T, (because of dependency constraint, other tasks in the graph
cannot be a candidate to select), T1 2 and T 3 are selected and
because of TDP violation, T} 3 cannot be selected (Fig. 4b).
Same as before, first, the normal parts of each replica must be
scheduled. Since T} has the longer WCL©, the length of the
block equals to its WCLO and it is scheduled between 26ms
to 44ms on Cl1. In the same way, T2 3 is scheduled between
28ms to 44ms on C2 at the end of the block. Next, the overrun
parts of the tasks in this block are scheduled at the end of

VOLUME 13, 2025

S. Safari et al.: ReTMiC: Reliability-Aware Thermal Management

IEEE Access

EEEN CET
T [18 | oyt TRTB] [7] e o
AN 6] [Ta 10 | T | 11 | T2 5 L T
mTs] (o] (o] Fe=lel el
— R | T | 6 |
(a) (b (©) (d (e) ®

FIGURE 4. Detail of selecting tasks in Algorithm 3 and its tasks queue in each iteration.

D

C
H |
z |
c1 i !
+
|

2
¢ T |
|
C3 T2 |
T
c4 !
19 26 44 51 66 72 83 90 98 104 116 '

Time [ms]

a) Scheduling the normal parts of tasks of Fig. 3 in first normal block

BP BP D
H ! H (. |
£ e 2 gl 2 |
| [

a T, \I | To ™ T !
! t
| —_ |

2 I

T [~ Ts q T I Y |
] | |

c3 I | - l [
T A, | CTaTs] B2 s il :

] I |] (A
| | | | [|
c4 I I I Loy .
19 26 44 51 66 72 83 90 98 104 116 '

Time [ms]

¢) Scheduling all the HC tasks

BP D
1 [!
2 ; |
c1 |
B [, }
! |

2 g
Ty " |
I |
c3 s 1 l |
| T
4 | |
1 I
19 26 44 51 66 72 83 90 98 104 1i6 '

Time [ms]

b) Scheduling overrun parts of tasks in Fig. 3 in first overrun block

BP BP BP D
H | H R s1% T |
5 IE IR L
| I — —

ct T A | T | Tis :\l B | |T4'2 — T2 !
1 ! 1
I I I |

@] i :
o e | N = e M O R A
I | |

[e] I I o I i
N E O v O Y L :

I I I R
- | \ | AR I
| | LTS | | | 4
19 26 44 51 66 72 83 90 98 104 116 '

Time [ms]

d) Scheduling the LC tasks

FIGURE 5. An lllustrative example of scheduling Fig. 3 based on proposed ReTMiC method in a quad-core platform at design time.

BP
T R
a T [
|
@ 1R
a
|
C3 |
I S
|
C4 {
19 26 44 5T
Time [ms]

FIGURE 6. An illustrative example of calculating BF for a block.

their normal parts between 44ms to 51ms. Now, the BP of
this block is determined (which is equal to 51ms). In the
next block, since all replicas of T, in the previous blocks
have ended, the replicas of T¢ can be the candidates to select
(Fig. 4c). The third copy of T; (T} 3) and two copies of Tg
are (Te, 1, Te.2) selected to schedule in the next block. Ty 3 is
scheduled in the time slot 51ms to 72ms on C1 and two copies
of T¢ are scheduled in the time slot 56ms to 72ms on C2 and
C3, respectively. In the next step, the overrun block is created

VOLUME 13, 2025

BP
I
|
C1 72°C!
|
Cc2 79°C|
|
C3 68°C| | T2,3
|
C4 50 CITTq
19 26 44
Time [ms]

FIGURE 7. An illustrative example of the runtime function of
ReTMiCmethod.

and the overrun parts of the tasks are scheduled between 66ms
to 72ms immediately after their normal parts on the same
core. Now, the new BP is added to BPs (72ms). Next, with the
completion of T in the previous blocks, T3 can be scheduled
in the current block. With building the queue for the tasks
that can execute in the current block, two copies of T3 and one
copy of T4 are selected for the next block (Fig. 4d). Of course,
we can schedule the second copy of T4 on C4 in this block,

33169

IEEE Access

S. Safari et al.: ReTMiC: Reliability-Aware Thermal Management

but scheduling this task in this block can result in the chip
TDP violation. Based on Algorithm 2, T3 1 is scheduled from
72ms to 83ms on C1. Then, T4 1 is scheduled between 76ms
to 83ms on C2 and T35 is scheduled in the time slot 72ms
to 83ms on C3. Next, the overrun parts of each task are
scheduled at the end of their normal parts. Now, the end time
of the current scheduling (90ms) is added as a new BP to BPs
array. Therefore, the two remaining replicas of T4 are selected
for the new block (Fig. 4e). T4 2 and T4 3 are scheduled in the
time slot 90ms to 96ms on C1 and C2, respectively. Next,
the overrun parts of these tasks are scheduled between 96 to
98ms on C1 and C2. After that, the BPs are updated, and a
new BP (98ms) is added to BPs. Next, the two replicas of Tg
(Tg.1, Tg2) are selected for the new block (Fig. 4f). These
tasks are scheduled in the time slot 98ms to 101ms on Cl1
and C2, respectively. Then, the overrun parts of these tasks
are added to scheduling between 101 to 104ms. Next, the BP
for this block (104ms) is added to BPs. Now, the scheduling
procedure of HC tasks is ended (Fig. 5c).

In the following, the scheduler tries to add LC tasks to
the scheduling as much as possible. First, it tries to add
LC tasks to current normal blocks using Algorithm 2, lines
18-34. It should be noted that in our proposed method, tasks
are not preempted. Hence, each LC task must schedule in a
normal block that has enough time length to fit the entire task.
Because of the dependency constraint of the task-graph, there
is no LC task that can be scheduled in blocks of the system in
the time slot 0 to 19ms and 26ms to 44ms. By adding LC
task (Ts) to the next normal block (51 to 66ms), the chip
TDP will be violated. Therefore, the scheduler checks the
next normal block (72ms to 83ms) for adding Ts. In this
block, T5 can be scheduled because the block has enough time
length, and no TDP violation is happening. After that, the
scheduler checks the next block (90ms to 96ms), and since the
WCLO of remaining tasks (T7, To) are longer than the block
length, none of them can be scheduled in this block. In the
next block, 98ms to 101ms, there is the same situation as
the previous block, and we cannot add any task to this block.
Now, for scheduling the remaining tasks, the scheduler makes
a new block to schedule these tasks using Algorithm 2, lines
35-49. It schedules Ty in the time slot 104ms to 116ms on
C1, and T7 in the time slot 106ms to 116ms on C2 (Fig. 5d).
Indeed, Fig. 5d shows the final schedule where all HC tasks
and their corresponding replicas and LC tasks are scheduled
while, timing, reliability, and temperature constraints are met.

1) AN ILLUSTRATIVE EXAMPLE OF CALCULATING
BALANCING FACTORS (BFS)

Next, BFs for each block must be calculated. In the following,
the procedures for calculating BF for the second block of the
illustrative example are shown. We assume that the steady
temperatures for T; » and T2 3 are equal to 82°C and 89°C,
respectively, and the ambient temperature for all cores equals
45°C. According to offline scheduling, the second block is
between 26ms and S1ms (Fig. 6). Now, BFs are calculated
for each core using Eq. 18. In core Cl, there is no slack

33170

time. Therefore, Eq. 18 is simplified to 6> + §A™ and
equals to 127. For core C2, the slack time is 2ms, and block
length equals to 25ms. Then, BF is calculated as BFy =
(1 — (2/25)) x 89 + 45 and it equals 126.8. In core C3 and
C4, the slack time equals block length; thus, their BFs are
equal to 45.

2) AN ILLUSTRATIVE EXAMPLE OF THE RUNTIME FUNCTION
OF RETMIC METHOD

For more clarification on the online phase of the proposed
ReTMiC method, we show how our online re-mapping tech-
nique applies to the second block of the offline scheduling
with reaching the first BP. As shown in Fig. 7, we assume
that the temperatures of the cores in the BP are equal to
72°C, 79°C, 68°C, and 50°C, respectively. According to
Algorithm 4, the task with the highest BF is assigned to the
core with the lowest temperature. As a result, the designated
task of C1 with the highest BF is re-mapped to the core with
the lowest temperature (C4), and the assigned task of C2
with the second-highest temperature is re-mapped to the core
with the second-lowest current temperature (C3).

V. EVALUATIONS
In this section, we present our system setup and the results of
our evaluations.

A. EXPERIMENTAL SETUP

We have considered a homogeneous multicore platform that
consists of out-of-order ARM Cortex-A15 cores. We have
employed the gem5 simulator [41] and McPAT [42] to obtain
the power profile and area details. We used the open-source
tools introduced in [30] for generating real mixed-criticality
DAGs (MC-DAQG), i.e., the topology of DAGs (including
the nodes and communication between nodes) is generated
with the tool in [38], then each node of the graph (task) has
characteristics associated with the selected task of real-world
workload PARSEC benchmark suite [43]. Real DAG-based
benchmarks like Stream-IT [54] can also be exploited in
evaluations. Results are exported based on 100 generated
MC-DAGs with different random configurations where each
MC-DAG consists of up to 100 tasks. Moreover, we used
the HotSpot simulator [48] and MatEx [44] to model steady
temperature and transient temperature, respectively. Fig. 8
shows the overview of our experimental framework flow, and
the simulation configurations are summarized in Table 5. Our
ReTMiC method is compared with state-of-the-art techniques
of hard real-time and mixed-criticality systems. In our analy-
ses, the comparative state-of-the-art techniques are:

e Medina [38]: This technique schedules DAG-based
mixed-criticality tasks and guarantees the schedulability
of HC tasks in both normal and overrun modes. How-
ever, it drops all the LC tasks in the overrun scenario
and does not consider any fault-tolerant technique.

o TP3M [13]: This work has proposed a peak-power-
aware mapping and scheduling method to meet TDP

VOLUME 13, 2025

S. Safari et al.: ReTMiC: Reliability-Aware Thermal Management

IEEE Access

Corel Core2 Core3 Neu(XS Core1 | Core2 | Core3 | Core4
(74.76) (75.53) | (73.93) NU(X\2) (64.36) | (66.20) | (65.92) | (65.68)
Core 8 Core 5 Core 8 | Core7 | Core6 | Core5
(69.93) (69.42) (66.18) | (68.47) | (68.87) | (67.00)
Core 9 | Core 10 | Core 11 | Core 12 Core 9 | Core 10 | Core 11 | Core 12
(64.04) | (66.20) | (66.12) | (63.88) (68.58) | (71.22) | (70.71) | (69.10)
Core 16 | Core 15 | Core 14 | Core 13 Core 16 | Core 15 | Core 14 | Core 13
(60.22) | (61.86) | (61.91) | (60.35) (66.41) | (68.32) | (70.53) | (66.21)
a) ReTMiC method b) ReTMiC method
(offline phase) (online phase)

FIGURE 8. An experimental example of the effectiveness of our ReTMiC method.

Power, transient temperature,
QoS, and performance analysis

|PARSEC|—>| gem5 |—>| MCcPAT |—>| HotSpot|

Power profiles, steady temperatures,
timing analysis, and processor descriptiot

MC-DA G generator

‘ ReTMiC offline scheduler

ReTMiC online scheduler &
Thermal manager

FIGURE 9. Overview of our experimental framework.

in DAG-based hard real-time systems. They used the
N-modular redundancy (NMR) technique for tolerating
transient faults such that the chip-level power constraint
is met.

o LE-NMR [41]: This method presents a low-energy
NMR-based technique for multicore DAG-based hard
real-time systems which reduces energy consumption
while improving reliability. This paper is a suitable
option for comparison because the system, reliability,
and fault models are similar to our proposed method.

It is worth mentioning that in the hard real-time methods,
which were considered in our comparison (TP3M and LE-
NMR), we assumed that all tasks were executed with their
WCH! because these methods did not contain any strategy to
deal with the overrun phase in mixed-criticality tasks with
two kinds of WCETs.

B. EVALUATING TRANSIENT TEMPERATURE

This section evaluates the temperature of different methods.
We show the effectiveness of ReTMiC in terms of thermal
balancing and reducing the temperature. We consider a sys-
tem with a 16-core processor and a task graph with 100 tasks.
After scheduling tasks with different methods, we extract
the transient temperature for each method. Fig. 9 shows the
average transient temperature of the platform for different
methods. In Fig. 9a, the maximum temperature of ReTMiC
in the offline phase is shown. Note that the maximum spatial
A6 of ReTMIC in the offline phase is about 15°C. However,
in Fig. 9b, after applying the run-time part of the ReTMiC
scheme, the maximum transient temperature among all the
cores is about 71.22°C, and the maximum AG® is about 6°C.
From Fig. 9c and Fig. 9d, it is clear that other methods

VOLUME 13, 2025

80
Core1 [e Corel Core2 | Core3 Ne(-X!
XL | (73:39) | (73.50) (74.76) (75.53) | (73.93) NY(XU3)} 75
Core8 Core7 Core6 Coreb C C [70
ore 8 ore 5
(73.27)| (78.09) (78.77) | (74.13) (69.93) (69.42) -
Core9 Core10 Core11 Core 12
(73.46) | (78.23) (78.46) |(73.32) Core 9 | Core 10 | Core 11 | Core 12 60
(64.04) | (66.20) | (66.12) | (63.88)
Core16 Core15 Core 14 [(€JHE] - 55
(72.34) (73.87) (73.58) [
Core 16 | Core 15| Core 14 | Core 13 | 50
¢) TP3M method [13] (60.22) | (61.86) | (61.91) | (60.35)
ks
TABLE 5. The details of simulation configuration.
Name Configuration
Core Type ARM Cortex Al5
Feature Size 22nm
Cores 4,9,16,36
Core v-f level 19 vflevels [0.9v, 0.2GHz] to [1.3v, 2.0GHz]
L1 Cache 32KB, 8KB block-width, 4-way
L2 Cache 2MB, 16-way
Memory 2GB
Chip Thickness 0.5mm
Heat Sink Thickness 0.7mm

are worse than our ReTMiC method in terms of A6 and
maximum transient temperature combination because they
did not consider the temperature threshold. To arrange a more
general analysis of the thermal behavior, we measure the
average and peak temperature of each method 100 times
with different configurations. The average temperature can
give us a better sense of the long-term thermal behavior of
each method. As shown in Fig. 10, ReTMiC provides on
average 10.3°C (up to 12.8°C) peak temperature reduction,
and 8.2°C (up t0 9.7°C) average temperature reduction. As an
example, in the TP3M method which provides the best results
among the state-of-the-art, the setup with 36 cores reached the
peak temperature equal to 88.5°C and an average temperature
equal to 79.1°C, while our method reached the peak temper-
ature equal to 81.8°C and the average temperature equal to
73.4°C.

C. EVALUATING THE SPATIAL THERMAL VARIATION (A0)

To evaluate the thermal balancing of different methods,
we have extracted two thermal factors (average A6 and max-
imum A#6). Fig. 11a shows the maximum spatial A6 (i.e.,
QISM - Gifﬁn in a specific time) during the execution of tasks
for each method. Fig. 11b shows the average spatial A9 from
the start to the end of executing tasks for each method. The
experiments show that ReTMiC provides on average 1.9°C
(up to 3.5°C) in terms of maximum A6 reduction, and 1.3°C
(up to 2.4°C) in terms of average A6 reduction in comparison
to other methods. For example, in 36 cores configuration, the
maximum and average A6 in the TP3M method are 18.9°C

33171

IEEE Access

S. Safari et al.: ReTMiC: Reliability-Aware Thermal Management

Medina[30] ELE-NMR

Peak Temp. ("C)
®
(=]

16 36

Number of Cores
a) Peak temperature

FIGURE 10. The resulting transient temperature on the chip.

OTP3M EReTMiC

90

N?lmber of Corels6

b) Average temperature

Medina[30] EILE-NMR OTP3M BEReTMiC

25
20
15
10

Maximum A6 ("C)

6
Number of Cores

a) Maximum A8

FIGURE 11. The resulting spatial A¢ temperature on the chip.

@Medina[30] ELE-NMR ETP3M B ReTMiC

100
80

Feasibility
-
(=T =)

N
o

0 + T

Number of Cores

FIGURE 12. Comparing the feasibility based on worst-case scenario in
theoffline phase.

and 10.9°C respectively, while the values for our method are
15.4°C and 9.6 °C, respectively.

D. EVALUATING THE FEASIBILITY

In this subsection, we discuss the feasibility of different meth-
ods in the worst-case scenario on different numbers of cores.
We define feasibility as the percentage of satisfying both
timing and TDP constraints. The results are reported from the
offline phase with the worst-case scenario (see Fig. 12). As it
is shown in Fig. 12, ReTMiC provides, on average, 15.5%
improvement in terms of feasibility compared to the other
state-of-the-art methods.

E. EVALUATING THE PEAK POWER CONSUMPTION

Fig. 13 shows the normalized peak power consumption in
the worst-case scenario to the TDP constraint for Medina,
Medina with replication, TP3M, LE-NMR, and ReTMiC for
different numbers of cores in different parallelism degrees.

33172

Average A ("C)

0 = T T = T
4 9 16 36

Number of Cores

b) Average Af

The height of a task graph can be used to determine the
parallelism degree for task graphs with a specific number of
tasks [13]. If n is the number of tasks in a task graph and &
is the task graph height, 4 can vary between 1 (the highest
parallelism degree) and n (a chained task graph with the
lowest parallelism degree). Therefore, the heights of the task
graphs with high parallelism degrees, medium parallelism
degrees, and low parallelism degrees are 1< h < n/3, n/3<
h <2n/3, and, 2n/3< h < n, respectively.

It should be noted that in Medina with replication to have
a fair comparison we have adopted Medina [38] method
with task replication fault-tolerant technique. As can be seen,
only TP3M and ReTMiC meet TDP constraints in all sce-
narios, because other methods (LE-NMR and Medina) are
very dependent on the parallelism degree of the task graph,
and with increasing the parallelism degree, they violate the
TDP constraint. In summary, ReTMiC provides on average
30.11% peak power reduction as compared to the other meth-
ods. Although both TP3M and our scheme respect the TDP
constraint, as demonstrated in Sections V-B and V-C, our
method achieves a smaller transient temperature and spatial
thermal variation due to the online re-mapping technique.

F. EVALUATING THE QOS

The QoS of ReTMiC is reported in the offline phase and it
is evaluated based on the percentages of HC tasks’ overrun
in the online phases. In this result, we assume a minimum
guaranteed QoS. We set this minimum QoS to 30 and 60 per-
centages and report the average results. To show the effect

VOLUME 13, 2025

S. Safari et al.: ReTMiC: Reliability-Aware Thermal Management

IEEE Access

#Medina[30] @LE-NMR OTP3M @EReTMiC

[S]
N

=
@

Peak Power
Normalized to TDP
-

Peak Power
Normalized to TDP
-

e
@
o
@

=
=)

Number of Cores

a) Low parallelism

Number of Cores

b) Middle parallelism

FIGURE 13. Normalized peak-power to the chip TDP in the worst-case scenario.

O Offline
100 = PR
. 7 nhlgtdl
80] 0
q "
70 1 B gl ""'::
< 60 4 iR '-""'-'
s - gl [aaalt
& 50 1 0t l!ir!ll!ll””'
_.i"ll‘-""""!', R
SIAONBOAN AN AARHAGAHERDL
20 §
0-¢E&2&E’:828P3§:’:&2’:P22&
6 6 6 ¢|lc S 3le oS d|lc S S S|l S S d|ld oS o
[VEeRve] [VAGRAY] VAN VRG] FRACNe] [HRUNe]
socglvogglvragglsagglragglvaes
100% 80% 60% 40% 20% 0%

Percentage of overrun tasks

a) Percentage of guaranteed the QoS equals to 30%

FIGURE 14. Comparing QoS of the offline and online phases.

of runtime scheduling, we assume that 50 percent of tasks
in DAG are LC tasks. By increasing the percentage of HC
tasks that overrun, the released dynamic slack time in runtime
is reduced. As a result, the number of LC tasks that are
scheduled at run time is reduced, and hence, the QoS is
reduced. As shown in Fig. 14, the online improvement of QoS
with increasing overrun percentage is decreased.

VI. CONCLUSION

This paper presents a thermal-aware task replication to deal
with the processors’ hot spots in fault-tolerant MCSs. In this
regard, our proposed method employs TDP as the chip-level
power constraint. We also determine balancing points and
balancing factors at the offline phase to balance the temper-
ature of the system in the runtime. At run time, we propose
a lightweight online re-mapping technique that activates at
the balancing points and uses a balancing factor to reduce
the system’s temperature based on the current temperature of
each core and their corresponding task behavior. In the future,
we will propose a method for mapping and scheduling mixed-
criticality multi-DAGs on the heterogenous multicores while
timing, TDP, and reliability constraints are met.

REFERENCES

[1] Y.-W. Zhang, R.-K. Chen, and Z. Gu, “Energy-aware partitioned schedul-
ing of imprecise mixed-criticality systems,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 42, no. 11, pp. 3733-3742, Nov. 2023.

VOLUME 13, 2025

Peak Power
Normalized to TDP

Number of Cores

¢) High parallelism

@ Online

[2]

3

[l

[4]

[5]

[6]

[71

[8]

[9]

(10]

(11]

QoS (%)

i .]
1 0 . . .)
TS % % %

36 Core 1=

4 Core

°
9]
©

4Core === =

o
o

60% 40%
Percentage of overrun tasks

b) Percentage of guaranteed the QoS equals to 60%

A. Burns and R. I. Davis, “A survey of research into mixed criticality
systems,” ACM Comput. Surveys, vol. 50, no. 6, pp. 1-37, Nov. 2018.

S. Safari, M. Ansari, G. Ershadi, and S. Hessabi, “On the scheduling
of energy-aware fault-tolerant mixed-criticality multicore systems with
service guarantee exploration,” IEEE Trans. Parallel Distrib. Syst., vol. 30,
no. 10, pp. 2338-2354, Oct. 2019.

A. Hossein Ansari, M. Ansari, and A. Ejlali, “TAFT: Thermal-aware
hybrid fault-tolerant technique for multicore embedded systems,” IEEE
Embedded Syst. Lett., vol. 16, no. 4, pp. 477-480, Dec. 2024.

M. Ansari, S. Safari, A. Yeganeh-Khaksar, R. Siyadatzadeh,
P. Gohari-Nazari, H. Khdr, M. Shafique, J. Henkel, and A. Ejlali,
“ATLAS: Aging-aware task replication for multicore safety-critical
systems,” in Proc. IEEE 29th Real-Time Embedded Technol. Appl. Symp.
(RTAS), San Antonio, TX, USA, May 2023, pp. 223-234.

M. Ansari, M. Salehi, S. Safari, A. Ejlali, and M. Shafique, ‘‘Peak-power-
aware primary-backup technique for efficient fault-tolerance in multicore
embedded systems,” IEEE Access, vol. 8, pp. 142843-142857, 2020.

S. Pagani, H. Khdr, J.-J. Chen, M. Shafique, M. Li, and J. Henkel,
“Thermal safe power (TSP): Efficient power budgeting for heterogeneous
manycore systems in dark silicon,” IEEE Trans. Comput., vol. 66, no. 1,
pp. 147-162, Jan. 2017.

M. Ansari, S. Safari, S. Yari-Karin, P. Gohari-Nazari, H. Khdr,
M. Shafique, J. Henkel, and A. Ejlali, “Thermal-aware standby-sparing
technique on heterogeneous real-time embedded systems,” IEEE Trans.
Emerg. Topics Comput., vol. 10, no. 4, pp. 1883-1897, Oct. 2022.

F. S. Ghahfarokhi and A. Ejlali, “Schedule swapping: A technique for
temperature management of distributed embedded systems,” in Proc.
IEEE/IFIP Int. Conf. Embedded Ubiquitous Comput., Dec. 2010, pp. 1-6.
S. Bertozzi, A. Acquaviva, D. Bertozzi, and A. Poggiali, “Supporting
task migration in multi-processor systems-on-chip: A feasibility study,”
in Proc. Design Autom. Test Eur. Conf., 2006, pp. 1-6.

Z. Al-bayati, J. Caplan, B. H. Meyer, and H. Zeng, “A four-mode model for
efficient fault-tolerant mixed-criticality systems,” in Proc. Design, Autom.
Test Eur. Conf. Exhib. (DATE), Mar. 2016, pp. 97-102.

33173

IEEE Access

S. Safari et al.: ReTMiC: Reliability-Aware Thermal Management

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

S. Safari, S. Hessabi, and G. Ershadi, “LESS-MICS: A low energy
standby-sparing scheme for mixed-criticality systems,” [EEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 12,
pp. 4601-4610, Dec. 2020.

M. Ansari, S. Safari, A. Yeganeh-Khaksar, M. Salehi, and A. Ejlali,
“Peak power management to meet thermal design power in fault-tolerant
embedded systems,” IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 1,
pp. 161-173, Jan. 2019.

M. A. Haque, H. Aydin, and D. Zhu, “On reliability management of
energy-aware real-time systems through task replication,” IEEE Trans.
Parallel Distrib. Syst., vol. 28, no. 3, pp. 813-825, Mar. 2017.

M. Ansari, S. Safari, N. Rohbani, A. Ejlali, and B. M. Al-Hashimi,
“Power-efficient and aging-aware primary/backup technique for hetero-
geneous embedded systems,” IEEE Trans. Sustain. Comput., vol. 8, no. 4,
pp. 715-726, Oct./Dec. 2023.

J. J. Chen, C. M. Hung, and T. W. Kuo, “On the minimization of the
instantaneous temperature for periodic real-time tasks,” in Proc. 13th
IEEE Real-Time Embedded Technol. App. Symp. (RTAS), Apr. 2007,
pp. 236-245.

S. Vestal, “Preemptive scheduling of multi-criticality systems with varying
degrees of execution time assurance,” in Proc. 28th IEEE Int. Real-Time
Syst. Symp. (RTSS), Dec. 2007, pp. 239-243.

S. Baruah, H. Li, and L. Stougie, ‘“Towards the design of certifiable mixed-
criticality systems,” in Proc. 16th IEEE Real-Time Embedded Technol.
Appl. Symp., Apr. 2010, pp. 13-22.

S. Baruah and S. Vestal, “Schedulability analysis of sporadic tasks with
multiple criticality specifications,” in Proc. Euromicro Conf. Real-Time
Syst., Jul. 2008, pp. 147-155.

S. Baruah, V. Bonifaci, G. D’angelo, H. Li, A. Marchetti-Spaccamela,
S. Van Der Ster, and L. Stougie, “‘Preemptive uniprocessor scheduling of
mixed-criticality sporadic task systems,” J. ACM, vol. 62, no. 2, pp. 1-33,
May 2015.

P. Ekberg and W. Yi, “Bounding and shaping the demand of generalized
mixed-criticality sporadic task systems,” Real-Time Syst., vol. 50, no. 1,
pp. 48-86, Jan. 2014.

H. Su, D. Zhu, and D. Mossé, “Scheduling algorithms for elastic
mixed-criticality tasks in multicore systems,”” in Proc. IEEE 19th Int. Conf.
Embedded Real-Time Comput. Syst. Appl., Aug. 2013, pp. 352-357.

H. Su, D. Zhu, and S. Brandt, “An elastic mixed-criticality task model
and early-release EDF scheduling algorithms,”” ACM Trans. Design Autom.
Electron. Syst., vol. 22, no. 2, pp. 1-25, Apr. 2017.

H. Li and S. Baruah, “Outstanding paper award: Global mixed-criticality
scheduling on multiprocessors,” in Proc. 24th Euromicro Conf. Real-Time
Syst., Jul. 2012, pp. 166-175.

Z. Al-bayati, Q. Zhao, A. Youssef, H. Zeng, and Z. Gu, “Enhanced
partitioned scheduling of mixed-criticality systems on multicore plat-
forms,” in Proc. 20th Asia South Pacific Design Autom. Conf., Jan. 2015,
pp. 630-635.

H. Xu and A. Burns, “Semi-partitioned model for dual-core mixed criti-
cality system,” in Proc. 23rd Int. Conf. Real Time Netw. Syst., Nov. 2015,
pp. 257-266.

T. Yang, Y. Tang, X. Jiang, Q. Deng, and N. Guan, “Semi-federated
scheduling of mixed-criticality system for sporadic DAG tasks,” in Proc.
IEEE 22nd Int. Symp. Real-Time Distrib. Comput. (ISORC), May 2019,
pp. 163-170.

J.Li, D. Ferry, S. Ahuja, K. Agrawal, C. Gill, and C. Lu, “Mixed-criticality
federated scheduling for parallel real-time tasks,” in Proc. IEEE Real-Time
Embedded Technol. Appl. Symp. (RTAS), Sep. 2016, pp. 1-12.

P. Huang, H. Yang, and L. Thiele, “On the scheduling of fault-tolerant
mixed-criticality systems,” in Proc. 51st ACM/EDAC/IEEE Design Autom.
Conf. (DAC), Jun. 2014, pp. 1-6.

A. Thekkilakattil, R. Dobrin, and S. Punnekkat, ‘“Mixed criticality schedul-
ing in fault-tolerant distributed real-time systems,” in Proc. Int. Conf.
Embedded Syst. (ICES), Jul. 2014, pp. 92-97.

P. Huang, P. Kumar, G. Giannopoulou, and L. Thiele, “Energy effi-
cient DVFS scheduling for mixed-criticality systems,” in Proc. Int. Conf.
Embedded Softw. (EMSOFT), Oct. 2014, pp. 1-10.

S. Narayana, P. Huang, G. Giannopoulou, L. Thiele, and R. V. Prasad,
“Exploring energy saving for mixed-criticality systems on multi-cores,” in
Proc. IEEE Real-Time Embedded Technol. Appl. Symp. (RTAS), Apr. 2016,
pp. 1-12.

33174

(33]

(34]

(35]

(36]

(371

(38]

(39]

[40]

[41]

[42]

(43]

(44]

[45]

[46]

(471

(48]

[49]

[50]

[51]

(52]

(53]

V. Legout, M. Jan, and L. Pautet, “Mixed-criticality multiprocessor real-
time systems: Energy consumption vs deadline misses,” in Proc. Workshop
Real-Time Mixed-Criticality Syst. (ReTiMiCS), 2013, pp. 1-6.

M. Vélp, M. Hahnel, and A. Lackorzynski, “‘Has energy surpassed timeli-
ness? Scheduling energy-constrained mixed-criticality systems,” in Proc.
IEEE 19th Real-Time Embedded Technol. Appl. Symp. (RTAS), Apr. 2014,
pp. 275-284.

H. Sobhani, S. Safari, J. Saber-Latibari, and S. Hessabi, “REALISM:
Reliability-aware energy management in multi-level mixed-criticality sys-
tems with service level degradation,” J. Syst. Archit., vol. 117, Aug. 2021,
Art. no. 102090.

Z.Li, X. Hua, C. Guo, and S. Ren, “Empirical study of energy minimiza-
tion issues for mixed-criticality systems with reliability constraints,” in
Proc. LPDC, 2014, pp. 1-22.

A. Naghavi, S. Safari, and S. Hessabi, “Tolerating permanent faults with
low-energy overhead in multicore mixed-criticality systems,” IEEE Trans.
Emerg. Topics Comput., vol. 10, no. 2, pp. 985-996, Apr. 2022.

R. Medina, E. Borde, and L. Pautet, “Directed acyclic graph scheduling
for mixed-criticality systems,” in Reliable Software Technologies—Ada-
Europe 2017: 22nd Ada-Europe International Conference on Reliable
Software Technologies, Vienna, Austria, June 12-16, 2017, Proceedings 22.
Springer, 2017, pp. 217-232.

R. Medina, E. Borde, and L. Pautet, “‘Availability enhancement and anal-
ysis for mixed-criticality systems on multi-core,” in Proc. Design, Autom.
Test Eur. Conf. Exhib. (DATE), Mar. 2018, pp. 1271-1276.

M. Ansari, A. Yeganeh-Khaksar, S. Safari, and A. Ejlali, “Peak-power-
aware energy management for periodic real-time applications,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 4,
pp. 779-788, Apr. 2020.

M. Salehi, A. Ejlali, and B. M. Al-Hashimi, ‘“Two-phase low-energy
N-modular redundancy for hard real-time multi-core systems,” [EEE
Trans. Parallel Distrib. Syst., vol. 27, no. 5, pp. 1497-1510, May 2016.
Z. Li, C. Guo, X. Hua, and S. Ren, “Reliability guaranteed energy mini-
mization on mixed-criticality systems,” J. Syst. Softw., vol. 112, pp. 1-10,
Feb. 2016.

R. Sridharan and R. Mahapatra, ““Reliability aware power management for
dual-processor real-time embedded systems,” in Proc. 47th Design Autom.
Conf., Jun. 2010, pp. 819-824.

A. Meixner, M. E. Bauer, and D. Sorin, “Argus: Low-cost, comprehensive
error detection in simple cores,” in Proc. 40th Annu. IEEE/ACM Int.
Symp. Microarchitecture (MICRO), Dec. 2007, pp. 210-222.

J. R. Sklaroff, ‘“Redundancy management technique for space shuttle
computers,” IBM J. Res. Develop., vol. 20, no. 1, pp. 20-28, Jan. 1976.
L. E. P. Rice and A. M. K. Cheng, “Timing analysis of the X-38 space
station crew return vehicle avionics,” in Proc. Real-Time Technol. App.,
Jun. 1999, pp. 255-265.

Y. C. Bob Yeh, “Design considerations in Boeing 777 fly-by-wire com-
puters,” in Proc. 3rd IEEE Int. High-Assurance Syst. Eng. Symp. (HASE),
Nov. 1998, pp. 64-72.

W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron,
and M. R. Stan, “HotSpot: A compact thermal modeling methodology for
early-stage VLSI design,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 14, no. 5, pp. 501-513, May 2006.

Y. Lee, H. S. Chwa, K. G. Shin, and S. Wang, “Thermal-aware resource
management for embedded real-time systems,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 37, no. 11, pp.2857-2868,
Nov. 2018.

N. Binkert, B. M. Beckmann, G. Black, S. K. Reinhardt, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
ACM SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1-7, May 2011.
S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proc. 42nd
Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO), Dec. 2009,
pp. 469-480.

C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: Characterization and architectural implications,” in Proc. Int. Conf.
Parallel Architectures Compilation Techn. (PACT), Oct. 2008, pp. 72-81.
S. Pagani, J. J. Chen, M. Shafique, and J. Henkel, “MatEx: Efficient
transient and peak temperature computation for compact thermal models,”
in Proc. Design, Autom. Test Europe Conf. Exhib. (DATE), Apr. 2015,
pp. 1515-1520.

VOLUME 13, 2025

S. Safari et al.: ReTMiC: Reliability-Aware Thermal Management

IEEE Access

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

Y.-H. Gong, J.J. Yoo, and S. W. Chung, “Thermal modeling and validation
of a real-world mobile AP,” IEEE Des. Test, vol. 35, no. 1, pp. 55-62,
Feb. 2018.

B. Rouxel and I. Puaut, “STR2RTS: Refactored StreamIT benchmarks into
statically analyzable parallel benchmarks for WCET estimation & real-
time scheduling,” in Proc. 17th Int. Workshop Worst-Case Execution Time
Analysis (WCET), 2017.

G. C. Buttazzo, Hard Real-Time Computing Systems: Predictable Schedul-
ing Algorithms and Applications, vol. 24. Berlin, Germany: Springer, 2011.
S. Safari, H. Khdr, P. Gohari-Nazari, M. Ansari, S. Hessabi, and
J. Henkel, “TherMa-MiCs: Thermal-aware scheduling for fault-tolerant
mixed-criticality systems,” IEEE Trans. Parallel Distrib. Syst., vol. 33,
no. 7, pp. 1678-1694, Jul. 2022.

M. Ansari, S. Safari, H. Khdr, P. Gohari-Nazari, J. Henkel, A. Ejlali, and
S. Hessabi, “Power-aware checkpointing for multicore embedded sys-
tems,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 12, pp. 4410-4424,
Dec. 2022.

S. Safari, M. Ansari, H. Khdr, P. Gohari-Nazari, S. Yari-Karin,
A. Yeganeh-Khaksar, S. Hessabi, A. Ejlali, and J. Henkel, “A survey
of fault-tolerance techniques for embedded systems from the perspec-
tive of power, energy, and thermal issues,” IEEE Access, vol. 10,
pp. 12229-12251, 2022.

J. R. Azambuja, F. Kastensmidt, and J. Becker, Hybrid Fault Tolerance
Techniques to Detect Transient Faults in Embedded Processors. Cham,
Switzerland: Springer, 2014.

A. Thekilakkattil, R. Dobrin, S. Punnekkat, and H. Aysan, “Optimizing
the fault tolerance capabilities of distributed real-time systems,” in Proc.
IEEE Conf. Emerg. Technol. Factory Autom., Palma de Mallorca, Spain,
Sep. 2009, pp. 1-4.

R. M. Pathan and J. Jonsson, “Exact fault-tolerant feasibility analysis of
fixed-priority real-time tasks,” in Proc. IEEE 16th Int. Conf. Embedded
Real-Time Comput. Syst. Appl., Macau, China, Aug. 2010, pp. 265-274.
R. M. Pathan, “Fault-tolerant and real-time scheduling for mixed-
criticality systems,” Real-Time Syst., vol. 50, no. 4, pp. 509-547, Jul. 2014.
K. Cao, G. Xu, J. Zhou, M. Chen, T. Wei, and K. Li, “Lifetime-aware
real-time task scheduling on fault-tolerant mixed-criticality embedded
systems,” Future Gener. Comput. Syst., vol. 100, pp. 165-175, Nov. 2019.
J. Caplan, Z. Al-bayati, H. Zeng, and B. H. Meyer, “Mapping and schedul-
ing mixed-criticality systems with on-demand redundancy,” IEEE Trans.
Comput., vol. 67, no. 4, pp. 582-588, Apr. 2018.

S. Chakraborty, Y. Sharma, and S. Moulik, “TREAFET: Temperature-
aware real-time task scheduling for FinFET based multicores,” ACM
Trans. Embedded Comput. Syst., vol. 23, no. 4, pp. 1-31, Jul. 2024.

Y. Sharma, S. Moulik, and S. Chakraborty, “RESTORE: Real-time task
scheduling on a temperature aware FinFET based multicore,” in Proc.
Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2022, pp. 608-611.
Y. Sharma and S. Moulik, “CETAS: A cluster based energy and tem-
perature efficient real-time scheduler for heterogeneous platforms,” in
Proc. 37th ACM/SIGAPP Symp. Appl. Comput. New York, NY, USA:
Association for Computing Machinery, Apr. 2022, pp. 501-509.

Y. Sharma, S. Gupta, and S. Moulik, “An interplay of energy and
temperature minimization techniques for heterogeneous multiprocessor
systems,” in Proc. IEEE Region 10 Conf. (TENCON), Chiang Mai, Thai-
land, Oct. 2023, pp. 629-634.

Y. Sharma, S. Chakraborty, and S. Moulik, “ETA-HP: An energy and
temperature-aware real-time scheduler for heterogeneous platforms,”
J. Supercomput., vol. 78, no. 8, pp. 1-25, May 2022.

S. Safari, S. Shokri, S. Hessabi, and P. Lotfi-Kamran, “LEC-MiCs: Low-
energy checkpointing in mixed-criticality multicore systems,” ACM Trans.
Cyber-Phys. Syst., vol. 9, no. 1, pp. 1-29, Jan. 2024.

S. K. Roy, R. Devaraj, A. Sarkar, and D. Senapati, “SLAQA: Quality-level
aware scheduling of task graphs on heterogeneous distributed systems,”
ACM Trans. Embedded Comput. Syst., vol. 20, no. 5, pp. 1-31, Sep. 2021.
R. Devaraj and A. Sarkar, ‘“Resource-optimal fault-tolerant scheduler
design for task graphs using supervisory control,” IEEE Trans. Ind. Infor-
mat., vol. 17, no. 11, pp. 7325-7337, Nov. 2021.

T. Li, T. Zhang, G. Yu, Y. Zhang, and J. Song, “TA-MCF: Thermal-aware
fluid scheduling for mixed-criticality system,” J. Circuits, Syst. Comput.,
vol. 28, no. 2, Feb. 2018, Art. no. 1950029.

S. K. Roy, R. Devaraj, and A. Sarkar, “Contention cognizant scheduling
of task graphs on shared bus-based heterogeneous platforms,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 41, no. 2, pp. 281-293,
Feb. 2022.

VOLUME 13, 2025

SEPIDEH SAFARI received the Ph.D. degree in
computer engineering from the Sharif Univer-
sity of Technology, Tehran, Iran, in 2021. She
was a Visiting Researcher with the Chair for
Embedded Systems (CES), Karlsruhe Institute of
Technology (KIT), Germany, from 2019 to 2021.
She is currently a Senior Postdoctoral Researcher
with the Institute for Research in Fundamental
Sciences (IPM), Tehran. Her research interests
include the scheduling of real-time systems, low-
power/energy design of embedded and cyber-physical systems, fault-tolerant
mixed-criticality systems, scheduling algorithms, and distributed multicore
systems, with a focus on dependability/reliability. She was a Technical
Program Committee (TPC) Member of several conferences, such as RTSS-
2024, DSD-2022-2023-2024, and CPSAT-2024. She is an Associate Editor
of Microprocessors and Microsystems (MICPRO) (Elsevier).

MOHSEN ANSARI received the Ph.D. degree in
computer engineering from the Sharif University
of Technology, Tehran, Iran, in 2021. He was a
Visiting Researcher with the Chair for Embedded
Systems (CES), Karlsruhe Institute of Technol-
ogy (KIT), Germany, from 2019 to 2021. He is
currently an Assistant Professor of computer engi-
neering with the Sharif University of Technology.
He is also the Director of the Cyber-Physical Sys-
tems Laboratory (CPSLab), Sharif University of
Technology. His research interests include embedded machine learning, low-
power design, real-time systems, cyber-physical systems, and hybrid systems
design. He was a Technical Program Committee (TPC) Member of ASP-
DAC (2022, 2023, and 2024). He is serving as an Associate Editor for IEEE
Embedded Systems Letters (ESL).

SHAAHIN HESSABI (Member, IEEE) received
the B.S. and M.S. degrees in electrical engineering
from the Sharif University of Technology, Tehran,
Iran, in 1986 and 1990, respectively, and the Ph.D.
degree in electrical and computer engineering
from the University of Waterloo, Waterloo, ON,
Canada. He joined the Department of Computer
Engineering, Sharif University of Technology, as a
Faculty Member, in 1996. He has published more
than 130 refereed articles in related areas. His

JL-

research interests include cyber-physical systems, reconfigurable and het-
erogeneous architectures, and efficient processing and communication
architectures.

JORG HENKEL (Fellow, IEEE) received the
Diploma and Ph.D. (summa cum laude) degrees
from the Technical University of Braunschweig,
Germany. He was a Research Staff Member with
NEC Laboratories, Princeton, NJ, USA. He coor-
dinates the DFG Program SPP 1500 ““Dependable
Embedded Systems.” He is currently a Site Coor-
dinator of the DFG-TR89 Collaborative Research
Center on “Invasive Computing.” His research
work is focused on co-designing embedded hard-
ware/software systems with respect to power, thermal, and reliability aspects.
He has received six best paper awards from, among others, ICCAD, ESWeek,
and DATE. He serves as a steering committee chair/member for leading
conferences and journals. He is the Chairman of the IEEE Computer Society,
Germany Chapter. He served as the Editor-in-Chief for ACM TECS and
IEEE Design & Test. He is/has been an associate editor of major ACM and
IEEE journals. He was the General Chair of ICCAD and ESWeek.

33175

